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EXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR
QUASILINEAR ELLIPTIC EQUATIONS AND SYSTEMS

ZHIJUN ZHANG

ABSTRACT. Under simple conditions on f and g, we show that existence of
positive radial solutions for the quasilinear elliptic equation

div(¢1(IVu))Vu) = a(lz)) f(u) = €RY,
and for the system

div(¢1(|Vul)Vu) = a(lz))f(v) = e RN,

div(g2(IVo]) Vo) = b(|e)g(u) =€ RV .

1. INTRODUCTION

The purpose of this article is to study the existence of positive radial solutions
to the quasilinear elliptic equation

Ay, u = div(¢1(|Vu)Vu) = a(|z|) f(u), = cRY, (1.1)

and for the system
div(¢1 (|Vul)Vu) = a(jz]) f(v), = € RY,
div(62(IVe))Vo) = b(lalg(u), @€ RV,

In this article by a solution we mean a solution on the entire domain, as opposed
to a local solution. To emphasize this property some authors use entire solution,
while others use global solution. We assume the following assumptions:

(1.2)

(A1) a,b: RN — [0,00) are continuous;

(A2) f,g:]0,00) — [0,00) are continuous and increasing,
(A3) ¢; € C((0,00),(0,00)) (i = 1,2) satisfy (t¢;(t))’ > 0, for all ¢ > 0;
(A4) there exist p;,¢; > 1 such that
tWi(t)
i < — o~ <@, YE>0,
bi & U, qi >
where U, (t) = fg s¢i(s)ds, t > 0;
(A5) there exist k;,I; > 0 such that
tw(t)
k< = <1 > 0.
S S VE>0
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The function ¢, appears in mathematical models in nonlinear elasticity, plasticity,
generalized Newtonian fluids, and in quantum physics, see e.g., Benci, Fortunato
and Pisani [§], Cencelj, Repov§ and Virk [9], Fuchs and Li [I3], Fuchs and Os-
molovski [14], Fukagai and Narukawa [I5], Radulescu [28] and [29], Radulescu and
Repovs [30], Repovs [31], Zhang and Yuan [39] and Fukagai and Narukawa [16].

Positive solutions to were first considered by Santos, Zhou and Santos [32].
Some classical examples of ¢;-Laplacian functions are:

(1) when ¢1(t) = 2, U1(t) = t%, ¢t > 0, Ag,u = Au is the Laplacian operator.
In this case, py = ¢1 =2 in (A4), and ky = 1; = 1 in (A5);

(2) when ¢1(t) = ptP=2, Uy(t) = tP, t > 0, p > 1, Ayp,u = A,u is the p-
Laplacian operator. In this case, py = ¢ =pin (Ad),and k1 =11 =p—1
in (A5);

(3) when ¢1(t) = ptP=2 + qt972, Wi (t) =tP + 19, t > 0, 1 < p < q, Ay,u =
Apu + Agu is called as the (p + ¢)-Laplacian operator, p1 = p, ¢1 = ¢ in
(A4), and ky =p—1,1; = ¢—1in (Ab);

(4) when éx(t) = 2p(1+ 2P, Wy(t) = (L+ 2P — 1, ¢ > 0, p > 1/2
p1 = min{2,2p}, ¢1 = max{2,2p} in (A4), and k; = min{1,2p — 1},
Iy = max{1,2p — 1} in (AB);

/ 2_1)p—1

(5) when ¢(t) = %, Ui(t) = (VI+2-1)P, t>0,p>1 p1 =p,

g1 =2pin (Ad),and k; =p—1,1; =2p — 1 in (AD);
P=1(1n q—1

(6) when @1 (t) = pt*~2(In(1 + £))7 + LTI 0, () = #(In(1 +1))°,
t>0,p>1,¢>0,p1=p,q1 =p+qin (Ad),and ky =p—1,11 =p+q-1
in (A5).

We say that u € CH(RY) is a solution of if
o1(|Vu])VuVipds = 7/ a(x) f(u)ypdz, Vi € CERY).

