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UNIFORM ESTIMATE AND STRONG CONVERGENCE OF
MINIMIZERS OF A p-ENERGY FUNCTIONAL WITH

PENALIZATION

BEI WANG, YUZE CAI

Abstract. This article concerns the asymptotic behavior of minimizers of

a p-energy functional with penalization as a parameter ε approaches zero.
By establishing W 1,p uniform estimates, we obtain W 1,p convergence of the

minimizer to a p-harmonic map.

1. Introduction

Let G ⊂ R2 be a bounded and simply connected domain with smooth boundary
∂G, and B1 = {x ∈ R2;x2

1 + x2
2 < 1}. Denote S1 = {x ∈ R3;x2

1 + x2
2 = 1, x3 = 0}

and S2 = {x ∈ R3;x2
1 +x2

2 +x2
3 = 1}. Sometimes we write the vector value function

u = (u1, u2, u3) as (u′, u3). Let g = (g′, 0) be a smooth map from ∂G into S1

satisfying d = deg(g′, ∂G) 6= 0. Without loss of generality, we may assume d > 0.
Consider the energy functional

Eε(u,G) =
1
p

∫
G

|∇u|pdx+
1

2εp

∫
G

u2
3dx, p > 2

with a small parameter ε > 0. From the direct method in the calculus of variations
it is easy to see that the functional achieves its minimum in the function class
W 1,p
g (G,S2). Obviously, the minimizer uε on W 1,p

g (G,S2) is a weak solution of

−div(|∇u|p−2∇u) = u|∇u|p +
1
εp

(uu2
3 − u3e3), on G,

where e3 = (0, 0, 1). Namely, for any ψ ∈W 1,p
0 (G,R3), uε satisfies∫

G

|∇u|p−2∇u∇ψdx =
∫
G

uψ|∇u|pdx+
1
εp

∫
G

ψ(uu2
3 − u3e3)dx. (1.1)

Without loss of generality, we assume u3 ≥ 0, otherwise we may consider |u3| in
view of the expression of the functional.

When p = 2, the functional Eε(u,G) was introduced in the study of some simpli-
fied model of high-energy physics, which controls the statics of planner ferromag-
nets and antiferromagnets (see [10, 18]). The asymptotic behavior of minimizers
of Eε(u,G) has been considered by Fengbo Hang and Fanghua Lin in [8]. When
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the term u2
3

2ε2 replaced by (1−|u|2)2
4ε2 and S2 replaced by R2, the problem becomes

the simplified model of the Ginzburg-Landau theory for superconductors and was
well studied in many papers such as [3, 4, 17, 19]. These works enunciate that
the study of minimizers of the functional with some penalization terms is con-
nected tightly with the study of harmonic maps with S1-value. When p > 2, it
also shows an enlightenment, namely, the properties (such as the partial regularity,
the properties of singularities) of p-harmonic maps can be seen via studying the
asymptotic properties of minimizers of some p-energy functional with penalization
(cf. [1, 2, 11, 13, 14, 16, 20]).

In this article, as in [3, 4, 8], we concern with the asymptotic behavior of mini-
mizers of functional Eε(u,G) on W 1,p

g (G,S2) where p > 2 as ε→ 0.

Theorem 1.1 ([15, Theorem 1.1]). Assume uε is a minimizer of Eε(u,G) on
W 1,p
g (G,S2). Then all the zeros of |u′ε| are included in finite, disintersected discs

B(xεj , hε), j = 1, 2, . . . , N1 where N1 and h > 0 do not depend on ε ∈ (0, 1).

As ε → 0, there exists a subsequence xεk
i of the center xεi and ai ∈ G such

that xεk
i → ai, i = 1, 2, . . . , N1. Perhaps there may be at least two subsequences

converging to the same point, we denote by a1, a2, . . . , aN , N ≤ N1, the collection of
distinct points in {ai}N1

i=1. Although the relationship between N and d is unknown,
the integer N is independent of ε ∈ (0, 1). By virtue of Theorem 1.1, we see that
all the zeros of |u′ε| converge to a1, a2, . . . , aN as ε tends to 0. In addition, (2.3) in
[15] shows

|u′ε| ≥ 1/2 on K, (1.2)

where K is an arbitrary compact subset of G \ ∪Ni=1{ai}.

Theorem 1.2 ([15, Theorem 1.2]). Assume uε is a minimizer of Eε(u,G) on
W 1,p
g (G,S2). K is an arbitrary compact subset of G \ ∪Nj=1{aj}. Then there exists

a subsequence uεk
of uε such that as k →∞,

uεk
→ up = (u′p, 0), weakly in W 1,p(K,R3),

where u′p is a map of the least p-energy
∫
K
|∇u|pdx in W 1,p(K, ∂B1).

We shall give the uniform Lploc estimate of ∇uε in §3. Recalling the case that
the parameter p equals to the dimension 2, we know it is available to estimate the
upper bound and the lower bound of

∫
|∇uε|2dx since we can use the property of

conformal transformation of
∫
|∇uε|2dx (the idea of which can be seen in [4, 7, 8, 9]).

