Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 39, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

TUNCAY CANDAN

Abstract

This article presents sufficient conditions for the existence of nonoscillatory solutions to first-order differential equations having both delay and advance terms, known as mixed equations. Our main tool is the Banach contraction principle.

1. Introduction

In this article, we consider a first-order neutral differential equation

$$
\begin{align*}
& \frac{d}{d t}\left[x(t)+P_{1}(t) x\left(t-\tau_{1}\right)+P_{2}(t) x\left(t+\tau_{2}\right)\right] \tag{1.1}\\
& +Q_{1}(t) x\left(t-\sigma_{1}\right)-Q_{2}(t) x\left(t+\sigma_{2}\right)=0
\end{align*}
$$

where $P_{i} \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), Q_{i} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), \tau_{i}>0$ and $\sigma_{i} \geq 0$ for $i=1,2$. We give some new criteria for the existence of non-oscillatory solutions of (1.1).

Recently, the existence of non-oscillatory solutions of first-order neutral functional differential equations has been investigated by many authors. Yu and Wang [16] showed that the equation

$$
\frac{d}{d t}[x(t)+p x(t-c)]+Q(t) x(t-\sigma)=0, \quad t \geq t_{0}
$$

has a non-oscillatory solution for $p \geq 0$. Later, in 1993, Chen et al [9] studied the same equation and they extended the results to the case $p \in \mathbb{R} \backslash\{-1\}$. Zhang et al [17] investigated the existence of non-oscillatory solutions of the first-order neutral delay differential equation with variable coefficients

$$
\frac{d}{d t}[x(t)+P(t) x(t-\tau)]+Q_{1}(t) x\left(t-\sigma_{1}\right)-Q_{2}(t) x\left(t-\sigma_{2}\right)=0, \quad t \geq t_{0}
$$

They obtained sufficient conditions for the existence of non-oscillatory solutions depending on the four different ranges of $P(t)$. In [10], existence of non-oscillatory solutions of first-order neutral differential equations

$$
\frac{d}{d t}[x(t)-a(t) x(t-\tau)]=p(t) f(x(t-\sigma))
$$

was studied.

[^0]On the other hand, there has been research activities about the oscillatory behavior of first and higher order neutral differential equations with advanced terms. For instance, in [1] and [5], n-th order neutral differential equations with advanced term of the form

$$
[x(t)+a x(t-\tau)+b x(t+\tau)]^{(n)}+\delta(q(t) x(t-g)+p(t) x(t+h))=0
$$

and
$[x(t)+\lambda a x(t-\tau)+\mu b x(t+\tau)]^{(n)}+\delta\left(\int_{c}^{d} q(t, \xi) x(t-\xi) d \xi+\int_{c}^{d} p(t, \xi) x(t+\xi) d \xi\right)=0$,
were studied, respectively.
This article was motivated by the above studies. To the best of our knowledge, this current paper is the only paper regarding to the existence of non-oscillatory solutions of neutral differential equation with advanced term. Some other papers for the existence of non-oscillatory solutions of first, second and higher order neutral functional differential and difference equations; see [13, 18, 6, 7, 8, 15] and the references contained therein. We refer the reader to the books [14, 12, 4, 11, 2, 3, 3 on the subject of neutral differential equations.

Let $m=\max \left\{\tau_{1}, \sigma_{1}\right\}$. By a solution of 1.1$]$ we mean a function $x \in C\left(\left[t_{1}-\right.\right.$ $m, \infty), \mathbb{R})$, for some $t_{1} \geq t_{0}$, such that $x(t)+P_{1}(t) x\left(t-\tau_{1}\right)+P_{2}(t) x\left(t+\tau_{2}\right)$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and (1.1) is satisfied for $t \geq t_{1}$.

As it is customary, a solution of 1.1 is said to be oscillatory if it has arbitrarily large zeros. Otherwise the solution is called non-oscillatory.

The following theorem will be used to prove the theorems.
Theorem 1.1 (Banach's Contraction Mapping Principle). A contraction mapping on a complete metric space has exactly one fixed point.

2. Main Results

To show that an operator S satisfies the conditions for the contraction mapping principle, we consider different cases for the ranges of the coefficients $P_{1}(t)$ and $P_{2}(t)$.