RN RN

When lim|,| . u(x) = +00, we say that u is a large solution to equation (1.1).
For convenience, we denote by

h; ! the inverses of h;(t) = t¢;(t), t>0; (1.3)
Iip(00) := lim I;y(r), I;p(r) ::/ Ry (A, (t)dt, >0, (1.4)
T—00 0
where p € C([0, 00), [0,00)) and
¢
A(t) = tl_N/ sNlp(s)ds, t > 0; (1.5)
0
0;(t) ;== min{tP*, %},  O;(t) := max{tF ¢4}, t>0; (1.6)
0,71 (t) := min{t/P #Y/9} @7 (t) == max{t}/Pi tV/ U}t > 0; (1.7)
and, for an arbitrary a > 0 and ¢t > «,
Hyo(00) = lim Hia(t), Hialt) /t ar (1.8)
la = 1all); la = P R .
t=o0 o« ©7'(f(7))

dr
+65(g(r)

(1.9)

t—o0

HQQ(OO) = hm Hga(t), H2o¢(t) ::/ @71(‘]@( ))
a Y T
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We see that for t > a,

, B 1
el = o)
HY (1) = ;

- — > 0,
O (f(1) + 05 (g(t))
and that H,., Ho, have the inverse functions Hfal and H{al on [0, Hi4(00)) and
[0, Haq (00)), respectively.

First, let us review the model

Au=a(|z])f(u), zeRN. (1.10)

For a(z) =1 on RY: when f satisfies (A2), Keller [I8] and Osserman [27] supplied
a necessary and sufficient condition

[eS) dt t
/1 NeTaD) =00, F(t) :/0 f(s)ds, (1.11)

for the existence of positive radial large solutions to ((1.10)).

For N > 3, f(u) = u", v € (0,1], and «a satisfies (A1) with a(z) = a(|z|), Lair
and Wood [19] first showed that equation has infinitely many positive radial
large solutions if and only if

/OO ra(r)dr = oc. (1.12)
0

The above results have been extended by many authors and in many contexts, see,

for instance, [2, 4l Bl 111 [12] 20} 23| [33], B3] [36] and the references therein.

Next we review the system
Au = a(z)f(v), =RV,
Av =b(x)g(u), z<cRN.
When N >3, f(v) = v, g(u) =u"?,0 <y <2, and a(z) = a(|z]), b(z) = b(|z|),

Lair and Wood [2I] have considered the existence and nonexistence of positive radial

solutions to system (1.13)). For further results, see for instance, [T, Bl [6, [7, 10, 17
241, 25], 26, 34, 37, [38] and the references therein.
Now we return to equation (1.1)). Recently, Santos, Zhou and Santos [32] con-
sidered the existence of positive radial and nonradial large solutions to equation
div(¢y (|Vu|)Vu) = a(x)f(u), =RV,
A basic result read as follows.

Lemma 1.1 ([32, Corollary 1.2]). Let (A3)—(Ab) hold, f satisfy (A2), and a satisfy
(A1) with a(z) = a(|z|) for x € RN. If

(1.13)

I14(00) = o0,

then (L.1)) admits a sequence of symmetric radial large solutions u,(|z|) € C1(RY)
with um,(0) — 00 as m — oo if and only if f satisfies

/°° o
L PTNE®)

where U1t is the inverse of WUy which is given in (A4).
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Inspired by the above works, by using a monotone iterative method and Arzela-
Ascoli theorem, we show existence of positive radial solutions to equation (|1.1)) and
system (1.2) under simple conditions on f and g. Our main results for equation

read as follows.
Theorem 1.2. Let (A1)—(A5) hold. If

(A6) Hia(oo) = oo,
then has a positive radial solution u € C*(RY). Moreover, if I;,(c0) < 00,
then u is bounded, and im,_, o, u(r) = oo provided I,(0c0) = oco.
Theorem 1.3. Under assumptions (A1)-(A5) and

(AT) I14(00) < Hin(o0) < 00,
equation has a positive radial bounded solution u € C*(RYN) satisfying

o+ 07 (F(e)1a(r) < ulr) < Hi(ha(r)), ¥r >0,

where 07 is given in (7).

Remark 1.4. When fol W = 00, there exists a > 0 sufficiently small such
1 T

that (A7) holds provided I1,(00) < 0o and His(00) < 0.

