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PERIODIC SOLUTIONS OF A MULTI-DIMENSIONAL
CAHN-HILLIARD EQUATION

JI LIU, YIFU WANG, JIASHAN ZHENG

Abstract. This article concerns a multi-dimensional Cahn-Hilliard equation

subject to Neumann boundary condition. We show existence of the periodic
solutions by using the viscosity approach. By applying the Schauder fixed

point theorem, we show existence of the solutions to the suitable approximate

problem and then obtain the solutions of the considered periodic problem using
a priori estimates. Our results extend those in [20].

1. Introduction

In 1958, Cahn and Hilliard [3] derived the Cahn-Hilliard equation

uτ −∆(−κ∆u+ g(u)) = f, (1.1)

which is a model of phase separation in binary material. Here g(u) is the derivative
of free energy F (u). If F (u) is a smooth function, (1.1) can be used to characterize
the spread of populations and the diffusion of an oil film over a solid surface, see
[4, 16]. While F (u) is not smooth, (1.1) is used to describe the phase separation
with constraints, see for example [2].

Because of the applications of Cahn-Hilliard equation (1.1) in physics, there has
been a great interest in studying the qualitative properties of solutions to the Cahn-
Hilliard equation. For example, we can refer to [6, 19] for existence, uniqueness and
regularity of the solutions, and [7, 13] for asymptotic behavior of the solutions.
In addition, using the techniques of subdifferential operator, Kenmochi et al [9]
investigated the Cahn-Hilliard equation with constraints. More recently, Kubo [11]
considered the strong solution and weak solution to the Cahn-Hilliard equation
with a time-dependent constraint and also discussed the relation between these
solutions.

It is well known that one of the most interesting topics of the higher-order par-
abolic equations, from a theoretical and practical point of view, is existence of the
periodic solutions, which has been considered in several works [12, 14, 18, 20, 22].
Zhao et al [22] studied existence and uniqueness of the time-periodic generalized
solutions to a fourth-order parabolic equation by the Galerkin method. Moreover,
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[12, 14] are concerned with the existence, uniqueness and attractivity of the time-
periodic solutions to the Cahn-Hilliard equations with periodic gradient-dependent
potentials and sources. It should be remarked that [12, 14, 22] are all in the case of
one spatial dimension. Also in one spatial dimension, Yin et al [20] used the quali-
tative theory of parabolic equations to prove existence of the periodic solutions in
the classical sense to the following equation

uτ + κuxxxx = (A(τ)u3 −B(τ)u)xx + f(x, τ),

where A(τ) and B(τ) are positive, continuous and periodic functions with the period
ω > 0, and f(τ) is also a smooth ω-periodic function satisfying

∫ 1

0
f(x, τ)dx = 0

for any τ ∈ [0, ω]. As for the case of higher dimensions, Wang and Zheng [18]
recently showed the existence of periodic solutions to the Cahn-Hillard equation
with a constraint by applying the viscosity approach.

Motivated by the above works, the purpose of this paper is to show existence of
the periodic solutions to the problem

uτ (x, τ)−∆(−κ∆u(x, τ) + g(u(x, τ))) = f(x, τ) in Qω := Ω× (0, ω), (1.2)
∂u

∂ν
(x, τ) =

∂

∂ν
(−κ∆u(x, τ) + g(u(x, τ))) = 0 on Σω := ∂Ω× (0, ω), (1.3)

u(x, 0) = u(x, ω) in Ω, (1.4)

where Ω is a bounded domain in RN (1 ≤ N ≤ 3) with smooth boundary, ∂
∂ν

stands for the outward normal derivative on ∂Ω, f is a ω-periodic function and
g(u) = a3u

3 + a2u
2 + a1u + a0 with constants a3 > 0 and ai ∈ R (i = 0, 1, 2).

In this case, the free energy F (u) = a3
4 u

4 + a2
3 u

3 + a1
2 u

2 + a0u + C, where C is
a constant. Particularly, if a2 = 0 and a1 < 0, F (u) is called double-well form
potential. Since the principle part of (1.2) is a fourth-order operator, we take the
viscosity approach in order to use the standard theory of the second order parabolic
equations. More precisely, we study the approximate problem

uτ (x, τ)−∆(εuτ (x, τ)− κ∆u(x, τ) + g(u(x, τ))) = f(x, τ) in Qω,

∂u

∂ν
(x, τ) =

∂

∂ν
(−κ∆u(x, τ) + g(u(x, τ))) = 0 on Σω,

u(x, 0) = u(x, ω) in Ω,

(1.5)

where 0 < ε < 1. In order to apply the Schauder fixed point theorem to show
existence of the periodic solutions of (1.5), we need to establish some a priori
estimates on the solutions of (1.5) (cf. Lemma 3.4 below).

The plan of this article is as follows. In Section 2, we state some basic results
in functional analysis and give the main results. In Section 3, we first establish
some estimates of the solutions for (1.5), and then obtain existence of the periodic
solutions for (1.5) by the Schauder fixed point theorem. In Section 4, based on the
a priori estimates in Section 3, we can take the limit as ε→ 0 and then obtain the
periodic solutions of (1.2)–(1.4).

2. Preliminaries

The notation and the basic results that we will use here are stated as follows.
(1) We denote by (·, ·) and | · |2 the usual inner product and the norm in L2(Ω),

respectively. Also, we denote the Hilbert space L2(Ω) by H.
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(2) We denote H1(Ω) by V and its inner product by (·, ·)V , where (η1, η2)V =
(η1, η2)+(∇η1,∇η2) for any η1, η2 ∈ H1(Ω). As a result, the norm in H1(Ω) can be
denoted by |η|V = (η, η)1/2

V . V ∗ denotes the dual space of V and 〈·, ·〉V ∗,V stands
for the duality pairing between V ∗ and V .

(3) We define H0 := {η ∈ H|
∫

Ω
η(x)dx = 0} which is the closed subspace of H.

We choose the notation π0 to denote the projection operator from H onto H0, that
is, π0[η](x) = η(x) − 1

|Ω|
∫

Ω
η(y)dy. Also, we denote the inner product on H0 by

(·, ·)0.
(4) We denote by V0 the space V ∩ H0 with the inner product (·, ·)V0 and the

norm | · |V0 , where (η1, η2)V0 = (∇η1,∇η2) for any η1, η2 ∈ V0. Furthermore, F−1
0

and 〈·, ·〉V ∗0 ,V0 denote the duality mapping from V ∗0 onto V0 and the duality pairing
between V ∗0 and V0, respectively. Thus, we see that V ∗0 is a Hilbert space and its
inner product can be defined as

(η1, η2)V ∗0 = 〈η1, F
−1
0 η2〉V ∗0 ,V0 = 〈F−1

0 η1, η2〉V0,V ∗0
for any η1, η2 ∈ V ∗0 . (2.1)

It is observed that the Hilbert spaces stated above satisfy the following relations

V ⊂ H ⊂ V ∗, V0 ⊂ H0 ⊂ V ∗0 ,
where all the injections are compact and densely defined. Throughout this article,
we denote by Cj > 0(j = 1, 2, . . .) the constants induced by injection. Therefore,
from the above injections, we have

|η|V ∗ ≤ C1|η|2 for any η ∈ H,
|η|2 ≤ C2|η|V0 for any η ∈ V0.

(2.2)

(5) Let ∆N be the Laplace operator with homogeneous Neumann boundary
condition in H0 with its domain

D(∆N ) =
{
η ∈ H2(Ω) ∩H0 :

∂η

∂ν
= 0 a.e. on ∂Ω

}
.