Theorem 2.1. Assume that $0 \leq P_{1}(t) \leq p_{1}<1,0 \leq P_{2}(t) \leq p_{2}<1-p_{1}$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} Q_{1}(s) d s<\infty, \quad \int_{t_{0}}^{\infty} Q_{2}(s) d s<\infty \tag{2.1}
\end{equation*}
$$

then (1.1) has a bounded non-oscillatory solution.
Proof. Because of 2.1, we can choose a $t_{1}>t_{0}$,

$$
\begin{equation*}
t_{1} \geq t_{0}+\max \left\{\tau_{1}, \sigma_{1}\right\} \tag{2.2}
\end{equation*}
$$

sufficiently large such that

$$
\begin{gather*}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{M_{2}-\alpha}{M_{2}}, \quad t \geq t_{1} \tag{2.3}\\
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}, \quad t \geq t_{1} \tag{2.4}
\end{gather*}
$$

where M_{1} and M_{2} are positive constants such that

$$
\left(p_{1}+p_{2}\right) M_{2}+M_{1}<M_{2} \quad \text { and } \quad \alpha \in\left(\left(p_{1}+p_{2}\right) M_{2}+M_{1}, M_{2}\right)
$$

Let Λ be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: M_{1} \leq x(t) \leq M_{2}, t \geq t_{0}\right\}
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\alpha-P_{1}(t) x\left(t-\tau_{1}\right)-P_{2}(t) x\left(t+\tau_{2}\right) & \\ +\int_{t}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s, & t \geq t_{1} \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Obviously, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from (2.3) and (2.4), respectively, it follows that

$$
(S x)(t) \leq \alpha+\int_{t}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) d s \leq \alpha+M_{2} \int_{t}^{\infty} Q_{1}(s) d s \leq M_{2}
$$

and

$$
\begin{aligned}
(S x)(t) & \geq \alpha-P_{1}(t) x\left(t-\tau_{1}\right)-P_{2}(t) x\left(t+\tau_{2}\right)-\int_{t}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) d s \\
& \geq \alpha-p_{1} M_{2}-p_{2} M_{2}-M_{2} \int_{t}^{\infty} Q_{2}(s) d s \geq M_{1}
\end{aligned}
$$

This means that $S \Omega \subset \Omega$. To apply the contraction mapping principle, the remaining is to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega$ and $t \geq t_{1}$,

$$
\begin{aligned}
& \left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| \\
& \leq P_{1}(t)\left|x_{1}\left(t-\tau_{1}\right)-x_{2}\left(t-\tau_{1}\right)\right|+P_{2}(t)\left|x_{1}\left(t+\tau_{2}\right)-x_{2}\left(t+\tau_{2}\right)\right| \\
& \quad+\int_{t}^{\infty}\left(Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right|+Q_{2}(s)\left|x_{1}\left(s+\sigma_{2}\right)-x_{2}\left(s+\sigma_{2}\right)\right|\right) d s
\end{aligned}
$$

or

$$
\begin{aligned}
& \left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| \\
& \leq\left\|x_{1}-x_{2}\right\|\left(p_{1}+p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq\left(p_{1}+p_{2}+\frac{M_{2}-\alpha}{M_{2}}+\frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}\right)\left\|x_{1}-x_{2}\right\| \\
& =\lambda_{1}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{1}=\left(1-\frac{M_{1}}{M_{2}}\right)$. This implies that

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{1}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{1}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.2. Assume that $0 \leq P_{1}(t) \leq p_{1}<1$, $p_{1}-1<p_{2} \leq P_{2}(t) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1), we can choose a $t_{1}>t_{0}$ sufficiently large satisfying 2.2 such that

$$
\begin{array}{ll}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{\left(1+p_{2}\right) N_{2}-\alpha}{N_{2}}, & t \geq t_{1} \\
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\alpha-p_{1} N_{2}-N_{1}}{N_{2}}, & t \geq t_{1} \tag{2.6}
\end{array}
$$

where N_{1} and N_{2} are positive constants such that

$$
N_{1}+p_{1} N_{2}<\left(1+p_{2}\right) N_{2} \quad \text { and } \quad \alpha \in\left(N_{1}+p_{1} N_{2},\left(1+p_{2}\right) N_{2}\right)
$$

