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COMPARISON THEOREMS FOR THIRD-ORDER NEUTRAL
DIFFERENTIAL EQUATIONS

ZUZANA DOŠLÁ, PETR LIŠKA

Abstract. We establish comparison theorems for the oscillation of solutions

to third-order neutral differential equations via linear ordinary and delay dif-
ferential equations. Several applications illustrate the role of the deviating

argument in the differential operator.

1. Introduction

The recent monograph [19] is devoted to the various aspects of differential equa-
tions of third order. In particular, Chapter 6 concerns the oscillation of delay
differential equations. Motivated by these results and recent ones for delay and
neutral differential equations [1, 3, 4, 9, 18]), we study the relationship between
ordinary, delay and neutral differential equations.

In this article we study the third-order neutral differential equation( 1
p(t)

( 1
r(t)

[
x(t) + a(t)x

(
γ(t)

)]′)′)′ + q(t)f
(
x
(
δ(t)

))
= 0, (1.1)

where t ≥ t0.
We make the following assumptions:

(i) p(t), r(t), q(t), a(t), γ(t), δ(t) ∈ C[t0,∞), p(t), r(t), q(t), γ(t), δ(t) are
positive for t ≥ t0,

(ii)
∫∞
t0
p(t) dt =

∫∞
t0
r(t) dt =∞,

(iii) γ(t) ≤ t, limt→∞ γ(t) =∞,
(iv) limt→∞ δ(t) =∞,
(v) 0 ≤ a(t) ≤ a0 < 1 for t ≥ t0,

(vi) f ∈ C(R,R), f(0) = 0 and f(v)v > 0 for v 6= 0.
It is convenient to set, for each solution x of (1.1),

u(t) = x(t) + a(t)x
(
γ(t)

)
. (1.2)

For this function we define the functions

u[0] = u, u[1] =
1
r(t)

u′, u[2] =
1
p(t)

( 1
r(t)

u′
)′

=
1
p(t)

(
u[1]
)′
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that are called quasiderivatives of u. To simplify notation, we set

L3(·) =
d
dt

1
p(t)

d
dt

1
r(t)

d
dt

(·) .

Assumption (ii) implies that operator L3 is in the so-called canonical form.
A solution x of (1.1) is said to be proper if it is defined on the interval [t0, ∞)

and satisfies the condition

sup{|x(s)| : t ≤ s <∞} > 0 for all t ≥ t0.

A proper solution is called oscillatory or nonoscillatory according to whether it
does or does not have arbitrarily large zeros.

Equation (1.1) covers not only the linear ordinary differential equations (ODE
when a(t) = 0, δ(t) = t) but also the functional differential equations (FDE when
a(t) = 0). It is natural to try to investigate the relationship between (1.1) and
the corresponding linear ODE or FDE. The oscillation theory of these equations
was deeply studied by many authors; in the case of the ODEs we refer reader to
[6, 7, 8, 10, 13] and the monograph [15], in the case of the FDEs we refer to [1, 11, 17]
and the monograph [12]. Recently, a considerable attention has been paid to the
asymptotic theory of the neutral differential equations, see e.g. [2, 3, 4, 9, 18] and
the monograph [12, Section 10.4–10.6].

Oscillatory properties of the third-order neutral differential equations are usu-
ally described [2, 3, 9, 18] in the sense corresponding to the so-called property A.
Therefore, motivated by the classical definition of property A for the higher order
ordinary differential equations by Kiguradze [15] and its extension for the func-
tional equations by Kusano and Naito [16], we introduce the following definition of
property A for equation (1.1).

Definition 1.1. Equation (1.1) is said to have property A if any proper solution x
of (1.1) is oscillatory or satisfies

lim
t→∞

x(t) = 0.

Some authors (e.g. [18]) use a different terminology and instead of using property
A, they say that equation (1.1) is almost oscillatory.

