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INVERSE PROBLEMS ASSOCIATED WITH THE HILL
OPERATOR

ALP ARSLAN KIRAÇ

Abstract. Let `n be the length of the n-th instability interval of the Hill
operator Ly = −y′′ + q(x)y. We prove that if `n = o(n−2) and the set

{(nπ)2 : n is even and n > n0} is a subset of the periodic spectrum of the Hill
operator, then q = 0 a.e., where n0 is a sufficiently large positive integer such

that `n < εn−2 for all n > n0(ε) with some ε > 0. A similar result holds for

the anti-periodic case.

1. Introduction

Consider the Hill operator

Ly = −y′′ + q(x)y, (1.1)

where q(x) is a real-valued summable function on [0, 1] and q(x + 1) = q(x). Let
λn and µn (n = 0, 1, . . .) denote, respectively, the n-th periodic and anti-periodic
eigenvalues of the Hill operator (1.1) on [0, 1] with the periodic boundary conditions

y(0) = y(1), y′(0) = y′(1), (1.2)

and the anti-periodic boundary conditions

y(0) = −y(1), y′(0) = −y′(1).

It is well-known [5, 7] that

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < · · · → ∞.
The intervals (µ2m, µ2m+1) and (λ2m+1, λ2m+2) are respectively referred to as the
(2m + 1)-th and (2m + 2)-th finite instability intervals of the operator L, while
(−∞, λ0) is called the zero-th instability interval. The length of the n-th instability
interval of (1.1) will be denoted by `n (n = 2m+1, 2m+2). For further background
see [15, 16, 14].

Borg [2], Ungar [23] and Hochstadt [14] proved independently of each other the
following statement:

If q(x) is real and integrable, and if all finite instability intervals
vanish then q(x) = 0 a.e.
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Hochstadt [14] showed that if precisely one of the finite instability intervals does
not vanish, then q(x) is the elliptic function which satisfies

q′′ = 3q2 +Aq +B a.e.,

where A and B are suitable constants. Hochstadt [14] also proved that q(x) is
infinitely differentiable a.e. when n finite instability intervals fail to vanish. For
more results see [9, 10, 11, 12].

Furthermore, Hochstadt [13] proved that the lengths of the instability intervals
`n vanish faster than any power of (1/n) for q in C∞1 . McKean and Trubowitz
[17] established the converse: if q is in L2

1, the space of 1-periodic square integrable
functions in [0, 1], and the length of the n-th instability interval for n ≥ 1 is rapidly
decreasing, then q is in C∞1 . Later Trubowitz [22] proved the following: if q is
real analytic, the lengths of the instability intervals are exponentially decreasing.
Conversely if q is in L2

1 and the lengths of the instability intervals are exponentially
decreasing, q is real analytic. Denoting the Fourier coefficients of q by

cn =: (q, exp(i2nπ·))L2([0,1];dx), n ∈ N ∪ {0}, (1.3)

Coskun [6] showed that

if `n = O(n−2), then cn = O(n−2) as n→∞. (1.4)

At this point, we refer to some Ambarzumyan-type theorems in [1, 4, 27, 3].
In 1929, Ambarzumyan [1] obtained the following first theorem in inverse spectral
theory: If {n2 : n = 0, 1, . . .} is the spectrum of the Sturm-Liouville operator (1.1)
on [0, 1] with the Neumann boundary conditions, then q = 0 a.e. In [4], they
extended the classical Ambarzumyan’s theorem for the Sturm-Liouville equation to
the general separated boundary conditions, by imposing an additional condition on
the potential function, and their result supplements the Pöschel-Trubowitz inverse
spectral theory (see [18]). In [27], based on the well-known extremal property
of the first eigenvalue, they find two analogs of Ambarzumyan’s theorem to the
Sturm-Liouville systems of n dimension under periodic or anti-periodic boundary
conditions. In [3], by using the Rayleigh-Ritz inequality and imposing a condition
on the second term in the Fourier cosine series (see (1.5)), they proved the following
Ambarzumyan-type theorem:

(a) If all periodic eigenvalues of Hill’s equation (1.1) are nonnegative and they
include {(2mπ)2 : m ∈ N}, then q = 0 a.e.