Remark 1.5. For f(s) = s7 with s > 0, 1 > 0, since 7 *(t) = p%, t > 1, one can
see that when v; > p1, Hia(00) < 00, and Hi,(00) = oo provided v < pq, where
p1 is given as in (A4).

Remark 1.6. For f(s) = (1 + )" (In(1 + s))** with s > 0, 1,71 > 0, one can
see that when 1 > p; or 71 = p1 and g > p1, Hia(00) < 00, and Hin(00) = 00
provided ;1 < p; or y; = p; and pg < p;.

Remark 1.7. For f(s) = exp(c18), s > 0, ¢; > 0, one can see that Hi,(00) < 00.
Our main results for system (1.2 are as follows.

Theorem 1.8. Let (A1)—(A5) hold. If

(A8) Hyy(0) = o0,
then (1.2) has a positive radial solution (u,v) in C1(RN) x C*(RY). Moreover,
when I14(00) 4+ Iop(00) < 00, w and v are bounded; when I,(c00) = Iy(c0) = oo,
lim, 00 w(r) = limy—, o0 v(r) = 00.
Theorem 1.9. Under hypotheses (A1)—(A5) and

(A9)

Ila(OO) + Igb(OO) < HQQ(OO) < 00,

system (1.2) has a positive radial bounded solution (u,v) in C1(RYN) x CH(RY)
satisfying

/2407 (f(a/2)) [1a(r) < u(r) < Hyy (Iia(r) + Ios(r)),  Vr > 0;

/2 + 05" (9(/2)Iop(r) < v(r) < Hog (Ina(r) + Iy(r)),  Vr > 0.
Remark 1.10. By a similar proof, we can see extend Theorems [I.8 and [I.9] to the
more general system

div(¢1(|Vu)Vu) = a|z|) fi(v) fa(u), = €RY,
div(¢2(|Vo]) Vo) = b(|z[)g1(v)g2(u), = € RY,
where f;, g; (1 = 1,2) satisfy (A2).

(1.14)
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Remark 1.11. For f(s) = s, g(s) = $72, s > 0, 71,72 > 0, when ~; > p; or
Yo > pa2, Hon(00) < 00, and Ha,(00) = oo provided 1 < p; and 2 < py, where p;
and po are given as in (A4).

Remark 1.12. For f(s) = (1 + s)"(In(1 + $))*, g(s) = (1 + s)72(In(1 + s))H2,
s >0, vi,pi >0 (i = 1,2), when 71 > py or 79 > po; or 1 = p1 and m1 > pi;
or v = pg and 1y > pa, Han(00) < 00, and Ha,(00) = oo provided 77 < p; and
Y2 < p2; or y1 =p1, m < p1 and y2 = pa, N2 < pa.

Remark 1.13. For f(s) = exp(c1s) or g(s) = exp(cas), s > 0, ¢1,¢2 > 0, one can
see that Ha,(00) < 00.

2. PROOF OF THEOREMS AND [L.3]

Lemma 2.1 ([32] Lemma 2.2]). Let (A3)—(A5) hold, 6;,0; and 0;*,0;" (i =1,2)
be given as in (L.6) and (1.7). We have
(i) 0;, O, 92»_1 and @i_l are strictly increasing on (0,00);
(i) 6;1(B)h; H(t) < hyH(Bt) < O; H(B)hy L (1), for all B,t > 0.
Let us consider the initial value problem

(TN*1¢1(U’(7'))u’(T))/ =rNla(r) f(u), r>0, (2.1)
uw(0) =«a, u/'(0)=0, .

by a simple calculation,

u'(r) =hyt(r'N /0’“ s ta(s) f(u(s))ds), >0, u(0)=a, (2.2)

and thuS
u(r) =oa+ ' Lg=N tSN 1as u(s))ds)d r 0. .

Note that solutions in C[0, 00) to problem (2.3)) are solutions in C1[0, 00) to problem

&1).