Let Λ be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: N_{1} \leq x(t) \leq N_{2}, t \geq t_{0}\right\} .
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\alpha-P_{1}(t) x\left(t-\tau_{1}\right)-P_{2}(t) x\left(t+\tau_{2}\right) & \\ +\int_{t}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s, & t \geq t_{1} \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Obviously, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from (2.5) and 2.6), respectively, it follows that

$$
\begin{aligned}
& (S x)(t) \leq \alpha-p_{2} N_{2}+N_{2} \int_{t}^{\infty} Q_{1}(s) d s \leq N_{2} \\
& (S x)(t) \geq \alpha-p_{1} N_{2}-N_{2} \int_{t}^{\infty} Q_{2}(s) d s \geq N_{1}
\end{aligned}
$$

This proves that $S \Omega \subset \Omega$. To apply the contraction mapping principle, it remains to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega$ and $t \geq t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| & \leq\left\|x_{1}-x_{2}\right\|\left(p_{1}-p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq \lambda_{2}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{2}=\left(1-\frac{N_{1}}{N_{2}}\right)$. This implies

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{2}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{2}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.3. Assume that $1<p_{1} \leq P_{1}(t) \leq p_{1_{0}}<\infty, 0 \leq P_{2}(t) \leq p_{2}<p_{1}-1$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of 2.1, we can choose a $t_{1}>t_{0}$,

$$
\begin{equation*}
t_{1}+\tau_{1} \geq t_{0}+\sigma_{1} \tag{2.7}
\end{equation*}
$$

sufficiently large such that

$$
\begin{gather*}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{p_{1} M_{4}-\alpha}{M_{4}}, \quad t \geq t_{1} \tag{2.8}\\
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\alpha-p_{1_{0}} M_{3}-\left(1+p_{2}\right) M_{4}}{M_{4}}, \quad t \geq t_{1} \tag{2.9}
\end{gather*}
$$

where M_{3} and M_{4} are positive constants such that

$$
p_{1_{0}} M_{3}+\left(1+p_{2}\right) M_{4}<p_{1} M_{4} \quad \text { and } \quad \alpha \in\left(p_{1_{0}} M_{3}+\left(1+p_{2}\right) M_{4}, p_{1} M_{4}\right) .
$$

Let Λ be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: M_{3} \leq x(t) \leq M_{4}, t \geq t_{0}\right\} .
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\frac{1}{P_{1}\left(t+\tau_{1}\right.}\left\{\alpha-x\left(t+\tau_{1}\right)-P_{2}\left(t+\tau_{1}\right) x\left(t+\tau_{1}+\tau_{2}\right)\right. & \\ \left.+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s\right\}, & t \geq t_{1} \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Clearly, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from (2.8) and (2.9), respectively, it follows that

$$
(S x)(t) \leq \frac{1}{P_{1}\left(t+\tau_{1}\right)}\left(\alpha+M_{4} \int_{t}^{\infty} Q_{1}(s) d s\right) \leq \frac{1}{p_{1}}\left(\alpha+M_{4} \int_{t}^{\infty} Q_{1}(s) d s\right) \leq M_{4}
$$

and

$$
\begin{aligned}
(S x)(t) & \geq \frac{1}{P_{1}\left(t+\tau_{1}\right)}\left(\alpha-\left(1+p_{2}\right) M_{4}-M_{4} \int_{t}^{\infty} Q_{2}(s) d s\right) \\
& \geq \frac{1}{p_{1_{0}}}\left(\alpha-\left(1+p_{2}\right) M_{4}-M_{4} \int_{t}^{\infty} Q_{2}(s) d s\right) \geq M_{3} .
\end{aligned}
$$

This means that $S \Omega \subset \Omega$. To apply the contraction mapping principle it remains to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega$ and $t \geq t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| & \leq \frac{1}{p_{1}}\left\|x_{1}-x_{2}\right\|\left(1+p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq \lambda_{3}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{3}=\left(1-\frac{p_{1_{0}} M_{3}}{p_{1} M_{4}}\right)$. This implies

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{3}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{3}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of $\sqrt{1.1}$). This completes the proof.