(b) If all anti-periodic eigenvalues of Hill’s equation (1.1) are not less than π2

and they include {(2m− 1)2π2 : m ∈ N}, and∫ 1

0

q(x) cos(2πx) dx ≥ 0, (1.5)

then q = 0 a.e.
Recently, in [21], we obtain the classical Ambarzumyan’s theorem for the Sturm-

Liouville operators with q ∈ L1[0, 1] and quasi-periodic boundary conditions in
cases when there is not any additional condition on the potential q such as (1.5).

In this paper, we prove the following inverse spectral result, more precisely, a
uniqueness-type result of the following form:

Theorem 1.1. Denote the nth instability interval by `n, and suppose that `n =
o(n−2) as n→∞. Then the following two assertions hold:
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(i) If {(nπ)2 : n even and n > n0} is a subset of the periodic spectrum of the
Hill operator then q = 0 a.e. on (0, 1);

(ii) If {(nπ)2 : n odd and n > n0} is a subset of the anti-periodic spectrum of
the Hill operator then q = 0 a.e. on (0, 1).

Given ε > 0, thee exists n0 = n0(ε) ∈ N, a sufficiently large positive integer such
that

`n < εn−2 for all n > n0(ε).

Theorem 1.1 is deduced from the following result.

Theorem 1.2. Denote the Fourier coefficients of q by cn (see (1.3)), and assume
`n = o(n−2). Then cn = o(n−2) as n→∞.

Note that, from Theorem 1.2, the assertion in (1.4) holds with the improved o-
terms o(n−2). In Ambarzumyan-type theorems, it is necessary to specify the whole
spectrum. In [8], they proved that it is enough to know the first eigenvalue only.
Unlike the above works, to prove of Theorem 1.1, we have information only on the
sufficiently large eigenvalues of the spectrum of the Hill operator. Also, the proof
does not depend on multiplicities of the given eigenvalues.

2. Preliminaries and proof of main results

We shall consider only the periodic (for even n) eigenvalues of the Hill operator.
The anti-periodic (for odd n) problem is completely similar. It is well known
[7, Theorem 4.2.3] that the periodic eigenvalues λ2m+1, λ2m+2 are asymptotically
located in pairs such that

λ2m+1 = λ2m+2 + o(1) = (2m+ 2)2π2 + o(1) (2.1)

for sufficiently large m. From this formula, for all k 6= 0, (2m + 2) and k ∈ Z, the
inequality

|λ− (2(m− k) + 2)2π2| > |k||(2m+ 2)− k| > Cm, (2.2)
is satisfied by both eigenvalues λ2m+1 and λ2m+2 for large m, where, here and
in subsequent relations, C denotes a positive constant whose exact value is not
essential. Note that, when q = 0, the system {e−i(2m+2)πx, ei(2m+2)πx} is a basis of
the eigenspace corresponding to the double eigenvalues (2m+ 2)2π2 of the problem
(1.1)-(1.2).

To obtain the asymptotic formulas for the periodic eigenvalues λ2m+1, λ2m+2

corresponding to the normalized eigenfunctions Ψm,1(x),Ψm,2(x) respectively, let
us consider the well-known relation, for sufficiently large m,

Λm,j,m−k(Ψm,j , e
i(2(m−k)+2)πx) = (qΨm,j , e

i(2(m−k)+2)πx), (2.3)

where Λm,j,m−k = (λ2m+j − (2(m− k) + 2)2π2), j = 1, 2. The relation (2.3) can be
obtained from the equation (1.1) by multiplying ei(2(m−k)+2)πx and using integra-
tion by parts. From [25, Lemma 1], to iterate (2.3) for k = 0, in the right hand-side
of formula (2.3), we use the following relations

(qΨm,j , e
i(2m+2)πx) =

∞∑
m1=−∞

cm1(Ψm,j , e
i(2(m−m1)+2)πx), (2.4)

|(qΨm,j , e
i(2(m−m1)+2)πx)| < 3M (2.5)

for all large m, where j = 1, 2 and M = supm∈Z |cm|.
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First, we fix the terms with indices m1 = 0, (2m+ 2). Then all the other terms
in the right hand-side of (2.4) are replaced, in view of (2.2) and (2.3) for k = m1,
by

cm1

(qΨm,j , e
i(2(m−m1)+2)πx)

Λm,j,m−m1

.

In the same way, by applying the above process for the eigenfunction e−i(2m+2)πx

corresponding to the eigenvalue (2m + 2)2π2 of the problem (1.1)-(1.2) for q = 0,
we obtain the following lemma (see also Section 2 in [20, 19]).