In fact, when scaling x = yε in Eε(u,G), there is a coefficient ελ appearing in the
scaled energy functional. when p = 2, it can be derived that the exponent λ of ε is
zero. Therefore, the estimate of the upper bound

Eε(uε, G) ≤ C1 ln
1
ε

+ C

and the lower bound
1
2

∫
G\∪d

i=1B(ai,hε)

|∇u′ε|2dx ≥ C2 ln
1
ε
− C

can be obtained, where C1 = C2 = πd (cf. [8, §4]). The uniform estimate is deduced
at once. When p > 2, the property of conformal transformation of

∫
|∇uε|pdx is

invalid. Therefore, λ 6= 0. It is impossible to derive such results as the case p = 2
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if the idea of estimating the upper and the lower bounds of
∫
|∇uε|pdx is adopted.

In fact, the upper bound

Eε(uε, G) ≤ C3ε
2−p + C

and the lower bound
1
p

∫
G\∪N

i=1B(ai,hε)

|∇u′ε|pdx ≥ C4ε
2−p − C,

are also obtained. However, the relationship between C3 and C4 is not clear except
that C4 may be smaller. In [15], a comparison method was used to obtain a uniform
estimate where the average functions come into plays.

Here, we use the iteration technique introduced in [12] to obtain the uniform Lp

estimate of ∇uε. In fact, the term
∫
K
|∇uε|pdx of the functional Eε(uε,K) can

be divided into three terms,
∫
K
|∇|u′ε||pdx,

∫
K
|∇u3|pdx and

∫
K
|u′ε|p|∇

u′ε
|u′ε|
|pdx.

We will prove that
∫
K
|∇|u′ε||pdx+

∫
K
|∇u3|pdx+ 1

εp

∫
K
u2
ε3dx may be bounded by

O(ελ) with λ > 0 as ε→ 0. Using this estimate we will prove∫
K

|∇uε|pdx ≤ C +O(ελ).

Based on the Theorem 1.2, we will prove in §3 that the p-harmonic map up is a
map of least p-energy

∫
K
|∇u|pdx, and the convergence is also in strong W 1,p

loc sense.

Theorem 1.3. Assume uε is a minimizer of Eε(u,G) on W 1,p
g (G,S2). K is an

arbitrary compact subset of G \ ∪Nj=1{aj}. Then there exists a subsequence uεk
of

uε such that as k →∞,

uεk
→ up = (u′p, 0), in W 1,p(K,R3),

where u′p is the map in Theorem 1.2.

2. Uniform estimate

The following inverse Hölder inequality will be applied later.

Proposition 2.1. Assume that p > 1, and uε is a minimizer of Eε(u,G) on
W 1,p
g (G,S2). Then there exist constants t, R0 ∈ (0, 1/2) and C > 0 which is inde-

pendent of ε, such that for any BR ⊂ G (2R < R0), we have(∫
BR

|∇uε|qdx
)1/q

≤ C
(∫

B2R

(|∇uε|2 + 1)p/2dx
)1/p

, ∀q ∈ [p, p+ 2t).

The above proposition is a corollary from [6, Theorem 4.1], with a rescaling.

Theorem 2.2. Let R > 0 be a small constant such that B(x, 2R) b G \ ∪Nj=1{aj}.
There exist constant ε0 > 0 and Cj > 0, and Rj = 2R − jR

[p]+1 such that for
j = 2, 3, . . . , [p],

Eε(uε, Bj) ≤ Cjεj−p (2.1)
where ε ∈ (0, ε0), Bj = B(x,Rj), and [p] is the integer part of p.

For j = 2, the inequality (2.1) is follows from [15, Proposition 2.1]. Suppose that
(2.1) holds for all j ≤ m. Then we have, in particular,

Eε(uε, Bm) ≤ Cmεm−p. (2.2)

If m = [p], then we are done. Suppose m < [p], we want to prove (2.1) for j = m+1.
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Applying (1.2) we have 1
2 ≤ |u

′
ε(y)| ≤ 1, for all y ∈ B(x, 2R). Using the integral

mean value theorem we know that there exists r ∈ [Rm+1/2, Rm] such that

Eε(uε, Bm \Bm+1/2) = C0(r)
∫
∂B(x,r)

[
1
p
|∇uε|p +

1
4εp

u2
ε3]dξ,

and applying (2.2), we see that∫
∂B(x,r)

|∇uε|pdξ +
1
εp

∫
∂B(x,r)

u2
ε3dξ ≤ C−1

0 (r)Cmεm−p. (2.3)

We denote B = B(x, r), and introduce two propositions.

Proposition 2.3. If ρ1 is a minimizer of the functional

E(ρ,B) =
1
p

∫
B

(|∇ρ|2 + 1)p/2dx+
1

2εp

∫
B

(1− ρ)2dx,

on W 1,p
|u′ε|

(B,R+ ∪ {0}). Then E(ρ1, B) ≤ Cεm−p+1.

Proof. Obviously, the minimizer ρ1 exists and satisfies

−div(v(p−2)/2∇ρ) =
1
εp

(1− ρ) on B, (2.4)

ρ|∂B = |u′ε|, (2.5)

where v = |∇ρ|2 + 1. Since 1/2 ≤ |u′ε| ≤ 1, it follows from the maximum principle
that on B,

1
2
≤ ρ1 ≤ 1. (2.6)

Applying (2.2) and noting (1− |u′|)2 ≤ u2
3, we see easily that

E(ρ1, B) ≤ E(|u′ε|, B) ≤ CEε(uε, B) ≤ Cεm−p. (2.7)

Multiplying (2.4) by ∂νρ, where ρ denotes ρ1, and integrating over B, we have

−
∫
∂B

v(p−2)/2(∂νρ)2dξ +
∫
B

v(p−2)/2∇ρ∇(∂νρ)dx

=
1
εp

∫
B

(1− ρ)(∂νρ)dx,
(2.8)

where ν denotes the unit outside norm vector on ∂B. Using (2.7) we obtain∣∣ ∫
B

v(p−2)/2∇ρ · ∇(∂νρ)dx
∣∣ ≤ C ∫

B

v(p−2)/2|∇ρ|2dx+
1
p

∣∣ ∫
B

ν · ∇(vp/2)dx
∣∣

≤ Cεm−p +
1
p

∫
∂B

vp/2dξ.