Specially, ∆Nη = ∆η a.e. on Ω for any η ∈ D(∆N ). We note that −∆N is invertible
in H0 and the inverse (−∆N )−1 is linear, continuous, positive and selfadjoint in H0

as well as its fractional power (−∆N )1/2 [21, Chapter 9, Section 11]. In addition,
we have

|(−∆N )1/2η|H0 = |(−∆N )−1η|V0 = |η|V ∗0 , ∀η ∈ H0. (2.3)
In this article, we always assume that the following condition holds

(H1) f ∈ L∞(0, ω;H) is a ω−periodic function and satisfies
∫ ω

0

∫
Ω
f(x, τ) dx dτ =

0.
Now, we give the notion of the solution for (1.2)–(1.4).

Definition 2.1. A function u is called a solution of (1.2)–(1.4), if the conditions
below hold:

(H2) u ∈ L2(0, ω;H2(Ω)) ∩ L∞(0, ω;V ) ∩W 1,2(0, ω;V ∗), ∂u
∂ν = 0 a.e. on Σω.

(H3) For all η ∈ H2(Ω) with ∂η
∂ν

∣∣∣
∂Ω

= 0,∫ ω

0

〈uτ (τ), η〉V ∗,V dτ + κ

∫ ω

0

(∆u(τ),∆η)dτ −
∫ ω

0

(g(u(τ)),∆η)dτ

=
∫ ω

0

(f(τ), η)dτ.

(H4) u(0) = u(ω) in H.
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Now, we subtract 1
|Ω|
∫

Ω
f(x, τ)dx from (1.2) and obtain

d

dτ

[
u(x, τ)− 1

|Ω|

∫ τ

0

∫
Ω

f(x, s) dx ds
]
−∆(−κ∆u(x, τ) + g(u(x, τ)))

= π0[f(x, τ)].
(2.4)

Let

w(x, τ) = u(x, τ)− 1
|Ω|

∫ τ

0

∫
Ω

f(x, s) dx ds.

Then (2.4) can be rewritten as

wτ (x, τ)−∆
[
− κ∆w(x, τ) + g

(
w(x, τ) +

1
|Ω|

∫ τ

0

∫
Ω

f(x, s) dx ds
)]

= π0[f(x, τ)].
(2.5)

Therefore 1
|Ω|
∫

Ω
w(x, τ)dx = m0 for some constant m0. Further, putting v(x, τ) =

w(x, τ)−m0, we can rewrite (2.5) as

vτ (x, τ)−∆N (−κ∆Nv(x, τ))−∆Nπ0[g (v(x, τ) +m(τ))] = π0[f(x, τ)], (2.6)

with
∫

Ω
v(x, τ)dx = 0 for all τ > 0, where m(τ) = m0 + 1

|Ω|
∫ τ

0

∫
Ω
f(x, s) dx ds.

Now for any function z ∈ H0, we can take (−∆N )−1z as η in (H3). Hence by
the arguments in[5, Proposition 1.1], for any z ∈ H0, it holds that∫ ω

0

((−∆N )−1vτ (τ), z)0dτ + κ

∫ ω

0

(−∆Nv(τ), z)0dτ

+
∫ ω

0

(π0[g(v(τ) +m(τ))], z)0dτ

=
∫ ω

0

((−∆N )−1π0[f(τ)], z)0dτ.

(2.7)

From (2.3), (2.7) and the definition of F−1
0 , we obtain an equivalent form of (1.2),

that is,

F−1
0 vτ (τ)− κ∆Nv(τ) + π0[g((v(τ) +m(τ)))] = F−1

0 π0[f(τ)]. (2.8)

Similarly, (1.5) is equivalent to

(F−1
0 + εI)v′ε(τ)− κ∆Nvε(τ) + π0[g(vε(τ) +m(τ))] = F−1

0 π0[f(τ)] in Qω,

∂vε
∂ν

(x, τ) = 0 on Σω,

vε(x, 0) = vε(x, ω) in Ω,
(2.9)

where ε ∈ (0, 1), v′ε(τ) = d
dτ vε(τ) and I is identity operator in H0.

The main result of this article can be stated as follows.

Theorem 2.2. Assume that (H1) holds. Then for any constant m0, (1.2)–(1.4)
admits a solution u(x, τ) with

1
|Ω|

∫
Ω

u(x, τ)dx = m0 +
1
|Ω|

∫ τ

0

∫
Ω

f(x, s) dx ds.

To prove this theorem, we use the viscosity approach. Therefore, we need to
investigate (2.9) first. We have the following result which is proved in next section.
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Theorem 2.3. Under the hypothesis of Theorem 2.2, (2.9) admits a solution which
has the following properties:

(H2’) vε ∈ L2(0, ω;H2(Ω) ∩H0) ∩ L∞(0, ω;V0) ∩W 1,2(0, ω;H0), ∂vε∂ν = 0 a.e. on
Σω.

(H3’) For any η ∈ D(∆N ) and 0 < τ < ω,∫ ω

0

((F−1
0 + εI)v′ε(τ)− κ∆Nvε(τ) + π0[g(vε(τ) +m(τ))], η)0dτ

=
∫ ω

0

(F−1
0 π0[f(τ)], η)0dτ in H0.

(H4’) vε(0) = vε(ω) in H0.

3. Proof of Theorem 2.3

For this purpose we use the Schauder fixed point theorem. Firstly, we study the
system

(F−1
0 + εI)v′(τ)− κ∆Nv(τ) = f̂ in H0,

v(0) = v(ω) in H0,
(3.1)

where f̂ ∈ L∞(0, ω;H0).

Theorem 3.1. Let f̂ ∈ L∞(0, ω;H0). Then there exists a unique solution v(x, t)
to problem (3.1).

We prove this theorem using Poincaré’s mapping. Thus, we first introduce the
corresponding Cauchy problem

(F−1
0 + εI)v′(τ)− κ∆Nv(τ) = f̂ , 0 < τ < ω,

v(0) = v0 ∈ H0.
(3.2)

With the help of the results in [8, 10], we can see that (3.2) admits one and only one
solution v ∈ C([0, ω];H0) ∩ L∞loc(0, ω;V0). Consequently, with the unique solution
v(τ), we can define a single-valued mapping P : v(0) ∈ H0 → v(ω) ∈ H0.

Define φ : H0 → R
⋃
{+∞} by

φ(v) =

{
κ
2 |∇v|

2
2, if v ∈ V0,

+∞, otherwise.

We see that φ is a proper, lower semicontinuous, and convex functional on H0.
Now, we give two lemmas which play an important role in the proof of Theorem
3.1.

Lemma 3.2. There exists a constant R > 0 such that P is a self-mapping on the
set

BR := {v ∈ D(φ); φ(v) ≤ R},
that is P (BR) ⊂ BR.

Proof. Multiplying the equation in (3.2) by v′, we have

|v′|2V ∗0 + ε|v′|22 +
κ

2
d

dt
|∇v|22 = (f̂ , v′)0 ≤ |f̂ |2|v′|2 ≤

1
2ε
|f̂ |22 +

ε

2
|v′|22,

i.e.,

|v′|2V ∗0 +
ε

2
|v′|22 +

κ

2
d

dt
|∇v|22 ≤

1
2ε
|f̂ |22. (3.3)
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We also multiply the equation by v and obtain

κ|∇v|22 = (f̂ , v)0 − (εv′, v)0 − 〈F−1
0 v′, v〉V0,V ∗0

≤ |f̂ |2|v|2 + ε|v′|2|v|2 + |v′|V ∗0 |v|V ∗0

≤ 2C2
2

κ
|f̂ |22 +

κ

8
|∇v|22 +

2ε2C2
2

κ
|v′|22 +

κ

8
|∇v|22 +

C2
1C

2
2

κ
|v′|2V ∗0 +

κ

4
|∇v|22

=
2C2

2

κ
|f̂ |22 +

2ε2C2
2

κ
|v′|22 +

C2
1C

2
2

κ
|v′|2V ∗0 +

κ

2
|∇v|22,

which implies

κ

2
|∇v|22 ≤

2C2
2

κ
|f̂ |22 +

2ε2C2
2

κ
|v′|22 +

C2
1C

2
2

κ
|v′|2V ∗0 . (3.4)

Letting µ > 0 and performing (3.3)× µ+ (3.4), we obtain

µ
d

dt
(
κ

2
|∇v|22) +

κ

2
|∇v|22

≤ (
µ

2ε
+

2C2
2

κ
)|f̂ |22 + (

C2
1C

2
2

κ
− µ)|v′|2V ∗0 + (

2ε2C2
2

κ
− µε

2
)|v′|22.