Lemma 2.1. The following relations hold for sufficiently large m: (i)

[Λm,j,m − c0 −
2∑
i=1

ai(λ2m+j)]um,j = [c2m+2 +
2∑
i=1

bi(λ2m+j)]vm,j +R2, (2.6)

where j = 1, 2,

um,j = (Ψm,j , e
i(2m+2)πx), vm,j = (Ψm,j , e

−i(2m+2)πx),

a1(λ2m+j) =
∑
m1

cm1c−m1

Λm,j,m−m1

,

a2(λ2m+j) =
∑
m1,m2

cm1cm2c−m1−m2

Λm,j,m−m1Λm,j,m−m1−m2

,
(2.7)

b1(λ2m+j) =
∑
m1

cm1c2m+2−m1

Λm,j,m−m1

,

b2(λ2m+j) =
∑
m1,m2

cm1cm2c2m+2−m1−m2

Λm,j,m−m1Λm,j,m−m1−m2

,

R2 =
∑

m1,m2,m3

cm1cm2cm3(qΨm,j(x), ei(2(m−m1−m2−m3)+2)πx)
Λm,j,m−m1 Λm,j,m−m1−m2Λm,j,m−m1−m2−m3

.

The summations in these formulas are taken over all integers m1,m2,m3 such that
m1,m1 +m2,m1 +m2 +m3 6= 0, 2m+ 2.

(ii)

[Λm,j,m − c0 −
2∑
i=1

a′i(λ2m+j)]vm,j = [c−2m−2 +
2∑
i=1

b′i(λ2m+j)]um,j +R′2, (2.8)

where j = 1, 2,

a′1(λ2m+j) =
∑
m1

cm1c−m1

Λm,j,m+m1

,

a′2(λ2m+j) =
∑
m1,m2

cm1cm2c−m1−m2

Λm,j,m+m1 Λm,j,m+m1+m2

,

b′1(λ2m+j) =
∑
m1

cm1c−2m−2−m1

Λm,j,m+m1

,

b′2(λ2m+j) =
∑
m1,m2

cm1cm2c−2m−2−m1−m2

Λm,j,m+m1 Λm,j,m+m1+m2

,

R′2 =
∑

m1,m2,m3

cm1cm2cm3(qΨm,j(x), ei(2(m+m1+m2+m3)+2)πx)
Λm,j,m+m1Λm,j,m+m1+m2 Λm,j,m+m1+m2+m3

(2.9)
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and the sums in these formulas are taken over all integers m1,m2,m3 such that
m1,m1 +m2,m1 +m2 +m3 6= 0, −2m− 2.

Note that, by substituting m1 = −k1 and m1 + m2 = −k1, m2 = k2 into the
relations a′1(λ2m+j) and a′2(λ2m+j) respectively, we have

ai(λ2m+j) = a′i(λ2m+j) for i = 1, 2. (2.10)

Here, using the equality

1
m1(2m+ 2−m1)

=
1

2m+ 2

( 1
m1

+
1

2m+ 2−m1

)
,

we obtain the relation∑
m1 6=0,(2m+2)

1
|m1(2m+ 2−m1)|

= O
( ln |m|

m

)
.

This, together with (2.2), (2.3) and (2.5), gives the following estimates (see, respec-
tively, (2.1) and (2.9) for R2 and R′2)

R2, R
′
2 = O

(( ln |m|
m

)3)
. (2.11)

Moreover, in view of (2.2), (2.3) and (2.5), we obtain (see [25, Theorem 2], [19])∑
k∈Z; k 6=±(m+1)

∣∣(Ψm,j , e
i2kπx)

∣∣2 = O
( 1
m2

)
. (2.12)

Therefore, the expansion of the normalized eigenfunctions Ψm,j(x) by the orthonor-
mal basis {ei2kπx : k ∈ Z} on [0, 1] has the form

Ψm,j(x) = um,j e
i(2m+2)πx + vm,j e

−i(2m+2)πx + hm(x), (2.13)

where

(hm, e∓i(2m+2)πx) = 0, ‖hm‖ = O(m−1),

sup
x∈[0,1]

|hm(x)| = O
( ln |m|

m

)
, |um,j |2 + |vm,j |2 = 1 +O

(
m−2

)
.