(2.9)

Combining (2.3), (2.5) and (2.7) we also have∣∣ 1
εp

∫
B

(1− ρ)(∂νρ)dx
∣∣ ≤ 1

2εp
|
∫
B

(1− ρ)2divνdx−
∫
∂B

(1− ρ)2dξ| ≤ Cεm−p.

Substituting this result and (2.9) into (2.8) yields∣∣ ∫
∂B

v(p−2)/2(∂νρ)2dξ
∣∣ ≤ Cεm−p +

1
p

∫
∂B

vp/2dξ. (2.10)
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Applying (2.3), (2.5), (2.10) and the Young inequality, we obtain that for any
δ ∈ (0, 1), ∫

∂B

vp/2dξ =
∫
∂B

v(p−2)/2[1 + (∂νρ)2 + (∂τρ)2]dξ

≤
∫
∂B

v(p−2)/2dξ +
∫
∂B

v(p−2)/2(∂νρ)2dξ

+
(∫

∂B

vp/2dξ
)(p−2)/p(∫

∂B

(τ · ∇|uε|)pdξ
)2/p

≤ C(δ)εm−p + (
1
p

+ 2δ)
∫
∂B

vp/2dξ,

where τ denotes the unit tangent vector on ∂B. Therefore, it follows by choosing
δ > 0 sufficiently small that ∫

∂B

vp/2dξ ≤ Cεm−p. (2.11)

We multiply both sides of (2.4) by (1− ρ) and integrate over B. Then∫
B

v(p−2)/2|∇ρ|2dx+
1
εp

∫
B

(1− ρ)2dx = −
∫
∂B

v(p−2)/2(ν · ∇ρ)(1− ρ)dξ,

whose left hand side is proportional to E(ρ1, B). Thus

E(ρ1, B) ≤ C
∣∣ ∫
∂B

v(p−2)/2(ν · ∇ρ)(1− ρ)dξ
∣∣.

Applying Holder’s inequality and (2.3), (2.5), (2.6) and (2.11), we obtain

E(ρ1, B) ≤ C|
∫
∂B

vp/2dξ|(p−1)/p
∣∣∣ ∫
∂B

(1− ρ2)2dξ
∣∣∣1/p

≤ Cε(m−p)(p−1)/p
∣∣∣ ∫
∂B

u2
ε3dξ

∣∣∣1/p ≤ Cεm−p+1.

(2.12)

The proof is complete. �

Proposition 2.4. Denote h = |u′ε|. Then there is t ∈ (0, 1/2) such that for any
δ ∈ (0, 1/2),

1
p

∫
B

|∇h|pdx+
1
p

∫
B

|∇u3|pdx+
1

4εp

∫
B

(1− h2)2dx

≤ Cεm−p+1 + δ

∫
B

|∇uε|pdx+ C
(∫

B(x,2r)

|∇uε|pdx+ 1
)

×
[ ∫

B

(1− h2)2dx
]t/(p+t)

.

(2.13)

Proof. Let U = (
√

2ρ1 − ρ2
1w, 1−ρ1) on B; U = uε on G\B, where w = wε = u′ε

|u′ε|
.

Then U ∈W 1,p
g (G,S2). Since uε is a minimizer of Eε(u,G), we have

Eε(uε, G) ≤ Eε(U,G) = Eε(U,B) + Eε(uε, G \B),

which means Eε(uε, B) ≤ Eε(U,B). Using (2.12) it is not difficult to see that for
any δ > 0, ∫

B

|∇ρ1|2|∇w|p−2dx ≤ (
∫
B

|∇ρ1|pdx)2/p(
∫
B

|∇w|pdx)
p−2

p
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≤ δ
∫
B

|∇uε|pdx+ Cεm+1−p.

By using (2.6) and the mean value theorem,∫
B

(
(1− ρ1)2

2ρ1 − ρ2
1

|∇ρ1|2 + (2ρ1 − ρ2
1)|∇w|2)p/2dx−

∫
B

((2ρ1 − ρ2
1)|∇w|2)p/2dx

≤ C
∫
B

(|∇ρ1|p + |∇ρ1|2|∇w|p−2)dx,

and noting 2ρ− ρ2 − 1 = −(1− ρ)2 ≤ 0, we have

Eε(uε, B) ≤ Eε(U,B)

≤ 1
p

∫
B

((2ρ1 − ρ2
1)|∇w|2)p/2dx+ C

∫
B

(|∇ρ1|p + |∇ρ1|2|∇w|p−2)dx

+
1

4εp

∫
B

(1− ρ1)2dx

≤ 1
p

∫
B

|∇w|pdx+ δ

∫
B

|∇uε|pdx+ Cεm+1−p + CE(ρ1, B).