Choosing µ = max
{C2

1C
2
2

κ ,
4C2

2
κ

}
, from 0 < ε < 1 we have

d

dt
φ(v) +

1
µ
φ(v) ≤

( 1
2ε

+
2C2

2

κµ

)
|f̂ |22.

It follows from the Gronwall inequality that

φ(v(ω)) ≤ e−
ω
µ φ(v(0)) + (1− e−

ω
µ )
( µ

2ε
+

2C2
2

κ

)
‖f̂‖2L∞(0,ω;H0).

Set R = ( µ2ε + 2C2
2
κ )‖f̂‖2L∞(0,ω;H0). Then φ(v(ω)) ≤ R provided that φ(v(0)) ≤ R.

The proof is complete. �

Lemma 3.3. The mapping P is continuous in H0.

Proof. Let v0,n ∈ H0 be such that v0,n → v0 in H0. We denote the unique solution
of (3.2) by vn and v corresponding to the initial data v0,n and v0, respectively.
Then we have

F−1
0 (v′n − v′) + ε(v′n − v′)− κ∆N (vn − v) = 0. (3.5)

Multiplying (3.5) by vn − v and using integration by parts, we obtain

1
2
d

dt
|vn − v|2V ∗0 +

ε

2
d

dt
|vn − v|22 + κ|∇(vn − v)|22 = 0.

It can be easy to see that

1
2
d

dt
|vn − v|2V ∗0 +

ε

2
d

dt
|vn − v|22 ≤ 0.

Therefore,

1
2
|vn(ω)− v(ω)|2V ∗0 +

ε

2
|vn(ω)− v(ω)|22 ≤

1
2
|vn0 − v0|2V ∗0 +

ε

2
|vn0 − v0|22,

which implies vn(w)→ v(ω) in H0 as n→∞. Hence, P is continuous in H0. �
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Proof of Theorem 3.1. On the one hand, it follows from the definition of BR and
the convexity of φ that BR is compact and convex in H0. On the other hand,
Lemmas 3.2 and 3.3 ensure that P maps BR to BR and is continuous in H0. Thus,
the Schauder fixed point theorem admits a fixed point v∗0 ∈ BR such that Pv∗0 = v∗0 ,
which implies that the solution v(x, t) of (3.2) with v0 = v∗0 is the desired solution
of (3.1).

Now, we prove that the solution for (3.1) is unique. To this end, let v1 and v2

be two solutions of (3.1). Then we have

F−1
0 (v′1 − v′2) + ε(v′1 − v′2)− κ∆N (v1 − v2) = 0. (3.6)

We multiply (3.6) by v1 − v2 and then get that
1
2
d

dt
|v1 − v2|2V ∗0 +

ε

2
d

dt
|v1 − v2|22 + κ|∇(v1 − v2)|22 = 0.

Integrating the equation over (0, ω) and by the periodic property, we obtain∫ ω

0

|∇(v1(τ)− v2(τ))|22dτ ≤ 0,

which, together with (2.2), implies that∫ ω

0

∫
Ω

|v1 − v2|2 dx dτ ≤ 0.

Hence, v1 = v2 and the proof is complete. �

To apply the Schauder fixed point theorem to (2.9), we need to establish a priori
estimates for vε.

Lemma 3.4. Let vε be a solution of (2.9). Then

ε

∫ ω

0

|v′ε(τ)|22dτ +
∫ ω

0

|v′ε(τ)|2V ∗0 dτ ≤ ωC
2
1‖f‖2L∞(0,ω;H), (3.7)

sup
τ∈[0,ω]

|vε(τ)|2V0
≤ 2
κ

(
3A1 + 4A2 +

3C2
1 + 4ω

2
C2

1‖f‖2L∞(0,ω;H)

)
, (3.8)

‖ −∆Nvε‖2L2(0,ω;H0)

≤ 4ω
κ2

( a2
2

2a3
+ |a1|

)
(3A1 + 4A2)

+
ω

κ2

[
(3C2

1 + 4ω)C2
1

(a2
2

a3
+ 2|a1|

)
+ C4

1

]
‖f‖2L∞(0,ω;H)

(3.9)

‖vε(τ) +m(τ)‖6C([0,ω];L6(Ω)) ≤ A
3
3, (3.10)

where ai (i = 0, 1, 2, 3) are the coefficients of g(·),

A1 : = |Ω|
[93

4
a3

(
|m0|+

ω

|Ω|1/2
‖f‖L∞(0,ω;H)

)4

+
(3a2

1

2a3
+

3a2
2

a3
+ 1
)

×
(
|m0|+

ω

|Ω|1/2
‖f‖L∞(0,ω;H)

)2

+
a4

2

4
( 9
a3

)3 +
a3

12
+

3a2
1 + 3
a3

]
,

A2 := 6|Ω|
[6a4

2

a3
3

+
a2

1

2a3
+
a

4/3
0

4
( 6
a3

)1/3]
,
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A3 : = C3

{ 2
κ

(2ωC2
1C

2
2 + 2C2

2 + 1)(3A1 + 4A2) + 4m2
0|Ω|(ωC2

1 + 1)

+
[
4ω3C2

1 + 4ω2
(2C4

1C
2
2

κ
+ 1
)

+ 2C2
1ω
(3C4

1C
2
2 + 4C2

2 + 2
κ

+ 2
)

+
3C4

1 (2C2
2 + 1)
κ

]
‖f‖2L∞(0,ω;H)

}
.

Proof. From (2.2), the definition of π0 and (H1), we know that

‖π0[f ]‖2L2(0,ω;V ∗0 ) ≤ C
2
1‖π0[f ]‖2L2(0,ω;H0) ≤ ωC

2
1‖f‖2L∞(0,ω;H). (3.11)

It follows from the Hölder inequality and (H1) that for any τ ∈ [0, ω]

|m(τ)| =
∣∣∣∣m0 +

1
|Ω|

∫ τ

0

∫
Ω

f(x, s) dx ds
∣∣∣∣

≤ |m0|+
ω

|Ω|1/2
‖f‖L∞(0,ω;H).

(3.12)

We multiply the equation in (2.9) by v′ε, and obtain

|v′ε|2V ∗0 + ε|v′ε|22 +
κ

2
d

dt
|∇vε|22 +

∫
Ω

v′επ0[g(vε(τ) +m(τ))]dx

= 〈F−1
0 π0[f ], v′ε〉V0,V ∗0

≤ |π0[f ]|V ∗0 |v
′
ε|V ∗0

≤ 1
2
|π0[f ]|2V ∗0 +

1
2
|v′ε|2V ∗0 .

(3.13)

By the definition of π0 and g(·), we have
1
2
|v′ε|2V ∗0 + ε|v′ε|22 +

κ

2
d

dt
|∇vε|22 +

d

dt

∫
Ω

[a3

4
(vε(τ) +m(τ))4

+
a2

3
(vε(τ) +m(τ))3 +

a1

2
(vε(τ) +m(τ))2 + a0(vε(τ) +m(τ))

]
dx

≤ 1
2
|π0[f ]|2V ∗0 .