(2.14)

Proof of Theorem 1.2. First, let us estimate the expressions in (2.6) and (2.8).
From (2.1), (2.2) and (2.12), one can readily see that∑

m1 6=0,±(2m+2)

∣∣ 1
Λm,j,m∓m1

− 1
Λm,0,m∓m1

∣∣
≤ C|Λm,j,m|

∑
m1 6=0,±(2m+2)

|m1|−2|2m+ 2∓m1|−2 = o
(
m−2

)
,

(2.15)

where Λm,0,m∓m1 = ((2m+ 2)2π2 − (2(m∓m1) + 2)2π2). Thus, we obtain

ai(λ2m+j) = ai((2m+ 2)2π2) + o
(
m−2

)
for i = 1, 2. (2.16)
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Here, by (2.15), we also have, arguing as in [19, Lemma 3] (see also [26, Lemma
6]),

b1(λ2m+j) =
1

4π2

∑
m1 6=0,(2m+2)

cm1c2m+2−m1

m1(2m+ 2−m1)
+ o
(
m−2

)
= −

∫ 1

0

(Q(x)−Q0)2 e−i2(2m+2)πxdx+ o
(
m−2

)
=

−1
i2π(2m+ 2)

∫ 1

0

2(Q(x)−Q0) q(x) e−i2(2m+2)πxdx+ o
(
m−2

)
,

(2.17)
where

Q(x)−Q0 =
∑
m1 6=0

Qm1 e
i2m1πx,

Qm1 =: (Q(x), ei2m1πx) =
cm1

i2πm1
, m1 6= 0,

(2.18)

are the Fourier coefficients with respect to the system {ei2m1πx : m1 ∈ Z} of the
function Q(x) =

∫ x
0
q(t) dt. For the proof of Theorem 1.2, we suppose without loss

of generality that c0 = 0, so that Q(1) = c0 = 0.
Now using the assumption `n = o(n−2) of the theorem it is also true that `n =

O(n−2). In view of (1.4), we obtain cn = O(n−2) as n → ∞. Thus, from [14,
Lemma 5], we obtain that q(x) is absolutely continuous a.e. Hence integration by
parts, together with Q(1) = 0, gives

b1(λ2m+j)

=
1

2π2(2m+ 2)2

∫ 1

0

(
q2(x) + (Q(x)−Q0)q′(x)

)
e−i2(2m+2)πxdx+ o

(
m−2

)
.

(2.19)
Since q(x) is absolutely continuous a.e.,

(
q2(x) + (Q(x)−Q0)q′(x)

)
∈ L1[0, 1]. By

the Riemann-Lebesgue lemma, we find that

b1(λ2m+j) = o
(
m−2

)
. (2.20)

Similarly

b′1(λ2m+j) = o
(
m−2

)
. (2.21)

Let us prove that

b2(λ2m+j), b′2(λ2m+j) = o
(
m−2

)
. (2.22)

Taking into account that q(x) is absolutely continuous a.e. and periodic, we obtain
cm1cm2c±(2m+2)−m1−m2 = o

(
m−1

)
(see [26, p. 665]). Using this and arguing as in

the proof of (2.11), we obtain

|b2(λ2m+j)| = o
(
m−1

) ∑
m1,m2

1
|m1(2m+ 2−m1)(m1 +m2)(2m+ 2−m1 −m2)|

= o
(
m−1

)
O
(( ln |m|

m

)2) = o
(
m−2

)
.

Thus, the first estimate of (2.22) is proved. Similarly b′2(λ2m+j) = o
(
m−2

)
. Sub-

stituting the estimates given by (2.10), (2.11), (2.16) and (2.20)-(2.22) into the



EJDE-2016/41 INVERSE PROBLEMS 7

relations (2.6) and (2.8), we find that

[Λm,j,m −
2∑
i=1

ai((2m+ 2)2π2)]um,j = c2m+2vm,j + o
(
m−2

)
, (2.23)

[Λm,j,m −
2∑
i=1

ai((2m+ 2)2π2)]vm,j = c−2m−2 um,j + o
(
m−2

)
(2.24)

for j = 1, 2.
Now suppose that, contrary to what we want to prove, there exists an increasing

sequence {mk} (k = 1, 2, . . .) such that

|c2mk+2| > Cm−2
k for some C > 0. (2.25)