Our aim here is to give comparison theorems for (1.1) via the linear ordinary or
functional differential equations of the form

L3y(t) + kq(t)y
(
δ(t)

)
= 0, (1.3)

where δ(t) ≤ t and k is a suitable constant. These results enable us to obtain
oscillation criteria for (1.1) from those given for (1.3). We refer to [19, Sections
6.2-6.3], where numerous criteria for the oscillation of (1.3) can be found.

We will give a special attention to the case when the differential operator L3 is
symmetric, i.e. p(t) = r(t), prototype of that is the linear neutral equation(

x(t) + a(t)x
(
γ(t)

)′′′
+ q(t)x

(
δ(t)

)
= 0.

Our main tool for the comparison method is the linearization technique. There-
fore in Sections 2 and 3 we recall basic properties of linear equation (1.3). Section 3
also contains some new results for the FDEs. In Section 4 properties of nonoscilla-
tory solutions of (1.1) are given. Our main results are stated in Section 5. Section
6 presents some applications.
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2. Preliminaries: Linear ODE

Consider the third-order linear differential equation( 1
p(t)

( 1
r(t)

x′(t)
)′)′

+ q(t)x(t) = 0. (2.1)

For completeness, we summarize basic results concerning the oscillatory behaviour
of (2.1), which we will need in our later consideration.

It is well-known (see for instance [16]) that all nonoscillatory solutions x of (2.1)
can be divided into the two classes:

N0 =
{
x solution of (2.1),∃Tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ Tx

}
N2 = {x solution of (2.1),∃Tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ Tx

}
.

Definition 2.1. Equation (2.1) is said to have property A if every proper solution
x of (2.1) is oscillatory or satisfies∣∣x[i](t)

∣∣ ↓ 0 as t→∞, i = 0, 1, 2.

Equation (2.1) is said to have property Ā if any proper solution x of (2.1) is oscil-
latory or belongs to N0.

Theorem 2.2 ([8, Theorem 5]). If∫ ∞
t0

q(t)
∫ t

t0

r(s)
∫ s

t0

p(v) dv dsdt <∞, (2.2)

then all solutions of (2.1) are nonoscillatory.

Theorem 2.3 ([7, Lemma 2.2]). Equation (2.1) has property Ā if and only if it
has at least one oscillatory solution.

Theorem 2.4 ([7, Theorem 2.2]). Equation (2.1) has property A if and only if it
has at least one oscillatory solution and∫ ∞

t0

q(t)
∫ t

t0

p(s)
∫ s

t0

r(v) dv dsdt =∞. (2.3)

From Theorems 2.2–2.4 we obtain the following results.

Proposition 2.5. The class N0 is not empty for (2.1). If (2.2) holds, then N2 is
not empty for (2.1).

Proof. The first part follows from results of Hartman and Wintner [14, p. 506].
The second part follows from Theorems 2.2 and 2.3. �

Proposition 2.6. Consider equation (2.1), where p(t) = r(t) for large t. Then
(2.1) has property A if and only if it has property Ā.

3. Functional differential equations

Consider the linear functional differential equation

L3x(t) + q(t)x
(
δ(t)

)
= 0. (3.1)

The classification of nonoscillatory solutions of (3.1) and definitions of property A
and Ā are the same as for equation (2.1).
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We recall the comparison theorem for the functional differential equations stated
in [16, Theorem 2]. We reformulate it in a slightly different form, which will be
useful for our purpose.

Consider the third-order linear functional differential equations

L3y(t) + q1(t)y
(
δ1(t)

)
= 0 (3.2)

and
L3z(t) + q2(t)z

(
δ2(t)

)
= 0 (3.3)

where q1(t) ≥ q2(t) > 0 and limt→∞ δ1(t) = limt→∞ δ2(t) =∞.