(3.14)

From the periodic property, we integrate (3.14) over (0, ω) and then obtain

2ε
∫ ω

0

|v′ε(τ)|22dτ +
∫ ω

0

|v′ε(τ)|2V ∗0 dτ ≤
∫ ω

0

|π0[f(τ)]|2V ∗0 dτ. (3.15)

Combining this inequality with (3.11), we have

ε

∫ ω

0

|v′ε(τ)|22dτ +
∫ ω

0

|v′ε(τ)|2V ∗0 dτ ≤ ωC
2
1‖f‖2L∞(0,ω;H),

which is (3.7).
Choose any s, t ∈ [0, ω] which satisfy s < t. Integrating (3.14) on (s, t), we have

1
2

∫ t

s

|v′ε(τ)|2V ∗0 dτ + ε

∫ t

s

|v′ε(τ)|22dτ +
κ

2
|∇vε(t)|22 +

∫
Ω

[a3

4
(vε(t) +m(t))4

+
a2

3
(vε(t) +m(t))3 +

a1

2
(vε(t) +m(t))2 + a0(vε(t) +m(t))

]
dx

≤ 1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ +
κ

2
|∇vε(s)|22 +

∫
Ω

[a3

4
(vε(s) +m(s))4

+
a2

3
(vε(s) +m(s))3 +

a1

2
(vε(s) +m(s))2 + a0(vε(s) +m(s))

]
dx.

(3.16)
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From Young’s inequality, we obtain

a2

3
(vε(τ) +m(τ))3 ≤ a3

24
(vε(τ) +m(τ))4 +

18a4
2

a3
3

,

a1

2
(vε(τ) +m(τ))2 ≤ a3

24
(vε(τ) +m(τ))4 +

3a2
1

2a3

a0(vε(τ) +m(τ)) ≤ a3

24
(vε(τ) +m(τ))4 +

3a4/3
0

4

( 6
a3

)1/3

. (3.17)

It follows from (3.16) and (3.17) that

1
2

∫ t

s

|v′ε(τ)|2V ∗0 dτ + ε

∫ t

s

|v′ε(τ)|22dτ +
κ

2
|∇vε(t)|22

+
a3

8

∫
Ω

(vε(t) +m(t))4dx

≤ κ

2
|∇vε(s)|22 +

3a3

8

∫
Ω

(vε(s) +m(s))4dx

+
1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ

+A2.

(3.18)

Deleting the first two terms on the left-hand side of (3.18) and integrating it on
(0, t) with respect to s, we have

κt

2
|∇vε(t)|22 +

a3t

8

∫
Ω

(vε(t) +m(t))4dx

≤ κ

2

∫ ω

0

|∇vε(s)|22ds+
3a3

8

∫ ω

0

∫
Ω

(vε(s) +m(s))4 dx ds+
ω

2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ

+A2ω.

Letting t = ω, one sees that

κω

2
|∇vε(ω)|22 +

a3ω

8

∫
Ω

(vε(ω) +m0)4dx

≤ κ

2

∫ ω

0

|∇vε(s)|22ds+
3a3

8

∫ ω

0

∫
Ω

(vε(s) +m(s))4 dx ds+
ω

2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ

+A2ω,

i.e.,

κ

2
|∇vε(ω)|22 +

a3

8

∫
Ω

(vε(ω) +m0)4dx

≤ κ

2ω

∫ ω

0

|∇vε(s)|22ds+
3a3

8ω

∫ ω

0

∫
Ω

(vε(s) +m(s))4 dx ds+
1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ

+A2.
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From the periodic property, we have

κ

2
|∇vε(0)|22 +

a3

8

∫
Ω

(vε(0) +m0)4dx

≤ κ

2ω

∫ ω

0

|∇vε(s)|22ds+
3a3

8ω

∫ ω

0

∫
Ω

(vε(s) +m(s))4 dx ds

+
1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ +A2.

(3.19)

Multiplying the equation in (2.9) by vε and performing a proper arrangement,
we obtain

1
2
d

dt
|vε|2V ∗0 +

ε

2
d

dt
|vε|22 + κ|∇vε|22

+ a3

∫
Ω

[
(vε(τ) +m(τ))4 −m(τ)(vε(τ) +m(τ))3

]
dx

+ a2

∫
Ω

[vε(τ) +m(τ)]3 dx+ [a1 − a2m(τ)]
∫

Ω

[vε(τ) +m(τ)]2 dx

− a1m(τ)
∫

Ω

[vε(τ) +m(τ)] dx

= 〈F−1
0 π0[f ], vε〉V0,V ∗0

≤ |π0[f ]|V ∗0 |vε|V ∗0
≤ C1|π0[f ]|V ∗0 |vε(τ) +m(τ)|2 + C1|π0[f ]|V ∗0 |Ω|

1/2|m(τ)|.

(3.20)

From Young’s inequality, we obtain

m(τ) [vε(τ) +m(τ)]3 ≤ 1
12

[vε(τ) +m(τ)]4 +
93

4
|m(τ)|4,

a2 [vε(τ) +m(τ)]3 ≤ a3

12
[vε(τ) +m(τ)]4 +

a4
2

4
( 9
a3

)3
,

[a1 − a2m(τ)] [vε(τ) +m(τ)]2 ≤ a3

6
[vε(τ) +m(τ)]4 +

3
2a3

[a1 − a2m(τ)]2

≤ a3

6
[vε(τ) +m(τ)]4 +

3a2
1

a3
+

3a2
2

a3
|m(τ)|2,

a1m(τ) [vε(τ) +m(τ)] ≤ a3

6
[vε(τ) +m(τ)]2 +

3
2a3

a2
1|m(τ)|2

≤ a3

12
[vε(τ) +m(τ)]4 +

a3

12
+

3
2a3

a2
1|m(τ)|2,

|π0[f ]|V ∗0 |vε(τ) +m(τ)|2 ≤
C2

1

4
|π0[f ]|2V ∗0 + |vε(τ) +m(τ)|22

≤ C2
1

4
|π0[f ]|2V ∗0 +

a3

12

∫
Ω

[vε(τ) +m(τ)]4 dx+
3
a3
|Ω|

and

|π0[f ]|V ∗0 |Ω|
1/2|m(τ)| ≤ C2

1

4
|π0[f ]|2V ∗0 + |Ω||m(τ)|2. (3.21)
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In light of (3.12), (3.20) and (3.21), we have

1
2
d

dt
|vε|2V ∗0 +

ε

2
d

dt
|vε|22 + κ|∇vε|22 +

a3

2

∫
Ω

[vε(τ) +m(τ)]4 dx

≤ C2
1

2
|π0[f ]|2V ∗0 +A1.

(3.22)

From the periodic property, we integrate (3.22) over (0, ω) and obtain

κ

∫ ω

0

|∇vε(τ)|22dτ +
a3

2

∫ ω

0

∫
Ω

(vε(τ) +m(τ))4 dx dτ

≤ C2
1

2

∫ ω

0

|π0[f ]|2V ∗0 dτ +A1ω.

(3.23)

Combining (3.19) with (3.23), we have

κ

2
|∇vε(0)|22 +

a3

8

∫
Ω

(vε(0) +m0)4dx

≤ C2
1

2ω

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ +A1 +
1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ +A2

≤ A1 +A2 +
ω + C2

1

2ω
‖π0[f ]‖2L2(0,ω;V ∗0 ).

(3.24)

Letting s = 0 in (3.18) and deleting the first two terms on the left-hand side, we
obtain

κ

2
|∇vε(t)|22 +

a3

8

∫
Ω

(vε(t) +m(t))4dx

≤ κ

2
|∇vε(0)|22 +

3a3

8

∫
Ω

(vε(0) +m0)4dx+
1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ +A2

≤ 3
[κ

2
|∇vε(0)|22 +

a3

8

∫
Ω

(vε(0) +m0)4dx
]

+
1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ +A2.