From this result and (2.12), we deduce

Eε(uε, B) ≤ 1
p

∫
B

|∇w|pdx+ Cεm+1−p + δ

∫
B

|∇uε|pdx. (2.14)

By Jensen’s inequality and (2.14), we obtain

1
p

∫
B

|∇h|pdx+
1
p

∫
B

(hp − 1)|∇w|pdx+
1
p

∫
B

|∇u3|pdx

+
1

4εp

∫
B

(1− h2)2dx

≤ Eε(uε, B)− 1
p

∫
B

|∇w|pdx

≤ Cεm−p+1 + δ

∫
B

|∇uε|pdx.

(2.15)

Since h ≥ 1/2 and Proposition 2.1, there exists a t ∈ (0, 1/2) such that

1
p

∫
B

(1− hp)|∇wε|pdx

≤ 2p

p

∫
B

(1− hp)|∇uε|pdx

≤ C
(∫

B

|∇uε|p+tdx
)p/(p+t)(∫

B

(1− hp)(p+t)/tdx
)t/(p+t)

≤ C
(∫

B(x,2r)

|∇uε|pdx+ 1
)(∫

B

(1− h2)2dx
)t/(p+t)

.

(2.16)

Combining this with (2.15) we complete the proof. �
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Proof of Theorem 2.2.
Step 1. Since |u′ε| ≥ 1/2, there exists φ ∈ W 1,p(B(x, 3R),[0, 2π)) such that w =
u′ε
|u′ε|

= (cosφ, sinφ). Obviously, |∇w|2 = |∇φ|2. Substituting this into (1.1) with
the test function (ψ, 0) yields

∫
B(x,3R)

|∇u|p−2(w∇h+ h∇w)∇ψdx

=
∫
B(x,3R)

hw|∇u|pψdx+
1
εp

∫
B(x,3R)

hwψ(1− h2)dx

where ψ ∈W 1,p
0 (G,R2). Let eiφ = cosφ+ i sinφ. Then

∫
B3R(x)

heiφ|∇u|pψdx+
1
εp

∫
B3R(x)

hψeiφ(1− h2)dx

=
∫
B3R(x)

|∇u|p−2(eiφ∇h+ hieiφ∇φ)∇ψdx.

Taking ψ = e−iφζ, where ζ ∈W 1,p
0 (B(x, 3R),R2), we obtain

1
εp

∫
B(x,3R)

h(1− h2)ζdx

=
∫
B(x,3R)

|∇u|p−2(∇h∇ζ + h(|∇φ|2 − |∇u|2)ζ)dx.
(2.17)

0 =
∫
B(x,3R)

|∇u|p−2(h∇φ∇ζ − ζ∇h∇φ)dx. (2.18)

Taking ζ = hξ in (2.18), where ξ ∈W 1,p
0 (B(x, 3R),R2), we have

0 =
∫
B(x,3R)

|∇u|p−2h2∇φ∇ξdx. (2.19)

Assume ρ is an arbitrary constant in (0, 3R/2). Let ζ ∈ W 1,p
0 (B(x, 2ρ), [0, 1]),

and ζ = 1 on B(x, ρ). Taking ξ = φζ2 in (2.19) and using the Young inequality, for
any η ∈ (0, 1) we obtain

∫
B(x,2ρ)

|∇u|p−2h2|∇φ|2ζ2dx ≤ C
∫
B(x,2ρ)

|∇u|p−2h2(η|∇φ|2ζ2 + C(η))dx.

Choosing η sufficiently small and noticing ζ = 1 on B(x, ρ), we obtain

∫
B(x,ρ)

|∇u|p−2h2|∇φ|2dx ≤ C
(∫

B(x,2ρ)

|∇u|pdx
)1−2/p

. (2.20)
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Applying (2.20) with ρ = r we obtain∫
B

|∇u|p ≤
∫
B

|∇u|p−2(h2|∇φ|2 + |∇h|2 + |∇u3|2)dx

≤ C
(∫

B(x,2r)

|∇u|pdx
)1−2/p

+
(∫

B

(|∇h|p + |∇u3|p)dx
)2/p(∫

B

|∇u|pdx
)(p−2)/p

≤ C
(∫

B(x,2r)

|∇u|pdx
)1−2/p

+ δ

∫
B

|∇u|pdx

+ C(δ)
∫
B

(|∇h|p + |∇u3|p)dx.

(2.21)

Substituting (2.13) into (2.21) and choosing δ > 0 sufficiently small we derive∫
B

|∇u|pdx ≤ C
(∫

B(x,2r)

|∇u|pdx
)1−2/p

+ Cεm−p+1

+ C
(∫

B(x,2r)

|∇uε|pdx+ 1
)[ ∫

B

(1− h2)2dx
]t/(p+t)

.

(2.22)

From (2.2) it follows that∫
B

|∇u|pdx ≤ C(εm−p)1−2/p + Cεm−p+1 + Cεm−p+
mt
p+t = I1 + I2 + I3. (2.23)

Step 2. When m ≤ p/2, then m + 1 − p ≤ (m − p)(1 − 2/p). Therefore I1 ≤ I2.
Let k0 ∈ N be the minimum with the property m+ 1 ≤ (1 + t

p+t )
k0m.

In the following we shall improve the exponent m−p+ t
p+tm of ε in I3 to m−p+1.