Proposition 3.1. Assume

δ1(t) ≥ δ2(t) and q1(t) ≥ q2(t) for t ≥ t1.
(a) If there exists a solution y ∈ N2 of (3.2), then there exists a solution z ∈ N2

of (3.3).
(b) If there exists a solution y ∈ N0 of (3.2) such that limt→∞ |y(t)| > 0, then

there exists a solution z ∈ N0 of (3.3) such that limt→∞ |z(t)| > 0.

Proposition 3.2. If δ(t) ≤ t and∫ ∞
t0

q(t)
∫ t

t0

p(s)
∫ s

t0

r(v) dv dsdt <∞, (3.4)

then equation (3.1) has a solution x ∈ N0 such that limt→∞ |x(t)| > 0.

Proof. By Theorem 2.4 and Proposition 2.5, equation (2.1) has a solution x in the
class N0 such that limt→∞ |x(t)| > 0. Now the conclusion follows from Proposition
3.1-b). �

By Proposition 3.2 we have that if the delay equation (3.1) has property A,
then equation (2.1) has also property A. Under the additional conditions the delay
equations can be compared with ODE (without delay).

Proposition 3.3 ([16, Theorem 8]). Let |t − δ(t)| be bounded and let functions
p(t), r(t) be non-increasing for t ∈ [t0,∞). Then equation (3.1) has property A if
and only if equation (2.1) has property A.

Our next theorem extends Proposition 2.6 for the functional differential equa-
tions with the symmetrical operator( 1

p(t)

( 1
p(t)

x′(t)
)′)′

+ q(t)x
(
δ(t)

)
= 0 (3.5)

and complements some results from [19, Chapter 6].

Theorem 3.4. Consider equation (3.5) and assume that δ(t) ≤ t. Then the fol-
lowing statements are equivalent:

(a) N2 = ∅, i.e. (3.5) has property Ā;
(b) every solution is oscillatory or tends to zero as t → ∞, i.e. (3.5) has

property A.

Proof. ”(b)⇒ (a)”: It is immediate.
”(a)⇒ (b)”: Assume by contradiction that there exists a solution x ∈ N0 of (3.5)

such that limt→∞ x(t) = c > 0. Consider the linear equation( 1
p(t)

( 1
p(t)

y′(t)
)′)′

+ q(t)
x(δ(t))
x(t)

y(t) = 0. (3.6)



EJDE-2016/38 COMPARISON THEOREMS FOR NEUTRAL EQUATIONS 5

Then y = x is a solution of (3.6). By Theorem 2.4, we have∫ ∞
t0

q(t)
x(δ(t))
x(t)

∫ t

t0

p(s)
∫ s

t0

p(v) dv dsdt <∞.

Obviously, limt→∞
x(δ(t))
x(t) = 1, so∫ ∞

t0

q(t)
∫ t

t0

p(s)
∫ s

t0

p(v) dv dsdt <∞.

By Theorem 2.2, the linear equation( 1
p(t)

( 1
p(t)

z′(t)
)′)′

+ q(t)z(t) = 0 (3.7)

does not have oscillatory solutions. Therefore it has a solution z ∈ N2 by Proposi-
tion 2.5.

Consider the linear equation( 1
p(t)

( 1
p(t)

v′(t)
)′)′

+ q(t)
z(t)
z(δ(t))

v
(
δ(t)

)
= 0. (3.8)

Then v = z is a solution of (3.8). Since z is increasing and δ(t) ≤ t, we have

z(t)
z(δ(t))

≥ 1 for large t.

By the comparison theorem for the functional differential equation (Proposition
3.1), equation (3.5) has a solution x ∈ N2, a contradiction. �

4. Neutral nonlinear equation - basic properties

In this section we study properties of nonoscillatory solutions of (1.1).

Lemma 4.1. Let x be a nonoscillatory solution of (1.1) and let u be defined by
(1.2). Then u, u[1], u[2] are monotone for large t.