(3.25)

It follows from (3.24) and (3.25) that for any t ∈ [0, ω],

κ

2
|∇vε(t)|22 +

a3

8

∫
Ω

(vε(t) +m(t))4dx ≤ 3A1 + 4A2 +
3C2

1 + 4ω
2ω

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ,

which together with (3.11) yields (3.8).
Multiplying the equation of (2.9) by −∆Nvε and integrating it by parts, we have

1
2
d

dt
|vε|22 +

ε

2
d

dt
|∇vε|22 + κ|∆Nvε|22 + 3a3

∫
Ω

(vε(τ) +m(τ))2|∇vε|2dx

+ 2a2

∫
Ω

(vε(τ) +m(τ))|∇vε|2dx+ a1

∫
Ω

|∇vε|2dx

= 〈F−1
0 π0[f ],−∆Nvε〉V0,V ∗0

≤ C1|π0[f ]|V ∗0 |∆Nvε|2

≤ C2
1

2κ
|π0[f ]|2V ∗0 +

κ

2
|∆Nvε|22.
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After a proper arrangement, we obtain

1
2
d

dt
|vε|22 +

ε

2
d

dt
|∇vε|22 +

κ

2
|∆Nvε|22 + 3a3

∫
Ω

(vε(τ) +m(τ))2|∇vε|2dx

+ 2a2

∫
Ω

(vε(τ) +m(τ))|∇vε|2dx

≤ C2
1

2κ
|π0[f ]|2V ∗0 − a1

∫
Ω

|∇vε|2dx.

(3.26)

From Young’s inequality, we have

2a2(vε(τ) +m(τ)) ≤ 2a3(vε(τ) +m(τ))2 +
a2

2

2a3
. (3.27)

It follows from (3.26) and (3.27) that

1
2
d

dt
|vε|22 +

ε

2
d

dt
|∇vε|22 +

κ

2
|∆Nvε|22 + a3

∫
Ω

(vε(τ) +m(τ))2|∇vε|2dx

≤
( a2

2

2a3
+ |a1|

)∫
Ω

|∇vε|2dx+
C2

1

2κ
|π0[f ]|2V ∗0 .

(3.28)

With the help of the periodic property, we integrate (3.28) over (0, ω) and then get
that∫ ω

0

|∆Nvε(τ)|22dτ ≤
2
κ

( a2
2

2a3
+ |a1|

)∫ ω

0

∫
Ω

|∇vε(τ)|2 dx dτ +
C2

1

κ2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ.

Substituting (3.8) and (3.11) into the above inequality, we obtain (3.9).
By (3.7) and (3.8), we know that vε ∈W 1,2(0, ω;V ∗0 ) ∩L∞(0, ω;V0). Therefore,

vε(τ) +m(τ) ∈W 1,2(0, ω;V ∗) ∩ L∞(0, ω;V ). Since

W 1,2(0, ω;V ∗) ∩ L∞(0, ω;V ) ↪→ C([0, ω];L6(Ω)),

it is clear that there exists a positive constant C3 such that

‖vε(τ) +m(τ)‖2C([0,ω];L6(Ω))

≤ C3(‖vε(τ) +m(τ)‖2W 1,2(0,ω;V ∗) + ‖vε(τ) +m(τ)‖2L∞(0,ω;V )).
(3.29)

Now, we establish the estimates for ‖vε(τ) + m(τ)‖W 1,2(0,ω;V ∗) and ‖vε(τ) +
m(τ)‖L∞(0,ω;V ), respectively. Since∫ ω

0

|vε(τ) +m(τ)|2V ∗dτ ≤
∫ ω

0

(|vε(τ)|2V ∗0 + 2|vε(τ)|V ∗0 |m(τ)|V ∗ + |m(τ)|2V ∗)dτ

≤ 2(C2
1C

2
2

∫ ω

0

|vε(τ)|2V0
dτ + C2

1

∫ ω

0

|m(τ)|22dτ)

≤ 2ωC2
1 (C2

2‖vε(τ)‖2L∞(0,ω;V0) + |Ω||m(τ)|2),

we obtain∫ ω

0

|vε(τ) +m(τ)|2V ∗ dτ ≤ 2ωC2
1

[2C2
2

κ
(3A1 + 4A2) + 2m2

0|Ω|

+
(3C4

1C
2
2 + 4ωC2

1C
2
2

κ
+ 2ω2

)
‖f‖2L∞(0,ω;H)

]
.

(3.30)
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Similarly, we have∫ ω

0

|v′ε(τ) +m′(τ)|2V ∗dτ

≤
∫ ω

0

(
|v′ε(τ)|2V ∗0 + 2|v′ε(τ)|V ∗0 |m

′(τ)|V ∗ + |m′(τ)|2V ∗
)
dτ

≤ 2
(∫ ω

0

|v′ε(τ)|2V ∗0 dτ + C2
1

∫ ω

0

|m′(τ)|22dτ
)
.

(3.31)

Moreover, ∫ ω

0

|m′(τ)|22dτ =
∫ ω

0

∣∣∣ 1
|Ω|

∫
Ω

f(x, τ)dx
∣∣∣2
2
dτ ≤ ω‖f‖2L∞(0,ω;H).

Thus, together with (3.7), (3.31) can be written as∫ ω

0

∣∣∣ d
dt

(vε(τ) +m(τ))
∣∣∣2
V ∗
dτ ≤ 4ωC2

1‖f‖2L∞(0,ω;H). (3.32)

It follows from (3.30) and (3.32) that

‖vε(τ) +m(τ)‖2W 1,2(0,ω;V ∗)

≤ 2ωC2
1

[2C2
2

κ
(3A1 + 4A2) + 2m2

0|Ω|

+
(3C4

1C
2
2 + 4ωC2

1C
2
2

κ
+ 2ω2 + 2

)
‖f‖2L∞(0,ω;H)

]
.

(3.33)

Also, since

‖vε(τ) +m(τ)‖2L∞(0,ω;V )

= ess supτ∈[0,ω]

[ ∫
Ω

|vε(τ) +m(τ)|2dx+
∫

Ω

|∇(vε(τ) +m(τ))|2dx
]

≤ 2 ess supτ∈[0,ω]

∫
Ω

[v2
ε(τ) + |m(τ)|2]dx+ ess supτ∈[0,ω]

∫
Ω

|∇vε(τ)|2dx

≤ (2C2
2 + 1)‖vε‖2L∞(0,ω;V0) + 2 ess supτ∈[0,ω]

∫
Ω

|m(τ)|2dx,

from (3.8) and (3.12) we have

‖vε(τ) +m(τ)‖2L∞(0,ω;V )

≤ 2
κ

(2C2
2 + 1)(3A1 + 4A2) + 4m2

0|Ω|

+
[ (2C2

2 + 1)(3C2
1 + 4ω)

κ
C2

1 + 4ω2
]
‖f‖2L∞(0,ω;H).

(3.34)

Combining (3.33) with (3.34), we obtain

‖vε(τ) +m(τ)‖2C([0,ω];L6(Ω)) ≤ A3. (3.35)

Thus,
‖vε(τ) +m(τ)‖6C([0,ω];L6(Ω)) ≤ A

3
3, (3.36)

which is (3.10). The proof is complete. �
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Define a set

Y1 :=
{
v̄ ∈ L∞(0, ω;V0) ∩W 1,2(0, ω;H0)|v̄(0) = v̄(ω),

‖v̄(τ) +m(τ)‖6C([0,ω];L6(Ω)) ≤ A
3
3

}
.

(3.37)

Now, for any v̄ ∈ Y1, we study the problem

F−1
0 v′(τ) + εv′(τ)− κ∆Nv(τ) = −π0[g(v̄(τ) +m(τ))] + F−1

0 π0[f(τ)]
in H0, 0 < τ < ω,

v(0) = v(ω) in H0.

(3.38)

For convenience, we denote the above system by (Eε, v̄).