Further, the formula (2.14) for m = mk implies that either |umk,j | > 1/2 or
|vmk,j | > 1/2 for sufficiently large mk. Without loss of generality, we assume
that |umk,j | > 1/2. Then it follows from both (2.23) and (2.24) for m = mk that

[Λmk,j,mk
−

2∑
i=1

ai((2mk + 2)2π2)] ∼ c2mk+2, (2.26)

where the notation am ∼ bm means that there exist constants c1, c2 such that
0 < c1 < c2 and c1 < |am/bm| < c2 for all sufficiently large m. This, together with
(2.24) for m = mk, (2.25) and |umk,j | > 1/2, implies that

umk,j ∼ vmk,j ∼ 1. (2.27)

Multiplying (2.24) for m = mk by c2mk+2, and then using (2.23) for m = mk in
(2.24), we arrive at the relation

[Λmk,j,mk
−

2∑
i=1

ai((2mk + 2)2π2)]
(

[Λmk,j,mk

−
2∑
i=1

ai((2mk + 2)2π2)]umk,j + o
(
m−2
k

))
= |c2mk+2|2 umk,j + c2mk+2 o

(
m−2
k

)
,

(2.28)

which, by (2.26) and (2.27), implies

Λmk,j,mk
−

2∑
i=1

ai((2mk + 2)2π2) = ±|c2mk+2|+ o
(
m−2
k

)
(2.29)

for j = 1, 2.
Let us prove that the periodic eigenvalues for large mk are simple. Assume that

there exist two orthogonal eigenfunctions Ψmk,1(x) and Ψmk,2(x) corresponding to
λ2mk+1 = λ2mk+2. From the argument of [26, Lemma 4], using the relation (2.13)
with ‖hmk

‖ = O(m−1
k ) for the eigenfunctions Ψmk,j(x) and the orthogonality of

eigenfunctions, we can choose these eigenfunctions such that either umk,j = 0 or
vmk,j = 0, which contradicts (2.27).

Since the eigenfunctions Ψmk,1 and Ψmk,2 of the self-adjoint problem correspond-
ing to the different eigenvalues λ2mk+1 6= λ2mk+2 are orthogonal we find, by (2.13),
that

0 = (Ψmk,1,Ψmk,2) = umk,2vmk,1 + umk,1vmk,2 +O(m−1
k ). (2.30)
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Note that, for the simple eigenvalues in (2.29), there are two cases. First case: The
simple eigenvalues λ2mk+1 and λ2mk+2 in (2.29) corresponds respectively to the
lower sign − and upper sign +. Then

`2mk+2 = λmk,2,mk
− λmk,1,mk

= 2|c2mk+2|+ o
(
m−2
k

)
,

which implies that (see (2.25)) `2mk+2 > Cm−2
k for some C. This contradicts

the hypothesis that `2mk+2 = o(m−2
k ). Now let us consider the second case: We

assume that both the simple eigenvalues correspond to the lower sign − (the proof
corresponding to the upper sign + is similar). Then Λmk,2,mk

−Λmk,1,mk
= o
(
m−2
k

)
.

Using this, (2.23) and (2.29), we have

o
(
m−2
k

)
umk,2 = c2mk+2vmk,2 + |c2mk+2|umk,2 + o

(
m−2
k

)
, (2.31)

o
(
m−2
k

)
umk,1 = −c2mk+2vmk,1 − |c2mk+2|umk,1 + o

(
m−2
k

)
. (2.32)

Therefore, multiplying both sides of (2.31) and (2.32) by vmk,1 and vmk,2 respec-
tively and adding the results, we have, in view of (2.25),

umk,2vmk,1 − umk,1vmk,2 = o(1).

This, together with (2.30), gives umk,2vmk,1 = o(1) which contradicts (2.27). Thus
the assumption (2.25) is false, that is, c2m+2 = o

(
m−2

)
. A similar result holds for

the anti-periodic problem, that is, c2m+1 = o
(
m−2

)
. The theorem is proved.

For the proof of Theorem 1.1, we need the sharper estimates in the following
lemma.

Lemma 2.2. Let q(x) be absolutely continuous a.e. and c0 = 0. Then, for all
sufficiently large m, we have the following estimates

a1(λ2m+j) =
−1

(2π(2m+ 2))2

∫ 1

0

q2(x)dx+ o
(
m−2

)
,

a2(λ2m+j) = o
(
m−2

)
.