Proof. Set y = u[1] and z = u[2]. Then x is a solution of (1.1) if and only if (u, y, z)
is a solution of the system

u′(t) = r(t)y(t)

y′(t) = p(t)z(t)

z′(t) = −q(t)f
(
x
(
δ(t)

))
.

From the last equation we see that z′ is of one sign for large t and so z is of one
sign as well. Using this fact we obtain from the second equation that the same is
true for y′. Similarly, we obtain from the first equation that u′ is also of one sign.
Therefore u, u[1] and u[2] are monotone. �

Lemma 4.2. Let x be a solution of (1.1) and let u be defined by (1.2). If either
u(t) > 0 and u[1](t) > 0 or u(t) < 0 and u[1](t) < 0 for t ≥ T , then

(1− a0)|u(t)| ≤ |x(t)| ≤ |u(t)| (4.1)

for t ≥ T .
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Proof. Assume that u(t) > 0 and u[1](t) > 0 for t ≥ T . Since γ(t) ≤ t and u is an
increasing function, we have x

(
γ(t)

)
≤ u

(
γ(t)

)
≤ u(t). Hence

x(t) = u(t)− a(t)x
(
γ(t)

)
≥ u(t)− a0x

(
γ(t)

)
≥ u(t)− a0u

(
γ(t)

)
≥ u(t)(1− a0).

The proof for u(t) < 0 and u[1](t) < 0 for t ≥ T is similar and is omitted. �

Lemma 4.3. Let x be a nonoscillatory solution of (1.1) and let u be defined by
(1.2). Then there are only two possible classes of solutions

N0 =
{
x solution,∃Tx : u(t)u[1](t) < 0, u(t)u[2](t) > 0 for t ≥ Tx

}
,

N2 =
{
x solution,∃Tx : u(t)u[1](t) > 0, u(t)u[2](t) > 0 for t ≥ Tx

}
.

Proof. Without loss of generality we may assume that there exists t1 such that
x
(
δ(t)

)
> 0, x(t) > 0 for t ≥ t1. Then u(t) ≥ x(t) > 0 and from (1.1),(

u[2](t)
)′ = −q(t)f

(
x
(
δ(t)

))
< 0, t ≥ t1.

Therefore u[2] is decreasing and there exists t2 ≥ t1 such that there are two pos-
sibilities, either u[2](t) < 0 or u[2](t) > 0 for t ≥ t2. Assume that u[2](t) < 0 for
t ≥ t2. Then there exists a constant M > 0 such that

u[2](t) ≤ −M < 0.

Integrating this inequality from t2 to t we obtain

u[1](t) ≤ u[1](t2)−M
∫ t

t2

p(s) ds.

Letting t → ∞ and using the fact that
∫∞
t0
p(t) dt = ∞, we obtain u[1](t) → −∞,

i.e. u[1](t) < 0 eventually. Proceeding by the same way and using the fact that∫∞
t0
r(t) dt = ∞, we obtain u(t) → −∞, a contradiction. Thus u[2](t) > 0 and

u[1] is increasing for t ≥ t2. Therefore there are two possibilities, either u(t) > 0,
u[1](t) < 0, u[2](t) > 0, or u(t) > 0, u[1](t) > 0, u[2](t) > 0. �

Lemma 4.4. Let x be a solution of (1.1) from the class N2. Then

lim
t→∞

|x(t)| = lim
t→∞

|u(t)| =∞.

Proof. Let x ∈ N2. Without loss of generality we may assume that x is eventually
positive, i.e. there exists T ≥ t0 such that x(t) > 0, u(t) > 0, u[1](t) > 0 and
u[2](t) > 0 for t ≥ T . As u[1] is positive and increasing function there exists K > 0
such that u[1](t) ≥ K for large t. Integrating this inequality from T to t we obtain

u(t) ≥ u(T ) +K

∫ t

T

r(s) ds.