Lemma 3.5. Let v(t) be the solution of (Eε, v̄). Then the following estimates can
be established∫ ω

0

|v′(τ)|2V ∗0 dτ + ε

∫ ω

0

|v′(τ)|22dτ

≤ ω

ε

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+ ωC2
1‖f‖2L∞(0,ω;H),

(3.39)

∫ ω

0

|v(τ)|22dτ

≤ 2ωC4
2

κ2

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1) + C4

1‖f‖2L∞(0,ω;H)

]
,

(3.40)

κ|∇v(t)|22 ≤ 2
(ω
ε

+
C2

2

κ

) [
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+ 2C2
1

(
ω +

C2
1C

2
2

κ

)
‖f‖2L∞(0,ω;H)

(3.41)

for t ∈ [0, ω] and∫ ω

0

|∆Nv(τ)|22dτ

≤ 2ω
κ2

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1) + C4

1‖f‖2L2(0,ω;V ∗0 )

]
,

(3.42)

where A3 is the same as that in Lemma 3.4.

Proof. For any τ ∈ [0, ω], we have∫
Ω

∣∣π0[a3(v̄(τ) +m(τ))3]
∣∣2dx

= a2
3

∫
Ω

(v̄(τ) +m(τ))6dx− a2
3

|Ω|

[ ∫
Ω

(v̄(τ) +m(τ))3dx
]2

≤ a2
3

∫
Ω

(v̄(τ) +m(τ))6dx.

(3.43)

Similarly, for any τ ∈ [0, ω], we have∫
Ω

∣∣π0[a2(v̄(τ) +m(τ))2]
∣∣2 dx ≤ a2

2

∫
Ω

(v̄(τ) +m(τ))4dx , (3.44)∫
Ω

|π0[a1(v̄(τ) +m(τ))]|2 dx ≤ a2
1

∫
Ω

(v̄(τ) +m(τ))2dx. (3.45)
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It follows from Young’s inequality that

a2
2

∫
Ω

(v̄(τ) +m(τ))4dx ≤ a2
2

∫
Ω

(v̄(τ) +m(τ))6dx+
4a2

2

27
|Ω| , (3.46)

a2
1

∫
Ω

(v̄(τ) +m(τ))2dx ≤ a2
1

∫
Ω

(v̄(τ) +m(τ))6dx+
2a2

1

3
3
2
|Ω|

< a2
1

∫
Ω

(v̄(τ) +m(τ))6dx+
2a2

1

3
|Ω|.

(3.47)

By (3.46)-(3.47), for any τ ∈ [0, ω], we have∫
Ω

∣∣π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2 + a1(v̄(τ) +m(τ))]
∣∣2 dx

≤ 3(a2
3 + a2

2 + a2
1)
∫

Ω

(v̄(τ) +m(τ))6dx+ |Ω|
(4a2

2

9
+ 2a2

1

)
≤ 3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1).

(3.48)

Multiplying the equation in (3.38) by v′ and integrating by parts, we have

|v′|2V ∗0 + ε|v′|22 +
κ

2
d

dt
|∇v|22

= (−π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2 + a1(v̄(τ) +m(τ)) + a0], v′)0

+ 〈F−1
0 π0[f ], v′〉V0,V ∗0

≤
∣∣π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2 + a1(v̄(τ) +m(τ))]

∣∣
2
|v′|2

+ |π0[f ]|V ∗0 |v
′|V ∗0

≤ ε

2
|v′|22 +

1
2ε

∣∣π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2 + a1(v̄(τ) +m(τ))]
∣∣2
2

+
1
2
|v′|2V ∗0 +

1
2
|π0[f ]|2V ∗0 ,

i.e.,
1
2
|v′|2V ∗0 +

ε

2
|v′|22 +

κ

2
d

dt
|∇v|22

≤ 1
2ε

∣∣π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2

+ a1(v̄(τ) +m(τ))]
∣∣2
2

+
1
2
|π0[f ]|2V ∗0 .

(3.49)

It follows from (3.48) that

1
2
|v′|2V ∗0 +

ε

2
|v′|22 +

κ

2
d

dt
|∇v|22

≤ 1
2ε
[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
1
2
|π0[f ]|2V ∗0 .

(3.50)

Integrating (3.50) on (0, ω) and from (3.11), we obtain

1
2

∫ ω

0

|v′(τ)|2V ∗0 dτ +
ε

2

∫ ω

0

|v′(τ)|22dτ

≤ ω

2ε
[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
ωC2

1

2
‖f‖2L∞(0,ω;H),

which is (3.39).
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Multiplying the equation of (3.38) by v and integrating by parts, we have

1
2
d

dt
|v|2V ∗0 +

ε

2
d

dt
|v|22 + κ|∇v|22

= (−π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2

+ a1(v̄(τ) +m(τ)) + a0], v)0 + 〈F−1
0 π0[f ], v〉V0,V ∗0

≤
∣∣π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2 + a1(v̄(τ) +m(τ))]

∣∣
2
|v|2

+ |π0[f ]|V ∗0 |v|V ∗0

≤ κ

2
|∇v|22 +

C2
2

κ

∣∣∣π0[a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2

+ a1(v̄(τ) +m(τ))]
∣∣∣2
2

+
C2

1C
2
2

κ
|π0[f ]|2V ∗0 ,

(3.51)

where the last two inequality signs follow from Young’s inequality and (2.2). Com-
bining (3.51) with (3.48), we obtain

1
2
d

dt
|v|2V ∗0 +

ε

2
d

dt
|v|22 +

κ

2
|∇v|22

≤ C2
2

κ

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
C2

1C
2
2

κ
|π0[f ]|2V ∗0 .

(3.52)

Integrating (3.52) on (0, ω), we obtain

κ

2

∫ ω

0

|∇v(τ)|22dτ ≤
ωC2

2

κ

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
C2

1C
2
2

κ
‖π0[f ]‖2L2(0,ω;V ∗0 ).

(3.53)

Therefore, from (2.2) and (3.11), we have

κ

2

∫ ω

0

|v(τ)|22dτ ≤
κC2

2

2

∫ ω

0

|∇v(τ)|22dτ

≤ ωC4
2

κ

{[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+ C4
1‖f‖2L∞(0,ω;H)

}
,

which is (3.40).
For any s, t ∈ [0, ω] satisfying s < t, we integrate (3.50) on (s, t) and obtain

1
2

∫ t

s

|v′(τ)|2V ∗0 dτ +
ε

2

∫ t

s

|v′(τ)|22dτ +
κ

2
|∇v(t)|22

≤ ω

2ε
[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
1
2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ +
κ

2
|∇v(s)|22.

(3.54)
Deleting the first two terms on the left-hand side of (3.54) and integrating it on
(0, t) with respect to s, we have

κt

2
|∇v(t)|22 ≤

ω2

2ε
[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
ω

2

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ

+
κ

2

∫ ω

0

|∇v(s)|22ds.
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In view of (3.53), we obtain

κt

2
|∇v(t)|22 ≤ ω

( ω
2ε

+
C2

2

κ

) [
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
(ω

2
+
C2

1C
2
2

κ

)
‖π0[f ]‖2L2(0,ω;V ∗0 ).

(3.55)

Let t = ω, then (3.55) can be rewritten as

κω

2
|∇v(ω)|22 ≤ ω

( ω
2ε

+
C2

2

κ

) [
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
(ω

2
+
C2

1C
2
2

κ

)
‖π0[f ]‖2L2(0,ω;V ∗0 ),

i.e.,

κ

2
|∇v(ω)|22 ≤

( ω
2ε

+
C2

2

κ

) [
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
(1

2
+
C2

1C
2
2

κω

)
‖π0[f ]‖2L2(0,ω;V ∗0 ).

(3.56)

It follows from the periodic property that

κ

2
|∇v(0)|22 ≤

( ω
2ε

+
C2

2

κ

) [
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
(1

2
+
C2

1C
2
2

κω

)
‖π0[f ]‖2L2(0,ω;V ∗0 ).