(2.33)

Proof. First, let us consider a1(λ2m+j). By (2.15) we obtain

a1(λ2m+j) =
1

4π2

∑
m1 6=0,(2m+2)

cm1c−m1

m1(2m+ 2−m1)
+ o
(
m−2

)
.

Arguing as in [19, Lemma 3] (see also [24, Lemma 2.3(a)]), we obtain, in our
notation,

a1(λ2m+j)

=
1

2π2

∑
m1>0,m1 6=(2m+2)

cm1c−m1

(2m+ 2 +m1)(2m+ 2−m1)
+ o
(
m−2

)
=
∫ 1

0

(G+(x,m)−G+
0 (m))2 ei2(4m+4)πx dx+ o

(
m−2

)
=

−2
i2π(4m+ 4)

∫ 1

0

(
G+(x,m)−G+

0 (m)
)

×
(
q(x)e−i2(2m+2)πx − c2m+2

)
ei2(4m+4)πxdx+ o

(
m−2

)
(2.34)

where
G±m1

(m) =: (G±(x,m), ei2m1πx) =
cm1±(2m+2)

i2πm1
, (2.35)
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for m1 6= 0, are the Fourier coefficients with respect to {ei2m1πx : m1 ∈ Z} of the
functions

G±(x,m) =
∫ x

0

q(t) e∓i2(2m+2)πtdt− c±(2m+2)x (2.36)

and

G±(x,m)−G±0 (m) =
∑

m1 6=(2m+2)

cm1

i2π(m1 ∓ (2m+ 2))
ei2(m1∓(2m+2))πx.

Here, taking into account the [19, Lemma 1] and (2.36), we have the estimate

G±(x,m)−G±0 (m) = G±(x,m)−
∫ 1

0

G±(x,m) dx = o(1) as m→∞ (2.37)

uniformly in x.
From the equalities (see (2.36))

G±(1,m) = G±(0,m) = 0, (2.38)

and since q(x) is absolutely continuous a.e., integration by parts gives, for the right
hand-side of (2.34), the value

a1(λ2m+j) =
−1

(2π(2m+ 2))2

[ ∫ 1

0

q2 +
∫ 1

0

(G+(x,m)−G+
0 (m))q′(x)ei2(2m+2)πxdx

]
+

|c2m+2|2

(2π(2m+ 2))2
+ o
(
m−2

)
for sufficiently large m. Thus, by using the Riemann-Lebesgue lemma, this with
(G+(x,m)−G+

0 (m))q′(x) ∈ L1[0, 1] implies the first equality of (2.33).
Now, it remains to prove that a2(λ2m+j) = o

(
m−2

)
. Similarly, by (2.16) for

i = 2, we obtain

a2(λ2m+j) =
∑
m1,m2

(2π)−4 cm1cm2c−m1−m2

m1(2m+ 2−m1)(m1 +m2)(2m+ 2−m1 −m2)

+ o
(
m−2

)
.

(2.39)

As in [19, Lemma 4], using the summation variable m2 to represent the previous
m1 +m2 in (2.39), we write (2.39) in the form

a2(λ2m+j) =
1

(2π)4

∑
m1,m2

cm1cm2−m1c−m2

m1(2m+ 2−m1)m2(2m+ 2−m2)
+ o
(
m−2

)
,

where the forbidden indices in the sums take the form of m1,m2 6= 0, 2m+ 2. Here
the equality

1
k(2m+ 2− k)

=
1

2m+ 2

(1
k

+
1

2m+ 2− k

)
gives

a2(λ2m+j) =
1

(2π)4(2m+ 2)2

4∑
j=1

Sj , (2.40)

where

S1 =
∑
m1,m2

cm1cm2−m1c−m2

m1m2
, S2 =

∑
m1,m2

cm1cm2−m1c−m2

m2(2m+ 2−m1)
,

S3 =
∑
m1,m2

cm1cm2−m1c−m2

m1(2m+ 2−m2)
, S4 =

∑
m1,m2

cm1cm2−m1c−m2

(2m+ 2−m1)(2m+ 2−m2)
.
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Using (2.18), integration by parts and the assumption c0 = 0 which implies Q(1) =
0, we deduce that

S1 = 4π2

∫ 1

0

(Q(x)−Q0)2q(x) dx = 0. (2.41)

Similarly, in view of (2.18) and (2.35)-(2.38), we obtain, by the Riemann-Lebesgue
lemma,

S2 = −4π2

∫ 1

0

(Q(x)−Q0)(G+(x,m)−G+
0 (m))q(x)ei2(2m+2)πxdx = o(1),

S3 = −4π2

∫ 1

0

(Q(x)−Q0)(G−(x,m)−G−0 (m))q(x)e−i2(2m+2)πxdx = o(1)

and, by (2.37),

S4 = 4π2

∫ 1

0

(G+(x,m)−G+
0 (m))(G−(x,m)−G−0 (m)) q(x) dx = o(1).