Theorem 2.4. Assume that $1<p_{1} \leq P_{1}(t) \leq p_{1_{0}}<\infty, 1-p_{1}<p_{2} \leq P_{2}(t) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of 2.1), we can choose a $t_{1}>t_{0}$ sufficiently large satisfying 2.7) such that

$$
\begin{array}{cl}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{\left(p_{1}+p_{2}\right) N_{4}-\alpha}{N_{4}}, & t \geq t_{1}, \\
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\alpha-p_{1_{0}} N_{3}-N_{4}}{N_{4}}, & t \geq t_{1}, \tag{2.11}
\end{array}
$$

where N_{3} and N_{4} are positive constants such that

$$
p_{1_{0}} N_{3}+N_{4}<\left(p_{1}+p_{2}\right) N_{4} \quad \text { and } \quad \alpha \in\left(p_{1_{0}} N_{3}+N_{4},\left(p_{1}+p_{2}\right) N_{4}\right)
$$

Let Λ be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: N_{3} \leq x(t) \leq N_{4}, t \geq t_{0}\right\}
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\frac{1}{P_{1}\left(t+\tau_{1}\right)}\left\{\alpha-x\left(t+\tau_{1}\right)-P_{2}\left(t+\tau_{1}\right) x\left(t+\tau_{1}+\tau_{2}\right)\right. & \\ \left.+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s\right\}, & t \geq t_{1} \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Clearly, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from 2.10) and 2.11, respectively, it follows that

$$
\begin{aligned}
(S x)(t) & \leq \frac{1}{P_{1}\left(t+\tau_{1}\right)}\left(\alpha-p_{2} N_{4}+N_{4} \int_{t}^{\infty} Q_{1}(s) d s\right) \\
& \leq \frac{1}{p_{1}}\left(\alpha-p_{2} N_{4}+N_{4} \int_{t}^{\infty} Q_{1}(s) d s\right) \leq N_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
(S x)(t) & \geq \frac{1}{P_{1}\left(t+\tau_{1}\right)}\left(\alpha-N_{4}-N_{4} \int_{t}^{\infty} Q_{2}(s) d s\right) \\
& \geq \frac{1}{p_{1_{0}}}\left(\alpha-N_{4}-N_{4} \int_{t}^{\infty} Q_{2}(s) d s\right) \geq N_{3}
\end{aligned}
$$

This proves that $S \Omega \subset \Omega$. To apply the contraction mapping principle it remains to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega$ and $t \geq t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| & \leq \frac{1}{p_{1}}\left\|x_{1}-x_{2}\right\|\left(1-p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq \lambda_{4}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{4}=\left(1-\frac{p_{1} N_{3}}{p_{1} N_{4}}\right)$. This implies

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{4}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{4}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of 1.1 . This completes the proof.

Theorem 2.5. Assume that $-1<p_{1} \leq P_{1}(t) \leq 0,0 \leq P_{2}(t) \leq p_{2}<1+p_{1}$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1), we can choose a $t_{1}>t_{0}$ sufficiently large satisfying 2.2 such that

$$
\begin{equation*}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{\left(1+p_{1}\right) M_{6}-\alpha}{M_{6}}, \quad t \geq t_{1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\alpha-p_{2} M_{6}-M_{5}}{M_{6}}, \quad t \geq t_{1} \tag{2.13}
\end{equation*}
$$

where M_{5} and M_{6} are positive constants such that

$$
M_{5}+p_{2} M_{6}<\left(1+p_{1}\right) M_{6} \quad \text { and } \quad \alpha \in\left(M_{5}+p_{2} M_{6},\left(1+p_{1}\right) M_{6}\right)
$$

Let Λ be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: M_{5} \leq x(t) \leq M_{6}, t \geq t_{0}\right\}
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\alpha-P_{1}(t) x\left(t-\tau_{1}\right)-P_{2}(t) x\left(t+\tau_{2}\right) & \\ +\int_{t}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s, & t \geq t_{1} \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Obviously, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from 2.12 and 2.13, respectively, it follows that

$$
\begin{aligned}
& (S x)(t) \leq \alpha-p_{1} M_{6}+M_{6} \int_{t}^{\infty} Q_{1}(s) d s \leq M_{6} \\
& (S x)(t) \geq \alpha-p_{2} M_{6}-M_{6} \int_{t}^{\infty} Q_{2}(s) d s \geq M_{5}
\end{aligned}
$$

This proves that $S \Omega \subset \Omega$. To apply the contraction mapping principle it remains to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega, t \geq t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| & \leq\left\|x_{1}-x_{2}\right\|\left(-p_{1}+p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq \lambda_{5}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{5}=\left(1-\frac{M_{5}}{M_{6}}\right)$. This implies