(3.57)

Choosing s = 0 in (3.54), by (3.57) we obtain

1
2

∫ t

0

|v′(τ)|2V ∗0 dτ +
ε

2

∫ t

0

|v′(τ)|22dτ +
κ

2
|∇v(t)|22

≤
(ω
ε

+
C2

2

κ

) [
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
(

1 +
C2

1C
2
2

κω

)
‖π0[f ]‖2L2(0,ω;V ∗0 ).

(3.58)

Dropping the first two terms on the left-hand side of (3.58) and from (3.11), we
obtain

κ

2
|∇v(t)|22 ≤

(ω
ε

+
C2

2

κ

) [
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+ C2
1

(
ω +

C2
1C

2
2

κ

)
‖f‖2L∞(0,ω;H),

which is (3.41).
Now, multiplying the equation of (3.38) by −∆Nv and integrating by parts, we

have
1
2
d

dt
|v|22 +

ε

2
d

dt
|∇v|22 + κ|∆Nv|22

≤
∣∣π0

[
a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2 + a1(v̄(τ) +m(τ))

]∣∣
2
|∆Nv|2

+ |π0[f ]|V ∗0 |∆Nv|V ∗0

≤ 1
κ

∣∣π0

[
a3(v̄(τ) +m(τ))3 + a2(v̄(τ) +m(τ))2 + a1(v̄(τ) +m(τ))

]∣∣2
2

+
C2

1

κ
|π0[f ]|2V ∗0 +

κ

2
|∆Nv|22.
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After a proper arrangement and with the aid of (3.48), we obtain
1
2
d

dt
|v|22 +

ε

2
d

dt
|∇v|22 +

κ

2
|∆Nv|22

≤ 1
κ

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
C2

1

κ
|π0[f ]|2V ∗0 .

(3.59)

Integrating (3.59) on (0, ω), we have
κ

2

∫ ω

0

|∆Nv(τ)|22dx ≤
ω

κ

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1)
]

+
C2

1

κ

∫ ω

0

|π0[f(τ)]|2V ∗0 dτ,

i.e.,∫ ω

0

|∆Nv(τ)|22dx ≤
2ω
κ2

[
3A3

3(a2
3 + a2

2 + a2
1) + |Ω|(a2

2 + 2a2
1) + C4

1‖f‖2L∞(0,ω;H)

]
.

Therefore, we obtain (3.42). The proof is complete. �

Now, we prove Theorem 2.3 by the Schauder fixed point theorem.

Proof of Theorem 2.3. Based on Lemma 3.5, we define a set

Y2 := {v̄ ∈ Y1 : sup
t∈[0,w]

κ|∇v̄|22 + ε|v̄|2W 1,2(0,ω;H0) + |v̄|2W 1,2(0,ω;V ∗0 ) ≤M},

where

M : =
[
3ωC2

1 +
2C4

1C
2
2

κ
+

2ωC4
1C

4
2

κ2
(ε+ C2

1 )
]
‖f‖2L∞(0,ω;H)

+
[3ω
ε

+
2C2

2

κ
+

2ωC4
2

κ2
(ε+ C2

1 )
] [

3A3
3(a2

3 + a2
2 + a2

1) + |Ω|(a2
2 + 2a2

1)
]
.

We can see that Y2 is a non-empty compact convex subset of L2(0, ω;H0). Since
for any τ ∈ [0, ω], we have

|π0[f(τ)]|2H0
=
∫

Ω

|f(x, τ)|2dx− 1
|Ω|

(∫
Ω

f(x, τ)dx
)2

≤ ‖f‖2L∞(0,ω;H).

Thus, it follows from (3.48) and (H1) that

−π0[a3(v̄(τ)+m(τ))3 +a2(v̄(τ)+m(τ))2 +a1(v̄(τ)+m(τ))]+π0[f ] ∈ L∞(0, ω;H0).

As a result, by Theorem 3.1, there exists a unique solution vε for each v̄ ∈ Y2. From
Lemma 3.5, it is clear that vε ∈ Y2. Hence, the mapping S defined by S(v̄) = vε
maps Y2 into itself.

Next, we show that vε is a solution of (3.38) and that S is continuous in Y2 with
respect to the topology of L2(0, ω;H0). Let {v̄n} be any convergent sequence in Y2

with respect to the topology of L2(0, ω;H0). We denote the limit of {v̄n} by v̄. Let
{vn} be the sequence of solutions corresponding to {v̄n}. It follows from lemma
3.5 that vn(n = 1, 2, . . .) satisfy (3.39) and (3.40). Thus, we can find a vε and a
subsequence of {vn} which is denoted by {vnk} such that

vnk → vε weakly in W 1,2(0, ω;H0). (3.60)

Therefore, by (3.41),

vnk → vε in L2(0, ω;H0), (3.61)

v′nk → v′ε weakly in L2(0, ω;H0). (3.62)
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Since W 1,2(0, ω;H0)∩L∞(0, ω;V0) ↪→ C([0, ω];H0) [15, Section 8, Corollary 5] and
the embedding is compact, it is clear that

vnk → vε in C([0, ω];H0). (3.63)

Thus,
vnk(0)→ vε(0), vnk(ω)→ vε(ω) in H0,

which implies vε satisfies the periodic condition

vε(0) = vε(ω). (3.64)

Since F−1
0 is linear and selfadjoint, it holds for any η ∈ D(∆N ) that∫ ω

0

(F−1
0 v′nk(τ)− F−1

0 v′ε(τ), η)0dτ =
∫ ω

0

(F−1
0 (v′nk(τ)− v′ε(τ)), η)0dτ

=
∫ ω

0

(v′nk(τ)− v′ε(τ), F−1
0 η)0dτ.

(3.65)

Therefore, from (3.62), we know that

F−1
0 v′nk → F−1

0 v′ε weakly in L2(0, ω;H0) as k →∞. (3.66)

Also, for any η ∈ D(∆N ), we have∣∣∣ ∫ ω

0

(−∆Nvnk − (−∆Nvε), η)0dτ
∣∣∣ =

∣∣∣ ∫ ω

0

(vnk − vε,−∆Nη)0dτ
∣∣∣

≤ ‖vnk − vε‖L2(0,ω;H0)|∆Nη|2ω1/2.

In view of (3.61), we obtain

−∆Nvnk → −∆Nvε weakly in L2(0, ω;H0) as k →∞. (3.67)

For any v(τ) ∈ L2(0, ω;H0), let ψ(v(τ)) = π0[a3(v(τ) + m(τ))3]. Then for any
v1(τ), v2(τ) ∈ L2(0, ω;H0),∫ ω

0

(ψ(v1(τ))− ψ(v2(τ)), v1(τ)− v2(τ))0dτ

= a3

∫ ω

0

∫
Ω

[v1(τ)− v2(τ)]2
{[

(v1(τ) +m(τ)) +
1
2

(v2(τ) +m(τ))
]2

+
3
4

[v2(τ) +m(τ)]2
}
dx dτ ≥ 0.

(3.68)

Therefore, ψ is a monotone operator in L2(0, ω;H0). Since a3(v(τ) + m(τ))3 is
continuous with respect to v(τ), it is easy to prove that ψ(·) is hemicontinuous [1,
Chapter II, Definition 1.3] in L2(0, ω;H0). In addition, it is clear to see that ψ is
everywhere defined in L2(0, ω;H0). Thus, by [1, Chapter II, Theorem 1.3], ψ(·) is
maximal monotone in L2(0, ω;H0).

It follows from the definition of Y2 and (3.43) that

‖π0[a3(v̄nk +m(τ))3]‖2L2(0,ω;H0) ≤ a
2
3A

3
3ω.