Letting t → ∞ and using the fact that
∫∞
t0
r(t) dt = ∞, we obtain u(t) → ∞. By

Lemma 4.2, x(t) ≥ (1− a0)u(t). From this it follows that x(t)→∞. �

Proposition 4.5. Let x be a solution of (1.1) from the class N0. Then

lim
t→∞

u[i](t) = 0 for i = 1, 2

and
lim inf
t→∞

|x(t)| > 0 ⇐⇒ lim
t→∞

|u(t)| > 0. (4.2)
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Moreover, if (2.3) holds, then

lim
t→∞

x(t) = lim
t→∞

u(t) = 0. (4.3)

Proof. Assume that x ∈ N0. Without loss of generality we may assume that x is
eventually positive, i.e. u(t) > 0, u[1](t) < 0, u[2](t) > 0 for t ≥ Tx. Since u is
positive, there exists limt→∞ u[i](t) = `i, i = 0, 1, 2.

First, assume that `1 < 0. Then u′(t) ≤ `1r(t). Integrating from Tx to t and
letting t → ∞ we obtain a contradiction with the positivity of u. In the similar
manner we can see that `2 = 0.

If ` = `0 > 0, then for any ε > 0 we have l + ε > u
(
γ(t)

)
> l for large t, and

choosing 0 < ε < l(1−a0)
a0

we obtain the lower estimate

x(t) = u(t)− a(t)x
(
γ(t)

)
> l − a0u

(
γ(t)

)
> l − a0(l + ε) = k(l + ε) > kl, (4.4)

where k = l−a0(l+ε)
l+ε > 0, i.e. lim inft→∞ |x(t)| > 0. The vice versa in (4.2) follows

from (1.2).
To prove (4.3), assume by contradiction that ` = `0 > 0. From (4.4) and in view

of the fact that f is continuous, there exists K such that

f
(
x
(
δ(t)

))
≥ K

for large t. Hence from equation (1.1) it follows that(
u[2](t)

)′
≤ −q(t)K.

Integrating this inequality two times from t to ∞ we obtain

−u[1](t) ≥ K
∫ ∞
t

p(v)
∫ ∞
v

q(s) dsdv.

Integrating from t1 to t we obtain

−u(t) + u(t1) ≥ K
∫ t

t1

r(w)
∫ ∞
w

p(v)
∫ ∞
v

q(s) dsdv dw.

Letting t→∞ we obtain∫ ∞
t1

r(w)
∫ ∞
w

p(v)
∫ ∞
v

q(s) dsdv dw <∞.

Changing the order of the integration we obtain the contradiction with condition
(2.3). Therefore l = 0 and the inequality 0 ≤ x(t) ≤ u(t) implies that limt→∞ x(t) =
0. �

5. Main results: Comparison theorems

We state comparison theorems under the assumption that

lim sup
|v|→∞

v

f(v)
<∞. (5.1)

Set
Sf = lim sup

v→∞

v

f(v)
.

Our first theorem is based on the comparison with the linear ordinary differential
equations and holds for the advanced argument δ(t) ≥ t.

Theorem 5.1. Assume that (5.1) holds and δ(t) ≥ t.
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(i) If Sf > 0 and the linear ODE

L3y(t) +
1− a0

Sf
q(t) y(t) = 0 (5.2)

has property A, then equation (1.1) has also property A.
(ii) If Sf = 0, i.e. lim|v|→∞

f(v)
v =∞, and for some K > 0 the linear ODE

L3y(t) +Kq(t)y(t) = 0 (5.3)

has property A, then equation (1.1) has also property A.