Assume ζ ∈ C∞0 (B(x, 2R), [0, 1]) satisfying ζ = 1 on Bm+1/2 and |∇ζ| ≤ C. Taking
the test function as hζ(1− h) in (2.17), we have

1
εp

∫
B

h2(1− h2)ζ(1− h)dx+
∫
B

|∇u|p−2|∇h|2hζdx+
∫
B

h2|∇u|p(1− h)ζdx

≤
∫
B

|∇u|p−2∇h∇ζh(1− h)dx+
∫
B

|∇u|pζ(1− h) ≤ C
∫
B

|∇u|pdx

Noting ζ = 1 on Bm+1/2, applying h ≥ 1/2 and (2.22), we obtain

1
εp

∫
Bm+1/2

(1− h2)2dx ≤ C

εp

∫
B

h2(1− h2)(1− h)ζdx ≤ C(1 + εm−p+
t

p+tm),

which implies ∫
Bm+1/2

(1− h2)2dx ≤ Cεm(1+ t
p+t ), ε ∈ (0, ε0). (2.24)

On the other hand, similar to the derivation of (2.14), for Bm+1/2 we still con-
clude that for any δ > 0,

Eε(uε, Bm+1/2) ≤ 1
p

∫
Bm+1/2

|∇w|pdx+ Cεm−p+1 + δ

∫
Bm+1/2

|∇uε|pdx.
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Therefore, (2.15) can be written as

1
p

∫
Bm+1/2

|∇h|pdx+
1
p

∫
Bm+1/2

|∇u3|pdx+
1

4εp

∫
Bm+1/2

(1− h2)2dx

≤ Cεm−p+1 +
1
p

∫
Bm+1/2

(1− hp)|∇w|pdx+ δ

∫
Bm+1/2

|∇uε|pdx.
(2.25)

To estimate the second term of the right hand side of (2.25), we apply (2.23) and
(2.24) to obtain

1
p

∫
Bm+1/2

(1− hp)|∇w|pdx ≤ Cε(m+ t
p+tm) t

p+t +m+ t
p+tm−p = Cεm(1+ t

p+t )2−p

by the same way as for (2.16). Substituting this into (2.25) yields

1
p

∫
Bm+1/2

(|∇h|p + |∇u3|p)dx ≤ C(εm−p+1 + εm(1+ t
p+t )2−p) + δ

∫
Bm+1/2

|∇uε|pdx.

Using this instead of (2.13) and by the same argument of Step 1 we can improve
(2.23) as∫

Bm+1/2

|∇uε|pdx ≤ C + C(εm−p+1 + εm(1+ t
p+t )2−p) ≤ Cεm(1+ t

p+t )2−p.

Now, we use this inequality replacing (2.23) to discuss, thus (2.24) can be written
as ∫

Bm+3/4

(1− h2)2dx ≤ Cεm(1+ t
p+t )2 , ε ∈ (0, ε0).

As a result, it is also follows that, as the derivation of (2.16) and (2.23),

1
p

∫
Bm+3/4

(1− hp)|∇w|pdx ≤ Cεm(1+ t
p+t )3−p,∫

Bm+3/4

|∇uε|pdx ≤ C + C(εm−p+1 + εm(1+ t
p+t )3−p) ≤ Cεm(1+ t

p+t )3−p.

If we do in this way, and noting the definition of k0, we can derive by k0 steps
that ∫

B
m+1−1/2k0−1

|∇uε|pdx ≤ C + C(εm−p+1 + εm(1+ t
p+t )k0−p).

Thus ∫
Bm+1

|∇uε|pdx ≤
∫
B

m+1−1/2k0−1

|∇uε|pdx ≤ C(εm−p+1 + 1).

This is (2.2) for j = m+ 1.
Step 3. When m > p/2, (m − p)(1 − 2/p) < m + 1 − p. Let k ≥ 1 be an integer
such that (m− p)(1− 2/p)k ≤ m+ 1− p < (m− p)(1− 2/p)k+1. Now, I1 ≥ I2 in
(2.23). Thus, ∫

B

|∇u|pdx ≤ C(εm−p)1−2/p + Cεm−p+
mt

(p+t) .

Similar to Step 2, we may improve the exponent m − p + mt
p+t of ε in I3 to (m −

p)(1−2/p) since we may find k0 > 0 such that m(1+ t
p+t )

k0−p > (m−p)(1−2/p).
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Namely, there is a constant r1 ∈ (Rm+1, r) such that∫
B(x,r1)

|∇uε|pdx ≤ Cε(m−p)(1−2/p).

Therefore, as the derivation of (2.24),∫
B(x,2r1/3)

(1− h2)2dx ≤ Cε(m−p)(1−2/p)+p.

Substituting these into (2.22) we have∫
B(x,r1/2)

|∇uε|pdx

≤ Cεm+1−p + C
[ ∫

B(x,r)

|∇uε|pdx
]1−2/p

+ C
(∫

B(x,r)

|∇uε|pdx+ 1
)[ ∫

B(x,r)

(1− h2)2dx
] t

p+t

≤ Cεm+1−p + Cε(m−p)(1−2/p)2 + Cε(m−p)(1−2/p)+[(m−p)(1−2/p)+p] t
p+t .

Noting (m− p)(1− 2/p)2 < m+ 1− p, we can see that∫
B(x,r1/2)

|∇uε|pdx ≤ Cε(m−p)(1−2/p)2 + Cε(m−p)(1−2/p)+[(m−p)(1−2/p)+p] t
p+t .

Using the idea of Step 2, we can improve the exponent (m−p)(1−2/p)+[(m−p)(1−
2/p)+p] t

p+t of ε to (m−p)(1−2/p)2. Namely, there is a constant r2 ∈ (Rm+1, r1/2)
such that ∫

B(x,r2)

|∇uε|pdx ≤ Cε(m−p)(1−2/p)2 .