Let {t, }m>1 be the sequence of positive continuous functions defined on [0, c0)
by

uo(r) = ay
r t 2.4
U (1) = @ —|—/O hl_l(tlfN/O sNta(s) f(um—1(s))ds)dt, > 0. 24
Obviously,
ur, (r) = hl_l(rl_N/ sN_la(s)f(um_l(s))ds), r >0, (2.5)
0

and, for all » > 0 and m € N, u,(r) > «, and up < u3. Then (Al)—(A3) and
Lemma [2.1] yield u;(r) < ua(r) for all » > 0. Continuing this line of reasoning, we
obtain that the sequence {u,,} is non-decreasing on [0,00). Moreover, we obtain
by (A1)—-(A3) and Lemma [2.1| that for each r > 0,

T

ul, (r) :hfl(rl_N/ sN_la(s)f(um,l(s))ds)

0

< hfl(f(um(r))rl_N /T SN_la(s)ds)

0
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<07 (lum ) (7 [ "N (s)ds),
0

m (1) dr
L ety < e

Consequently, for an arbitrary R > 0,
Hio(um(r)) < Lia(r) < Li,(R), ¥re][0,R]. (2.6)
(i) When (A6) holds, we see that
HiNo0) =00, um(r) < Hil(ha(r)) < H (I1a(R), Vre[0,R], (2.7

la

and

i.e., the sequence {uy,,} is bounded on [0, R] for an arbitrary R > 0.

It follows from (2.5) that {u],} is bounded on [0,R]. By the Arzela-Ascoli
theorem, {u.,} has a subsequence converging uniformly to v on [0, R]. Since {u,}
is non-decreasing on [0, 00), we see that {u,,} itself converges uniformly to u on
[0, R]. By the arbitrariness of R, we see that u is a positive radial solution to
equation (|1.1)). Moreover, when I ,(c0) < oo, we see by (2.7]) that

u(r) < Hyg (ha(o0)), ¥r = 0;
when I1,(00) = 0o, we see by (A2) and Lemma [2.1] that
u(r) > a+ 07 (f(@) ha(r), Vr>0.
Thus lim, o, u(r) = oo.

(ii) When (A7) holds, we see by (2.6) that

Hla(um(r)) < Ila(OO) < Hla(OO) < Q. (28)
Since Hy,! is strictly increasing on [0, Hy4(00)), we have
U (1) < HyH(I1a(00)) < 00, Vr > 0. (2.9)

The rest of the proof follows from (i).

3. PrROOF OF THEOREMS [L.§ AND
Let us consider the initial value problem
(PN () (1) =V a(r) f(v), >0,
(P o (0 (M) ()" = PN (g (w), >0,
u(0) =v(0) = /2, u/(0) =v'(0) =0,

which is equivalent to

u(r) oz/2+/0r h;l(tHV/O sNta(s) f(v(s))ds)dt, >0,
v(r) = a/2+ /0 hy ' (N /0 sN1b(s)g(u(s))ds)dt, > 0.

Let {tm }m>1 and {vym, }m>0 be the sequences of positive continuous functions de-
fined on [0, c0) by
vo(r) = a/2,
T t
U (1) = /2 +/ hfl(tl‘N/ sV ra(s) f(vm-1(s))ds)dt, >0,
0

0
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U (1) =a/2+/0T h;l(tl—N/O sN10(s)g(um (s))ds)dt, > 0.

Obviously, for all r > 0 and m € N, up(r) > /2, vp(r) > «/2 and vy < vy.
Assumptions (A1)-(A3) and Lemma [2.1] yield u;(r) < usg(r), for all r > 0, then
v1(r) < wa(r), for all r > 0. Continuing this line of reasoning, we obtain that the
sequences {u,,} and {v,,} are increasing on [0,00). Moreover, by (A1)-(A3) and
Lemma [2.1] that for each r > 0, we obtain

and
v, (r) = h;l (rlfN /0’“ SNflb(s)g(um(s))ds)
< 03 alun () (= [ i()ds)
< 051 (g(um(r) + vm(r) (b7 (Aa(r) + by ' (Ap(r))).
Consequently,

U (1) + 07, (1) < (O7 (f (v (7) + um (1))
+ 03 (9(m(r) + um (1)) (b1 (Aa(r)) + by ' (Au(r))), >0,

and

U (1) F 0 (7) dr ; I
<
/ &7 () + 05 (o)) I 0

Hoo (U (1) + 0 (1)) < Tio(r) + Inp(r), Vr>0.

The remaining proofs are similar to that for Theorems [I.2] and [[.3] Here we omit
their proof.

(3.1)
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