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{5}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{5}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.6. Assume that $-1<p_{1} \leq P_{1}(t) \leq 0,-1-p_{1}<p_{2} \leq P_{2}(t) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1), we can choose a $t_{1}>t_{0}$ sufficiently large satisfying (2.2) such that

$$
\begin{equation*}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{\left(1+p_{1}+p_{2}\right) N_{6}-\alpha}{N_{6}}, \quad t \geq t_{1} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\alpha-N_{5}}{N_{6}}, \quad t \geq t_{1} \tag{2.15}
\end{equation*}
$$

where N_{5} and N_{6} are positive constants such that

$$
N_{5}<\left(1+p_{1}+p_{2}\right) N_{6} \quad \text { and } \quad \alpha \in\left(N_{5},\left(1+p_{1}+p_{2}\right) N_{6}\right)
$$

Let Λ be the set of continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: N_{5} \leq x(t) \leq N_{6}, t \geq t_{0}\right\}
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\alpha-P_{1}(t) x\left(t-\tau_{1}\right)-P_{2}(t) x\left(t+\tau_{2}\right) & \\ +\int_{t}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s, & t \geq t_{1}, \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Obviously, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from 2.14 and 2.15, respectively, it follows that

$$
\begin{gathered}
(S x)(t) \leq \alpha-p_{1} N_{6}-p_{2} N_{6}+N_{6} \int_{t}^{\infty} Q_{1}(s) d s \leq N_{6} \\
(S x)(t) \geq \alpha-N_{6} \int_{t}^{\infty} Q_{2}(s) d s \geq N_{5}
\end{gathered}
$$

This proves that $S \Omega \subset \Omega$. To apply the contraction mapping principle it remains to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega$ and $t \geq t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| & \leq\left\|x_{1}-x_{2}\right\|\left(-p_{1}-p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq \lambda_{6}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{6}=\left(1-\frac{N_{5}}{N_{6}}\right)$. This implies

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{6}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{6}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.7. Assume that $-\infty<p_{1_{0}} \leq P_{1}(t) \leq p_{1}<-1,0 \leq P_{2}(t) \leq p_{2}<$ $-p_{1}-1$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. In view of 2.1, we can choose a $t_{1}>t_{0}$ sufficiently large satisfying 2.7) such that

$$
\begin{equation*}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{p_{1_{0}} M_{7}+\alpha}{M_{8}}, \quad t \geq t_{1} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\left(-p_{1}-1-p_{2}\right) M_{8}-\alpha}{M_{8}}, \quad t \geq t_{1} \tag{2.17}
\end{equation*}
$$

where M_{7} and M_{8} are positive constants such that

$$
-p_{1_{0}} M_{7}<\left(-p_{1}-1-p_{2}\right) M_{8} \quad \text { and } \quad \alpha \in\left(-p_{1_{0}} M_{7},\left(-p_{1}-1-p_{2}\right) M_{8}\right)
$$

Let Λ be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: M_{7} \leq x(t) \leq M_{8}, t \geq t_{0}\right\}
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\frac{-1}{P_{1}\left(t+\tau_{1}\right)}\left\{\alpha+x\left(t+\tau_{1}\right)+P_{2}\left(t+\tau_{1}\right) x\left(t+\tau_{1}+\tau_{2}\right)\right. & \\ \left.-\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s\right\}, & t \geq t_{1} \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Clearly, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from 2.17) and 2.16, respectively, it follows that

$$
(S x)(t) \leq \frac{-1}{p_{1}}\left(\alpha+M_{8}+p_{2} M_{8}+M_{8} \int_{t}^{\infty} Q_{2}(s) d s\right) \leq M_{8}
$$

and

$$
(S x)(t) \geq \frac{-1}{p_{1_{0}}}\left(\alpha-M_{8} \int_{t}^{\infty} Q_{1}(s) d s\right) \geq M_{7}
$$

This implies that $S \Omega \subset \Omega$. To apply the contraction mapping principle it remains to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega$ and $t \geq t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| & \leq \frac{-1}{p_{1}}\left\|x_{1}-x_{2}\right\|\left(1+p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq \lambda_{7}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{7}=\left(1-\frac{p_{1_{0}} M_{7}}{p_{1} M_{8}}\right)$. This implies