Suppose that for some l ≤ k − 1,∫
B(x,rl−1)

|∇uε|pdx ≤ Cε(m−p)(1−2/p)l

holds, where Rm+1 < rl+1 < rl/2 for l = 2, 3, · · · , k−1. Therefore, as the derivation
of (2.24), ∫

B(x,rl−1)

(1− h2)2dx ≤ Cε(m−p)(1−2/p)l+p.

Substituting these inequalities into (2.22) yields∫
B(x,rl)

|∇uε|pdx

≤ Cεm+1−p + Cε(m−p)(1−2/p)l+1
+ Cε(m−p)(1−2/p)l+[(m−p)(1−2/p)l+p] t

p+t

≤ Cε(m−p)(1−2/p)l+1
+ Cε(m−p)(1−2/p)l+[(m−p)(1−2/p)l+p] t

p+t

Similar to Step 2, we may improve again the exponent (m − p)(1 − 2/p)l + [(m −
p)(1− 2/p)l + p] t

p+t of ε to (m− p)(1− 2/p)l+1. Namely, it can be seen that∫
B(x,rl)

|∇uε|pdx ≤ Cε(m−p)(1−2/p)l+1
.
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From this result it follows that for l = k − 1,∫
B(x,rk−1)

|∇uε|p ≤ Cε(m−p)(1−2/p)k

.

Therefore, as the derivation of (2.24),∫
B(x,rl−1)

(1− h2)2dx ≤ Cε(m−p)(1−2/p)k+p.

Combining these with (2.22) we obtain∫
B(x,

rk−1
2 )

|∇uε|pdx

≤ Cεm+1−p + Cε(m−p)(1−2/p)k+1
+ Cε(m−p)(1−2/p)k+[(m−p)(1−2/p)k+p] t

p+t

≤ Cεm+1−p + Cε(m−p)(1−2/p)k+[(m−p)(1−2/p)k+p] t
p+t .

As in Step 2 and noting the definition of k, we may also improve the exponent of
ε to m+ 1− p finally. Namely, we have∫

B(x,rk−1/2)

|∇uε|p ≤ Cεm+1−p.

This is (2.2) for j = m+ 1 and proof of Theorem 2.2 is complete.

Theorem 2.5. For an arbitrary compact subset K of G \ {a1, a2, . . . , aN}. There
exists a constant C > 0 which does not depend on ε ∈ (0, 1) such that Eε(uε,K) ≤
C.

Proof. It is sufficient to prove that Eε(uε, B(x,R)) ≤ C, where B(x,R) is the disc
in G \ {a1, a2, . . . , aN}. Theorem 2.2 shows that

Eε(uε, B[p]) ≤ Cε[p]−p. (2.26)

Using this and the integral mean value theorem, there exists a constant r ∈
[R[p]+1/2, R[p]] such that∫

∂B(x,r)

|∇uε|pdξ +
1
εp

∫
∂B(x,r)

u2
ε3dξ ≤ C(r)ε[p]−p. (2.27)

Consider the functional

E(ρ,B) =
1
p

∫
B

(|∇ρ|2 + 1)p/2dx+
1

2εp

∫
B

(1− ρ)2dx,

where B = B(x, r). It is easy to prove that the minimizer ρ2 of E(ρ,B) on
W 1,p
|u′ε|

(B,R+ ∪ {0}) exists. Similar to the proof of proposition 2.3, by (2.26) and
(2.27) we can derive

E(ρ2, B) ≤ Cε[p]−p+1. (2.28)

From this it follows that for any δ > 0,∫
B

|∇ρ2|2|∇w|p−2dx ≤ δ
∫
B

|∇uε|pdx+ Cε[p]+1−p.
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Since uε is a minimizer of Eε(u,G), we have

Eε(uε, B) ≤ Eε((ρ2w,
√

1− ρ2
2), B)

≤ 1
p

∫
B

(ρ2
2|∇w|2)p/2dx+ C

∫
B

(|∇ρ2|p + |∇ρ2|2|∇w|p−2)dx

+
1

4εp

∫
B

(1− ρ2
2)2dx.

(2.29)

Therefore,

Eε(uε, B) ≤ 1
p

∫
B

|∇w|pdx+ Cε[p]+1−p + δ

∫
B

|∇uε|pdx.

Combining this with Jensen’s inequality yields

1
p

∫
B

|∇h|pdx+
1
p

∫
B

|∇u3|pdx+
1

4εp

∫
B

(1− h2)2

≤ Eε(uε, B)− 1
p

∫
B

|∇w|pdx+
1
p

∫
B

(1− hp)|∇w|pdx

≤ Cε[p]+1−p + δ

∫
B

|∇uε|pdx+
1
p

∫
B

(1− hp)|∇w|pdx.

(2.30)

To estimate the third term of the right hand side, we proceed in the same way of
the proof of Proposition 2.4, and use 1

εp

∫
B

(1− h2)2dx ≤ Cε[p]−p which is implied
by (2.26). As a result, there exists t ∈ (0, 1/2) such that

1
p

∫
B

(1− hp)|∇w|pdx ≤ Cε[p]+[p]t/(p+t)−p.

Substituting this into (2.30) yields

1
p

∫
B

(|∇h|p + |∇u3|p)dx+
1

4εp

∫
B

(1− h2)2dx

≤ C(ε[p]+1−p + ε[p]+
[p]t
p+t−p) + δ

∫
B

|∇uε|pdx.