Proof. (i) Let (5.2) have property A and let x be a solution of (1.1) such that
x(t) > 0 for t ≥ t1, t1 ≥ t0 and u(t) be defined by (1.2). Assume by contradiction
that x ∈ N2. Then u is nondecreasing and so u(t) ≤ u

(
δ(t)

)
. Using Lemma 4.2 we

obtain the following estimate

1− a0 ≤
x
(
δ(t)

)
u
(
δ(t)

) ≤ x
(
δ(t)

)
u(t)

. (5.4)

Consider the equation( 1
p(t)

( 1
r(t)

y′(t)
)′)′

+ q(t)
f
(
x
(
δ(t)

))
u(t)

y(t) = 0. (5.5)

This equation has a solution y = u satisfying y(t) > 0, y[1](t) > 0, y[2](t) > 0 for
large t, i.e. y is a solution of (5.5) from the class N2. Since Sf > 0, we can make
the following estimate

f(v) ≥ v

Sf
for large v.

By Lemma 4.4, we have that x(t) → ∞ as t → ∞, so from here and (5.4) there
exists T ≥ t1 such that

q(t)
f
(
x
(
δ(t)

))
u(t)

≥ q(t)
x
(
δ(t)

)
Sfu(t)

≥ q(t)1− a0

Sf
.

Since (5.2) has property A, N2 = ∅ for (5.2). Consequently, by Proposition 3.1,
N2 = ∅ for (5.5), a contradiction.

Now assume that x ∈ N0. Since (5.2) has property A, we have according to
Theorem 2.4 that (2.3) holds. By Proposition 4.5, limt→∞ x(t) = 0.

(ii). We proceed by a similar way as before. Let (5.3) have property A for
some K > 0. First, assume that equation (1.1) has a solution x ∈ N2 such that
x(δ(t)) > 0 for t ≥ t1 and u is defined by (1.2). Consider the linear delay equation

L3y(t) + q(t)
f
(
x
(
δ(t)

))
u(t)

y(t) = 0. (5.6)

This equation has a solution y = u from the class N2.
By Lemma 4.4, limt→∞ x(t) =∞. Since Sf = 0, we have

f
(
x
(
δ(t)

))
x
(
δ(t)

) ≥ K

(1− a0)

for large t. From here and (5.4)

f
(
x
(
δ(t)

))
u
(
t
) =

f
(
x
(
δ(t)

))
x
(
δ(t)

) x
(
δ(t)

)
u(t)

≥ K

1− a0
(1− a0) = K.
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Thus equation (5.6) is a majorant of (5.3). Since N2 = ∅ for (5.3), we have by
Proposition 3.1 that N2 = ∅ for (5.6), a contradiction.

If x ∈ N0, then by the same argument as in the proof of (i) we obtain (2.3),
which implies that limt→∞ x(t) = 0. �

Our second theorem is established for the delay argument δ(t) ≤ t.

Theorem 5.2. Assume that (5.1) holds and δ(t) ≤ t.
(i) If Sf > 0 and the linear delay equation

L3y(t) +
1− a0

Sf
q(t)y

(
δ(t)

)
= 0 (5.7)

has property A, then equation (1.1) has also property A.
(ii) If Sf = 0, i.e. lim|v|→∞ f(v)/v =∞, and for some K > 0 the linear delay

equation
L3y(t) +Kq(t)y(t) = 0

has property A, then equation (1.1) has also property A.

Proof. (i) Let (5.7) have property A and let x be a solution of (1.1) such that
x(t) > 0 for t ≥ t1, t1 ≥ t0 and u(t) be defined by (1.2).

Assume by contradiction that x ∈ N2, and consider the delay equation

L3y(t) + q(t)
f
(
x
(
δ(t)

))
u
(
δ(t)

) y
(
δ(t)

)
= 0. (5.8)

This equation has a solution y = u satisfying y(t) > 0, y[1](t) > 0, y[2](t) > 0 for
large t, i.e. y is the solution of (5.8) from the class N2. By the same argument as
in the proof of Theorem 5.1-(i) we obtain

f
(
x
(
δ(t)

))
u
(
δ(t)

) ≥ 1− a0

Sf
.