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{7}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{7}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.8. Assume that $-\infty<p_{1_{0}} \leq P_{1}(t) \leq p_{1}<-1, p_{1}+1<p_{2} \leq P_{2}(t) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of 2.1, we can choose a $t_{1}>t_{0}$ sufficiently large satisfying 2.7) such that

$$
\begin{equation*}
\int_{t}^{\infty} Q_{1}(s) d s \leq \frac{p_{1_{0}} N_{7}+p_{2} N_{8}+\alpha}{N_{8}}, \quad t \geq t_{1} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty} Q_{2}(s) d s \leq \frac{\left(-p_{1}-1\right) N_{8}-\alpha}{N_{8}}, \quad t \geq t_{1} \tag{2.19}
\end{equation*}
$$

where N_{7} and N_{8} are positive constants such that

$$
-p_{1_{0}} N_{7}-p_{2} N_{8}<\left(-p_{1}-1\right) N_{8} \quad \text { and } \quad \alpha \in\left(-p_{1_{0}} N_{7}-p_{2} N_{8},\left(-p_{1}-1\right) N_{8}\right)
$$

Let Λ be the set of continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the supremum norm. Set

$$
\Omega=\left\{x \in \Lambda: N_{7} \leq x(t) \leq N_{8}, t \geq t_{0}\right\}
$$

It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping $S: \Omega \rightarrow \Lambda$ as follows:

$$
(S x)(t)= \begin{cases}\frac{-1}{P_{1}\left(t+\tau_{1}\right)}\left\{\alpha+x\left(t+\tau_{1}\right)+P_{2}\left(t+\tau_{1}\right) x\left(t+\tau_{1}+\tau_{2}\right)\right. \\ \left.-\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] d s\right\}, & t \geq t_{1} \\ (S x)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Clearly, $S x$ is continuous. For $t \geq t_{1}$ and $x \in \Omega$, from 2.19) and 2.18, respectively, it follows that

$$
(S x)(t) \leq \frac{-1}{p_{1}}\left(\alpha+N_{8}+N_{8} \int_{t}^{\infty} Q_{2}(s) d s\right) \leq N_{8}
$$

and

$$
(S x)(t) \geq \frac{-1}{p_{1_{0}}}\left(\alpha+p_{2} N_{8}-N_{8} \int_{t}^{\infty} Q_{1}(s) d s\right) \geq N_{7}
$$

These prove that $S \Omega \subset \Omega$. To apply the contraction mapping principle it remains to show that S is a contraction mapping on Ω. Thus, if $x_{1}, x_{2} \in \Omega, t \geq t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{1}\right)(t)-\left(S x_{2}\right)(t)\right| & \leq \frac{-1}{p_{1}}\left\|x_{1}-x_{2}\right\|\left(1-p_{2}+\int_{t}^{\infty}\left(Q_{1}(s)+Q_{2}(s)\right) d s\right) \\
& \leq \lambda_{8}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{8}=\left(1-\frac{p_{10} N_{7}}{p_{1} N_{8}}\right)$. This implies

$$
\left\|S x_{1}-S x_{2}\right\| \leq \lambda_{8}\left\|x_{1}-x_{2}\right\|
$$

where the supremum norm is used. Since $\lambda_{8}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Example 2.9. Consider the equation

$$
\begin{align*}
& {\left[x(t)-\frac{1}{2} x(t-2 \pi)+\left[\frac{1}{2}-\exp \left(-\frac{t}{2}\right)\right] x(t+5 \pi)\right]^{\prime}} \\
& +\frac{1}{2} \exp \left(-\frac{t}{2}\right) x(t-4 \pi)-\exp \left(-\frac{t}{2}\right) x\left(t+\frac{5 \pi}{2}\right)=0, \quad t>-2 \ln (1 / 2) \tag{2.20}
\end{align*}
$$

and note that

$$
P_{1}(t)=-\frac{1}{2}, \quad P_{2}(t)=\frac{1}{2}-\exp \left(-\frac{t}{2}\right), \quad Q_{1}(t)=\frac{1}{2} \exp \left(-\frac{t}{2}\right), \quad Q_{2}(t)=\exp \left(-\frac{t}{2}\right)
$$

A straightforward verification yields that the conditions of Theorem 2.5 are valid. We note that $x(t)=2+\sin t$ is a non-oscillatory solution of 2.20 .