This and (2.21) imply that∫
B

|∇uε|pdx ≤ Cε[p]−p+1 + Cε[p]−p+
t

p+tm + Cε([p]−p)(1−2/p) + C, (2.31)

as long as we choose δ > 0 sufficiently small. Discussing in the same way to Step 2
and Step 3, we may improve the exponent of ε in the second and the third terms of
the right hand side of (2.31) step by step such that the improved exponent is not
smaller than [p] − p + 1, thus for some B[p]+1 ⊂ B, there exists C independent of
ε ∈ (0, ε0) with ε0 sufficiently small such that∫

B[p]+1

|∇uε|pdx ≤ C + Cε[p]+1−p ≤ C.

The proof is complete. �
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3. Proof of Theorem 1.3

Step 1. Suppose B(x0, 2σ) ⊂ [G \ ∪Nj=1{aj}], where the constant σ may be
sufficiently small but independent of ε. Since theorem 2.5 implies Eε(uε, B(x0, 2σ)\
B(x0, σ)) ≤ C, there is a constant r ∈ (σ, 2σ) such that∫

∂B(x0,r)

|∇uε|pdξ +
1
εp

∫
∂B(x0,r)

u2
ε3dξ ≤ C(r).

Thus, we can find a subsequence uεk
of uε such that uεk

→ up = (u′p, 0) in
C(∂B(x0, r),R3), where u′p is the S1-valued harmonic map, which leads to

u′εk

|u′εk
|
→ u′p, in C(∂B(x0, r)). (3.1)

Step 2. Denote B = B(x0, r). It is easy to see the existence of the solution wε of

min{
∫
B

|∇u|pdx : u ∈W 1,p
u′ε
|u′ε|

(B, ∂B1)}. (3.2)

Theorem 2.5 and |u′ε| ≥ 1/2 on B imply 2−p
∫
B
|∇ u′ε
|u′ε|
|pdx ≤

∫
B
|∇uε|pdx ≤ C, and

hence ∫
B

|∇wε|pdx ≤
∫
B

|∇ u′ε
|u′ε|
|pdx ≤ C. (3.3)

From this and (2.28) it follows that
∫
B
|∇ρ2|2|∇wε|p−2dx ≤ Cε2([p]+1−p)/p, where

ρ2 is the minimizer of E(ρ,B) on W 1,p
|u′ε|

(B,R+ ∪ {0}). Substituting this result into
(2.29) and using (2.28), we obtain∫

B

|∇uε|pdx ≤ Cε2([p]+1−p)/p +
∫
B

|∇wε|pdx. (3.4)

Step 3. Let wτε be a solution of

min
{∫

B

(|∇w|2 + τ)p/2dx : w ∈W 1,p
u′ε
|u′ε|

(B, ∂B1)
}
, τ ∈ (0, 1). (3.5)

Clearly, wτε also solves

− div(vτε
(p−2)/2∇w) = w|∇w|2vτε

(p−2)/2, vτε = |∇w|2 + τ. (3.6)

Noticing u′ε
|u′ε|
∈W 1,p

u′ε
|u′ε|

(B, ∂B1), we have∫
B

|∇wτε |pdx ≤
∫
B

(|∇wτε |2 + τ)p/2dx

≤
∫
B

(|∇ u′ε
|u′ε|
|2 + τ)p/2dx

≤
∫
B

(|∇ u′ε
|u′ε|
|2 + 1)p/2dx ≤ C

(3.7)

by using (3.3), where C is a constant which is independent of ε, τ . Then there exist
w∗ ∈W 1,p

u′ε
|u′ε|

(B, ∂B1) and a subsequence of wτε denoted still by itself such that

lim
τ→0

wτε = w∗ weakly in W 1,p(B,R2). (3.8)
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Noting the weak lower semi-continuity of
∫
B
|∇w|p, we have∫

B

|∇w∗|pdx ≤ lim inf
τ→0

∫
B

|∇wτε |pdx ≤ lim sup
τ→0

∫
B

|∇wτε |pdx. (3.9)

The fact that wτε solves (3.5) implies

lim sup
τ→0

∫
B

(|∇wτε |2 + τ)p/2dx ≤ lim
τ→0

∫
B

(|∇wε|2 + τ)p/2dx =
∫
B

|∇wε|pdx,

where wε is a solution of (3.2). This and (3.9) lead to∫
B

|∇w∗|pdx ≤ lim inf
τ→0

∫
B

|∇wτε |pdx ≤ lim sup
τ→0

∫
B

|∇wτε |pdx ≤
∫
B

|∇wε|pdx.