Thus, (2.40) implies that a2(λ2m+j) = o
(
m−2

)
. The proof is complete. �

Proof of Theorem 1.1. (i) First let us prove that c0 = 0. Considering the first
step of the procedure in Lemma 2.1, and using the estimate in (2.11), we may
rewrite the relations (2.6) and (2.8) as follows:

um,j = c2m+2vm,j +O
( ln |m|

m

)
,

[Λm,j,m − c0]vm,j = c−2m−2 um,j +O
( ln |m|

m

) (2.42)

for j = 1, 2 and sufficiently large m. By using the assumption `2m+2 = o(m−2),
namely, `n = o(n−2) for even n = 2m+2 and Theorem 1.2 which implies c∓(2m+2) =
o(m−2), we obtain the relations (see (2.42)) in the form

[Λm,j,m − c0]um,j = O
( ln |m|

m

)
, (2.43)

[Λm,j,m − c0]vm,j = O
( ln |m|

m

)
. (2.44)

Again by (2.14), we have either |um,j | > 1/2 or |vm,j | > 1/2 for large m. In either
case, in view of (2.43) and (2.44), there exists a sufficiently large positive integer N0

such that both the eigenvalues λ2m+j (see definition of (2.3)) satisfy the estimate

λ2m+j = (2m+ 2)2π2 + c0 +O
( ln |m|

m

)
(2.45)

for all m > N0 and j = 1, 2. Under the assumption of Theorem 1.1 (i), when
m > max{(n0−2)/2, N0}, the eigenvalue (2m+2)2π2 corresponds to the eigenvalue
λ2m+1 or λ2m+2. In either case we obtain c0 = 0 by (2.45).

Finally, for sufficiently largem, substituting the estimates of ai(λ2m+j), a′i(λ2m+j),
bi(λ2m+j), b′i(λ2m+j), R2, R′2 for i = 1, 2, given by Lemma 2.2 with the equalities
ai(λ2m+j) = a′i(λ2m+j) (see (2.10)), (2.20)-(2.22) and (2.11) into the relations (2.6)
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and (2.8) and using c0 = 0, we find the relations in the form[
Λm,j,m +

1
(2π(2m+ 2))2

∫ 1

0

q2
]
um,j = c2m+2vm,j + o

(
m−2

)
,[

Λm,j,m +
1

(2π(2m+ 2))2

∫ 1

0

q2
]
vm,j = c−2m−2 um,j + o

(
m−2

) (2.46)

for j = 1, 2. In the same way, by using the assumption `2m+2 = o(m−2) and
Theorem 1.2, we write (2.46) in the form[

Λm,j,m +
1

(2π(2m+ 2))2

∫ 1

0

q2
]
um,j = o

(
m−2

)
,[

Λm,j,m +
1

(2π(2m+ 2))2

∫ 1

0

q2
]
vm,j = o

(
m−2

)
.

Thus, arguing as in the proof of (2.45), there exists a positive large number N1

such that the eigenvalues λ2m+j satisfy the following estimate

λ2m+j = (2m+ 2)2π2 − 1
(2π(2m+ 2))2

∫ 1

0

q2 + o
(
m−2

)
(2.47)

for all m > N1 and j = 1, 2. Let m > max{(n0 − 2)/2, N1}. Using the same
argument as above, by (2.47), we obtain

∫ 1

0
q2 = 0 which implies that q = 0 a.e.

(ii) The procedure in Section 2 works for the anti-periodic boundary conditions

y(0) = −y(a), y′(0) = −y′(a).

Thus, it is readily seen that the corresponding results for the anti-periodic eigen-
values µ2m, µ2m+1 hold, replacing (2m+ 2) in (2.1)-(2.3) by (2m+ 1).
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