Now by Proposition 3.1, N2 = ∅ for (5.8), a contradiction.
Assume that x ∈ N0, x(t) > 0 for large t and assume by contradiction that

limt→∞ u(t) = ` > 0. Then there exists c1 > 0 such that x
(
δ(t)

)
≥ c1 for large t.

Now, f being continuous, we can assume that there exists c2 > 0 such that

f
(
x
(
δ(t)

))
u(t)

≥ c2 (5.9)

for large t. Consider the linear equation

L3z(t) + q(t)
f
(
x
(
δ(t)

))
u(t)

z(t) = 0.

This equation has a solution z = u which tends to a nonzero constant. Hence by
Theorem 2.4, ∫ ∞

t0

q(t)
f
(
x
(
δ(t)

))
u(t)

∫ t

t0

p(s)
∫ s

t0

r(v) dv dsdt <∞.

From (5.9) we conclude that∫ ∞
t0

q(t)
∫ t

t0

p(s)
∫ s

t0

r(v) dv dsdt <∞.
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Applying Proposition 3.2 to (5.7) we obtain that equation (5.7) has a solution
y ∈ N0 such that limt→∞ |y(t)| > 0. This is a contradiction with the fact that (5.7)
has property A.

(ii) The proof is similar to the proof of Theorem 5.1-(ii) and is omitted. �

Now we complete Theorem 5.2 for the neutral equation with the symmetric
operator.

Corollary 5.3. If the linear ODE

y′′′(t) + (1− a0)q(t)y(t) = 0 (5.10)

has an oscillatory solution, then the neutral equation(
x(t) + a(t)x

(
γ(t)

))′′′ + q(t)x(t− σ) = 0, σ > 0 (5.11)

has property A.

Proof. By Theorem 2.3 equation (5.10) has property Ā and by Proposition 2.6 it
has property A. Therefore by Proposition 3.3 the delay equation

y′′′(t) + (1− a0)q(t)y(t− σ) = 0

has property A. Using Theorem 5.2 with Sf = 1 we obtain the assertion. �

Remark 5.4. Equation (5.11) with γ(t) = t − τ , τ > 0, has been considered in
[12]. Corollary 5.3 extends [12, Theorem 10.4.1] for n = 3, where it was proved
that (5.11) has property A provided

∫∞
q(t) dt =∞.

Corollary 5.5. Let δ(t) ≤ t. If the linear delay equation( 1
p(t)

( 1
p(t)

y′
)′)′

+ (1− a0)q(t)y
(
δ(t)

)
= 0 (5.12)

has property Ā, then the neutral equation( 1
p(t)

( 1
p(t)

[
x(t) + a(t)x

(
γ(t)

)]′)′)′ + q(t)x
(
δ(t)

)
= 0. (5.13)

has property A.

Proof. By Theorem 3.4, we have that (5.12) has property A and using Theorem 5.2
with Sf = 1 we obtain the assertion. �

Open problem. As far as the class N0 is concerned, it is always nonempty for
equation (2.1), while it can be empty for equation (3.1) with δ(t) < t. Thus it is
possible that all solutions are oscillatory for equation (3.1) with delay argument.
The oscillation of (3.1) in the case that all solutions are oscillatory has been studied
in [11], see also [19, Corollary 3].

We conjecture that Theorem 3.4 holds for oscillations, in the sense that all
solutions are oscillatory. More precisely, if Sf > 0, δ(t) < t and all solutions to
(5.7) are oscillatory, then all solutions to (1.1) are oscillatory.
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6. Applications and examples

In this section we illustrate Theorems 3.4, 5.1, 5.2.

Example 6.1. Consider the linear neutral equation

(x(t) + a(t)x
(
γ(t)

)
)′′′ +

k

t3
x
(
δ(t)

)
= 0,

where δ(t) ≥ t. We show that this equation has the property A for

k >
2

3(1− a0)
√

3
.

Consider the corresponding linear ODE

y′′′(t) + (1− a0)
k

t3
y(t) = 0.