(3.10)
Since w∗ ∈W 1,p

u′ε
|u′ε|

(B, ∂B1), we know w∗ also solves (3.2), namely

∫
B

|∇wε|pdx =
∫
B

|∇w∗|pdx. (3.11)

Combining this with (3.10) yields limτ→0

∫
B
|∇wτε |pdx =

∫
B
|∇w∗|pdx, which and

(3.8) imply that as τ → 0,

∇wτε → ∇w∗ in Lp(B,R2). (3.12)

Step 4. By the same argument as in Step 3, we obtain the following conclusion:
Let uτ be a solution of

min{
∫
B

(|∇u|2 + τ)p/2dx : u ∈W 1,p
u′p

(B, ∂B1)}, τ ∈ (0, 1). (3.13)

Then uτ satisfies ∫
B

|∇uτ |pdx ≤ C, (3.14)

where C is which is independent of τ , and uτ solves

− div[(vτ )(p−2)/2∇u] = u|∇u|2v(p−2)/2, vτ = |∇u|2 + τ. (3.15)

As τ → 0, there exists a subsequence of uτ denoted by itself such that

∇uτ → ∇u∗ in Lp(B,R2), (3.16)

where u∗ is a minimizer of
∫
B
|∇u|pdx in W 1,p

u′p
(B, ∂B1). It is well-known that u∗

is a map of the least p-energy, and also a p-harmonic map.
Step 5. From [5, Lemma 1, Page 65], we can write

wτε = (cosφτε , sinφ
τ
ε ), uτ = (cosψτ , sinψτ ),

wε = (cosφ∗ε, sinφ
∗
ε), u∗ = (cosψ∗, sinψ∗),

u′ε
|u′ε|
|∂B = (cosφε, sinφε), u′p|∂B = (cosψ, sinψ),

where φτε , ψ
τ , φ∗ε, ψ

∗ belong to W 1,p(B,R), φ∗, ψ belong to W 1,p(∂B,R), and they
are all single-valued functions since their degrees around ∂B are zero. Therefore,

φτε |∂B = φε, ψτ |∂B = ψ, (3.17)
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and |∇wτε | = |∇φτε |, |∇uτ | = |∇ψτ |. |∇wε| = |∇φ∗ε|, |∇u∗| = |∇ψ∗|. More-
over, by (3.6) and (3.15), we obtain that both φτε and ψτ satisfy − div[(|∇Φ|2 +
τ)(p−2)/2∇Φ] = 0. Thus,

− div[(|∇φτε |2 + τ)(p−2)/2∇φτε − (|∇ψτ |2 + τ)(p−2)/2∇ψτ ] = 0. (3.18)

Multiplying both sides of (3.18) by φτε − ψτ and integrating over B, we obtain

−
∫
∂B

(vτε
(p−2)/2φν − v(p−2)/2ψν)(φ− ψ)dξ

+
∫
B

(vτε
(p−2)/2∇φ− v(p−2)/2∇ψ)∇(φ− ψ)dx = 0,

(3.19)

where ν denotes the unit outside-norm vector of ∂B.
Let w = wτε be a solution of (3.5). Integrating both sides of (3.6) over B, we

have

−
∫
∂B

vτε
(p−2)/2wνdξ =

∫
B

w|∇w|2vτε
(p−2)/2dx,

this and (3.7) imply∣∣ ∫
∂B

vτε
(p−2)/2φνdξ

∣∣ =
∣∣ ∫
∂B

vτε
(p−2)/2wνdξ

∣∣ ≤ ∫
B

vτε
p/2dx ≤ C. (3.20)

An analogous discussion shows that for the solution u = uτ of (3.13) which is
equipped with (3.14), we may also obtain∣∣ ∫

∂B

v(p−2)/2ψνdξ
∣∣ =

∣∣ ∫
∂B

v(p−2)/2uνdξ
∣∣ ≤ ∫

B

|∇u|pdx ≤ C. (3.21)

Combining (3.17) with (3.19)-(3.21), we derive∫
B

(vτε
(p−2)/2∇φ− v(p−2)/2∇ψ)∇(φ− ψ)dx ≤ C sup

∂B
|φτε − ψτ | = C sup

∂B
|φε − ψ|,

where C is independent of ε, τ . Letting τ → 0 and applying (3.12) and (3.16), we
obtain∣∣ ∫

B

(|∇φ∗ε|(p−2)/2∇φ∗ε − |∇ψ∗|(p−2)/2∇ψ∗)∇(φ∗ε − ψ∗)dx
∣∣ ≤ C sup

∂B
|φε − ψ|,

which implies
∫
B
|∇φ∗ε − ∇ψ∗|pdx ≤ C sup∂B |φε − ψ|. Letting ε → 0 and using

(3.1), we obtain
∫
B
|∇φ∗ε|pdx→

∫
B
|∇ψ∗|pdx. That is,∫

B

|∇wε|pdx→
∫
B

|∇u∗|pdx. (3.22)

Step 6. Since
∫
B
|∇u|pdx is weak lower semi-continuous, from Theorem 1.2 we

deduce
∫
B
|∇up|pdx ≤ lim infεk→0

∫
B
|∇uεk

|pdx. Combining this result with (3.4),
(3.11) and (3.22), we obtain∫

B

|∇up|pdx ≤ lim inf
εk→0

∫
B

|∇uεk
|pdx ≤ lim sup

εk→0

∫
B

|∇uεk
|pdx

≤ lim
εk→0

∫
B

|∇wε|pdx =
∫
B

|∇u∗|pdx.
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Recalling the definition of u∗ in Step 4, and noticing u′p ∈W
1,p
u′p

(B, ∂B1), we know
that u′p is also a minimizer of

∫
B
|∇u|p, and

lim
εk→0

∫
B

|∇uεk
|pdx =

∫
B

|∇up|pdx =
∫
B

|∇u∗|pdx.

This result and Theorem 1.2 imply ∇uεk
→ ∇up in Lp(B,R3). when εk → 0.

Combining this with the fact uεk
→ up in Lp(B,R3), which is implied by Theorem

1.2, we obtain
uεk
→ up, in W 1,p(B,R3)

as εk → 0. Then it is not difficult to complete the proof of this theorem.
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