Thus, there exist a γ(τ) ∈ L2(0, ω;H0) and a subsequence of {v̄nk} which is still
denoted by {v̄nk} such that

π0[a3(v̄nk(τ) +m(τ))3] = ψ(v̄nk(τ))→ γ(τ) weakly in L2(0, ω;H0) (3.69)
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as k → ∞. It follows from (3.69), the maximal monotonicity of ψ and the [17,
Theorem A], we obtain ψ(v̄) = γ, i.e.,

π0[a3(v̄nk +m(τ))3]→ π0[a3(v̄ +m(τ))3] weakly in L2(0, ω;H0). (3.70)

From [15, Section 8, Corollary 5], we know that W 1,2(0, ω;H0) ∩ L∞(0, ω;V0) ↪→
C([0, ω];L4(Ω) ∩H0) and the embedding is compact. Thus,

vnk → vε in C([0, ω];L4(Ω) ∩H0). (3.71)

Since

a2
2

∫ ω

0

∫
Ω

[
(v̄nk(τ) +m(τ))2 − (v̄(τ) +m(τ))2

]2
dx dτ

= a2
2

∫ ω

0

∫
Ω

(v̄nk(τ)− v̄(τ))2(v̄nk(τ) + v̄(τ) + 2m(τ))2 dx dτ

≤ a2
2

∫ ω

0

[ ∫
Ω

(v̄nk(τ)− v̄(τ))4dx
]1/2[ ∫

Ω

(v̄nk(τ) + v̄(τ) + 2m(τ))4dx
]1/2

dτ

≤ a2
2‖v̄nk(τ)− v̄(τ))‖2C([0,ω];L4(Ω)∩H0)

∫ ω

0

[ ∫
Ω

(v̄nk(τ) + v̄(τ) + 2m(τ))4dx
]1/2

dτ,

where the last second inequality sign follows from the Hölder inequality. From
(3.71), we see that

a2(v̄nk(τ) +m(τ))2 → a2(v̄(τ) +m(τ))2 in L2(0, ω;H0) as k →∞.

Then, it is easy to prove that

π0[a2(v̄nk(τ) +m(τ))2]→ π0[a2(v̄(τ) +m(τ))2] in L2(0, ω;H0) (3.72)

as k →∞. Similarly, (3.63) implies

π0[a1(v̄nk(τ) +m(τ))]→ π0[a1(v̄(τ) +m(τ))] in L2(0, ω;H0) (3.73)

as k →∞.
Consequently, with the help of (3.62), (3.66), (3.67), (3.70), (3.72) and (3.73),

for any η ∈ D(∆N ), we take k →∞ on both sides of the equality∫ ω

0

(F−1
0 v′nk(τ), η)0dτ +

∫ ω

0

(εv′nk(τ), η)0dτ +
∫ ω

0

(−κ∆Nvnk(τ), η)0dτ

=
∫ ω

0

(π0[g(v̄nk(τ) +m(τ))], η)0dτ +
∫ ω

0

(F−1
0 f, η)0dτ,

and then∫ ω

0

(F−1
0 v′ε(τ), η)0dτ +

∫ ω

0

(εv′ε(τ), η)0dτ +
∫ ω

0

(−κ∆Nvε(τ), η)0dτ

=
∫ ω

0

(π0[g(v̄(τ) +m(τ))], η)0dτ +
∫ ω

0

(F−1
0 f, η)0dτ.

This implies that vε = S(v̄) is a unique solution of (2.9). As a result, from (3.61),
S is continuous in Y2 with respect to the topology of L2(0, ω;H0). By the Schauder
fixed theorem, we can see that S has at least one fixed point in Y2. The proof is
complete. �
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4. Proof of main results

In this section, based on Lemma 3.4, we prove Theorem 2.2 by taking the limit
as ε→ 0.

Proof of Theorem 2.2. By Lemma 3.4, we can see that the constants on the right-
hand side of (3.7)-(3.10) are independent of ε. Thus, it follows from (3.7) and (3.8)
that

vε ∈W 1,2(0, ω;V ∗0 ) ∩ L∞(0, ω;V0), (4.1)
and there exists a v ∈W 1,2(0, ω;V ∗0 ) ∩ L∞(0, ω;V0) such that

vε → v weakly in W 1,2(0, ω;V ∗0 ) as ε→ 0, (4.2)

vε → v weakly star in L∞(0, ω;V0) as ε→ 0, (4.3)

vε → v in L2(0, ω;H0) as ε→ 0, (4.4)

v′ε → v′ weakly in L2(0, ω;V ∗0 ) as ε→ 0. (4.5)

Since W 1,2(0, ω;V ∗0 )∩L∞(0, ω;V0) ↪→ C([0, ω];H0) [15, Section 8, Corollary 5] and
the embedding is compact, it follows from (4.2) and (4.3) that

vε → v in C([0, ω];H0) as ε→ 0.

Thus,
vε(0)→ v(0), vε(ω)→ v(ω) in H0,

which implies
v(0) = v(ω). (4.6)

Similarly as (3.65), for any η ∈ D(∆N ), we have∫ ω

0

〈F−1
0 v′ε(τ)− F−1

0 v′(τ), η〉V0,V ∗0
dτ =

∫ ω

0

〈v′ε(τ)− v′(τ), F−1
0 η〉V ∗0 ,V0dτ.

By (4.5), we obtain

F−1
0 v′ε → F−1

0 v′ weakly in L2(0, ω;V0) as ε→ 0. (4.7)

Furthermore, for any η ∈ D(∆N ), we have∫ ω

0

(−∆Nvε(τ)− (−∆Nv(τ)), η)0dτ =
∫ ω

0

(vε(τ)− v(τ),−∆Nη)0dτ

≤ ‖vε − v‖L2(0,ω;H0)|∆Nη|2ω1/2.

It follows from (4.4) that

−∆Nvε → −∆Nv weakly in L2(0, ω;H0) as ε→ 0. (4.8)

From (3.10) and the similar arguments as (3.70), we obtain

π0[a3(vε(τ) +m(τ))3]→ π0[a3(v(τ) +m(τ))3] weakly in L2(0, ω;H0) (4.9)

as ε→ 0.
By [15, Section 8, Corollary 5], we see that both W 1,2(0, ω;V ∗0 )∩L∞(0, ω;V0) ↪→

C([0, ω];L4(Ω)∩H0) andW 1,2(0, ω;V ∗0 )∩L∞(0, ω;V0) ↪→ C([0, ω];H0) are compact.
Therefore, being similar as (3.72) and (3.73), we have

π0[a2(vε(τ) +m(τ))2]→ π0[a2(v(τ) +m(τ))2] in L2(0, ω;H0) as k →∞ (4.10)

and

π0[a1(vε(τ) +m(τ))]→ π0[a1(v(τ) +m(τ))] in L2(0, ω;H0) as k →∞. (4.11)
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With the help of (4.7)-(4.11), for any η ∈ D(∆N ), we take ε → 0 on both sides of
the equation

ε

∫ ω

0

〈v′ε(τ), η〉V ∗0 ,V0dτ

=
∫ ω

0

(
F−1

0 f(τ)− π0[g(vε(τ) +m(τ))] + κ∆Nvε(τ), η
)

0
dτ

−
∫ ω

0

〈F−1
0 v′ε(τ), η〉V0,V ∗0

dτ,

and then get that for any η ∈ D(∆N ),

0 =
∫ ω

0

(F−1
0 f(τ)− π0[g(v(τ) +m(τ))] + κ∆Nv(τ), η)0dτ

−
∫ ω

0

〈F−1
0 v′(τ), η〉V0,V ∗0

dτ

holds, which together with (4.6) implies that v is a solution of the problem

F−1
0 v′(τ)− κ∆Nv(τ) + π0[g(v(τ) +m(τ))] = F−1

0 f(τ), 0 < τ < ω,

v(0) = v(ω).

As a result, from the equivalence of (1.2) and (2.8), we know that u(x, τ) = v(x, τ)+
m(τ) is the solution of (1.2)-(1.4). �
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