It is well-known [13] that if (1 − a0)k > 2
3
√

3
then this equation has an oscillatory

solution, and it has property A. Applying Theorem 5.1 we obtain the conclusion.

Example 6.2. Consider the neutral equation(
x(t) +

1
2
x
(
γ(t)

))′′′
+
k

t3
x(t− c) = 0, c ∈ R.

This equation has the property A for every k > 4/(3
√

3). Indeed, the case c ≤ 0
follows from Example 6.1 and the case c > 0 follows from Corollary 5.3.

If we apply [9, Theorem 2.7] we obtain that this equation has property A for
k > 1. Hence we can say our result improves the one mentioned there.

Now consider the linear neutral equation( 1
p(t)

( 1
r(t)

[
x(t) + a(t)x

(
γ(t)

)]′)′)′ + q(t)x(t) = 0. (6.1)

Corollary 6.3. Let (2.3) and at least one of the following conditions hold:

(i) ∫ ∞
t0

q(t)
∫ t

t0

r(s) ds =∞,

(ii)

lim sup
t→∞

∫ t

t0

p(s) ds
∫ ∞
t

q(s)

∫ s
t0
r(u)

∫ u
t0
p(v) dv du∫ s

t0
p(u) du

ds >
1

1− a0
.

Then equation (6.1) has property A.

Proof. Either condition (i) or (ii) ensures that the corresponding linear equation

L3y(t) +
1

1− a0
q(t)y(t) = 0 (6.2)

has an oscillatory solution, see [8, Theorem 8] or [15, Lemma 2.2], respectively.
Moreover, (2.3) ensures that (6.2) has property A. Applying Theorem 5.1 we obtain
the conclusion. �
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Example 6.4 ([18, Example 3.1]). Consider the neutral equation(
t
(
x(t) + a0 x

( t
2

))′′)′
+
k

t2
x(t) = 0, (6.3)

where a0 ∈ [0, 1). Applying Corollary 6.3-(i) we obtain that this equation has
property A for any k > 0.

Observe that applying [18, Theorem 2.1] or [3, Corollary 3] we obtain that (6.3)
has property A for k > (4l(1 − a0)) for some l ∈ (1/4, 1), or k > 2/(1 − a0),
respectively.

Now consider the neutral delay equation(
x(t) + a(t)x

(
γ(t)

))′′′
+ q(t)x

(
δ(t)

)
= 0, δ(t) < t, (6.4)

and the corresponding functional equation

y′′′(t) + (1− a0)q(t)y
(
δ(t)

)
= 0. (6.5)

To apply Corollary 5.5, we can use results in [19, Sections 6.2–6.3] ensuring that
(6.5) has property Ā. For instance, we obtain the following oscillation criteria.

Corollary 6.5. Equation (6.4) has property A if any of the following conditions
hold:

(i) δ(t) < t, t− δ(t)→∞ as t→∞ and

lim sup
t→∞

(
δ(t)

)2 ∫ ∞
δ−1(t)

q(s) ds >
2

1− a0
,

(ii) δ(t) < t, t− δ(t)→∞ as t→∞ and

lim sup
t→∞

∫ t

t−δ(t)
(t− s)

∫ ∞
δ−1(δ−1(t))

q(u) duds >
1

1− a0
,

Example 6.6. Consider the equation(
x(t) + a(t)x

(
γ(t)

))′′′
+
k

t3
x(µt) = 0.

where 0 < µ < 1. By Corollary 6.5-(i), this equation has property A for

k >
4

(1− a0)µ4
.

Example 6.7. Consider the equation(
x(t) + a(t)x

(
γ(t)

))′′′
+
k

t3
xλ(µt) = 0,

where λ > 1 is a quotient of odd positive integers and 0 < µ < 1. Using Example
6.6 with a0 = 0 and Theorem 5.2-(ii) we obtain that this equation has property A
for any k > 0.
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