Example 2.10. Consider the equation

$$
\begin{align*}
& {\left[x(t)-\frac{1}{\exp (1)}\left[\frac{3}{4}-\exp (-t)\right] x(t-1)-\exp (1 / 4)\left[\frac{1}{4}+\exp (-t)\right] x\left(t+\frac{1}{4}\right)\right]^{\prime}} \tag{2.21}\\
& +\exp (-t-1) x(t-1)-\exp \left(-t+\frac{1}{4}\right) x\left(t+\frac{1}{4}\right)=0, \quad t \geq \frac{3}{2}
\end{align*}
$$

and note that

$$
\begin{gathered}
P_{1}(t)=-\frac{1}{\exp (1)}\left[\frac{3}{4}-\exp (-t)\right], \quad P_{2}(t)=-\exp \left(\frac{1}{4}\right)\left[\frac{1}{4}+\exp (-t)\right] \\
Q_{1}(t)=\exp (-t-1), \quad Q_{2}(t)=\exp \left(-t+\frac{1}{4}\right)
\end{gathered}
$$

It is easy to verify that the conditions of Theorem 2.6 are valid. We note that $x(t)=1+\exp (-t)$ is a non-oscillatory solution of 2.21).

References

[1] R. P. Agarwal, S. R. Grace; Oscillation Theorems for Certain Neutral Functional Differential Equations, Comput. Math. Appl., 38 (1999), 1-11.
[2] R. P. Agarwal, S. R. Grace, D. O'Regan; Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, (2000).
[3] R. P. Agarwal, M. Bohner, W. T. Li; Nonoscillation and Oscillation: Theorey for Functional Differential Equations, Marcel Dekker, Inc., New York, 2004.
[4] D. D. Bainov, D. P. Mishev; Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, (1991).
[5] T. Candan, R. S. Dahiya; Oscillation theorems for nth-order neutral functional differential equations, Math. Comput. Modelling, 43 (2006) ,357-367.
[6] T. Candan and R. S. Dahiya; Existence of nonoscillatory solutions of first and second order neutral differential equations with distributed deviating arguments, J. Franklin Inst., 347 (2010), 1309-1316.
[7] T. Candan; The existence of nonoscillatory solutions of higher order nonlinear neutral equations, Appl. Math. Lett., 25(3) (2012), 412-416.
[8] T. Candan; Existence of nonoscillatory solutions of first-order nonlinear neutral differential equations, Appl. Math. Lett., 26 (2013), 1182-1186.
[9] M. P. Chen, J. S. Yu, Z. C. Wang; Nonoscillatory solutions of neutral delay differential equations, Bull. Austral. Math. Soc., 48(3) (1993) ,475-483.
[10] B. Dorociaková, A. Najmanová, R. Olach; Existence of nonoscillatory solutions of first-order neutral differential equations, Abstr. Appl. Anal., 2011, Art. ID 346745, 9 pp.
[11] L. H. Erbe, Q. K. Kong, B. G. Zhang; Oscillation Theory for Functional Differential Equations, Marcel Dekker, Inc., New York, (1995).
[12] I. Györi, G. Ladas; Oscillation Theory of Delay Differential Equations With Applications, Clarendon Press, Oxford, (1991).
[13] M. R. S. Kulenović, S. Hadžiomerspahić; Existence of Nonoscillatory Solution of SecondOrder Linear Neutral Delay Equation, J. Math.Anal. Appl., 228 (1998), 436-448.
[14] G. S. Ladde, V. Lakshmikantham, B. G. Zhang; Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, Inc., New York, (1987).
[15] Y. Tian, Y. Cai, T. Li; Existence of nonoscillatory solutions to second-order nonlinear neutral difference equations, J. Nonlinear Sci. Appl., 8 (2015), 884-892.
[16] J. Yu, Y. Wang; Nonoscillation of a neutral delay differential equation, Rad. Mat., 8(1) (1992/1996), 127-133.
[17] W. Zhang, W. Feng, J. Yan, J. Song; Existence of Nonoscillatory Solutions of First-Order Linear Neutral Delay Differential Equations, Comput. Math. Appl., 49 (2005), 1021-1027.
[18] Y. Zhou, B. G. Zhang; Existence of Nonoscillatory Solutions of Higher-Order Neutral Differential Equations with Positive and Negative Coefficients, Appl. Math. Lett., 15 (2002), 867-874.

Tuncay Candan
Department of Mathematics, Faculty of Arts and Sciences, Niğde University, Niğde 51200, Turkey

E-mail address: tcandan@nigde.edu.tr

[^0]: 2010 Mathematics Subject Classification. 34K11, 34C10.
 Key words and phrases. Neutral equations; fixed point; non-oscillatory solution.
 (C) 2016 Texas State University.

 Submitted October 14, 2015. Published January 27, 2016.

