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EXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR
QUASILINEAR ELLIPTIC EQUATIONS AND SYSTEMS

ZHIJUN ZHANG

Abstract. Under simple conditions on f and g, we show that existence of
positive radial solutions for the quasilinear elliptic equation

div(φ1(|∇u|)∇u) = a(|x|)f(u) x ∈ RN ,

and for the system

div(φ1(|∇u|)∇u) = a(|x|)f(v) x ∈ RN ,

div(φ2(|∇v|)∇v) = b(|x|)g(u) x ∈ RN .

1. Introduction

The purpose of this article is to study the existence of positive radial solutions
to the quasilinear elliptic equation

∆φ1u := div(φ1(|∇u|)∇u) = a(|x|)f(u), x ∈ RN , (1.1)

and for the system

div(φ1(|∇u|)∇u) = a(|x|)f(v), x ∈ RN ,

div(φ2(|∇v|)∇v) = b(|x|)g(u), x ∈ RN .
(1.2)

In this article by a solution we mean a solution on the entire domain, as opposed
to a local solution. To emphasize this property some authors use entire solution,
while others use global solution. We assume the following assumptions:

(A1) a, b : RN → [0,∞) are continuous;
(A2) f, g : [0,∞)→ [0,∞) are continuous and increasing,
(A3) φi ∈ C1((0,∞), (0,∞)) (i = 1, 2) satisfy (tφi(t))′ > 0, for all t > 0;
(A4) there exist pi, qi > 1 such that

pi ≤
tΨ′i(t)
Ψi(t)

≤ qi, ∀t > 0,

where Ψi(t) =
∫ t

0
sφi(s)ds, t > 0;

(A5) there exist ki, li > 0 such that

ki ≤
tΨ′′i (t)
Ψ′i(t)

≤ li, ∀t > 0.
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The function φ1 appears in mathematical models in nonlinear elasticity, plasticity,
generalized Newtonian fluids, and in quantum physics, see e.g., Benci, Fortunato
and Pisani [8], Cencelj, Repovš and Virk [9], Fuchs and Li [13], Fuchs and Os-
molovski [14], Fukagai and Narukawa [15], Rădulescu [28] and [29], Rădulescu and
Repovs̆ [30], Repovs̆ [31], Zhang and Yuan [39] and Fukagai and Narukawa [16].

Positive solutions to (1.1) were first considered by Santos, Zhou and Santos [32].
Some classical examples of φ1-Laplacian functions are:

(1) when φ1(t) ≡ 2, Ψ1(t) = t2, t > 0, ∆φ1u = ∆u is the Laplacian operator.
In this case, p1 = q1 = 2 in (A4), and k1 = l1 = 1 in (A5);

(2) when φ1(t) = ptp−2, Ψ1(t) = tp, t > 0, p > 1, ∆φ1u = ∆pu is the p-
Laplacian operator. In this case, p1 = q1 = p in (A4), and k1 = l1 = p− 1
in (A5);

(3) when φ1(t) = ptp−2 + qtq−2, Ψ1(t) = tp + tq, t > 0, 1 < p < q, ∆φ1u =
∆pu + ∆qu is called as the (p + q)-Laplacian operator, p1 = p, q1 = q in
(A4), and k1 = p− 1, l1 = q − 1 in (A5);

(4) when φ1(t) = 2p(1 + t2)p−1, Ψ1(t) = (1 + t2)p − 1, t > 0, p > 1/2,
p1 = min{2, 2p}, q1 = max{2, 2p} in (A4), and k1 = min{1, 2p − 1},
l1 = max{1, 2p− 1} in (A5);

(5) when φ1(t) = p(
√

1+t2−1)p−1
√

1+t2
, Ψ1(t) = (

√
1 + t2 − 1)p, t > 0, p > 1, p1 = p,

q1 = 2p in (A4), and k1 = p− 1, l1 = 2p− 1 in (A5);
(6) when φ1(t) = ptp−2(ln(1 + t))q + qtp−1(ln(1+t))q−1

1+t , Ψ1(t) = tp(ln(1 + t))q,
t > 0, p > 1, q > 0, p1 = p, q1 = p+q in (A4), and k1 = p−1, l1 = p+q−1
in (A5).

We say that u ∈ C1(RN ) is a solution of (1.1) if∫
RN

φ1(|∇u|)∇u∇ψdx = −
∫

RN

a(x)f(u)ψdx, ∀ψ ∈ C∞0 (RN ).

When lim|x|→∞ u(x) = +∞, we say that u is a large solution to equation (1.1).
For convenience, we denote by

h−1
i the inverses of hi(t) = tφi(t), t > 0; (1.3)

Iiρ(∞) := lim
r→∞

Iiρ(r), Iiρ(r) :=
∫ r

0

h−1
i (Λρ(t))dt, r ≥ 0, (1.4)

where ρ ∈ C([0,∞), [0,∞)) and

Λρ(t) := t1−N
∫ t

0

sN−1ρ(s)ds, t > 0; (1.5)

θi(t) := min{tpi , tqi}, Θi(t) := max{tpi , tqi}, t ≥ 0; (1.6)

θ−1
i (t) := min{t1/pi , t1/qi}, Θ−1

i (t) := max{t1/pi , t1/qi}, t ≥ 0; (1.7)

and, for an arbitrary α > 0 and t ≥ α,

H1α(∞) := lim
t→∞

H1α(t), H1α(t) :=
∫ t

α

dτ

Θ−1
1 (f(τ))

; (1.8)

H2α(∞) := lim
t→∞

H2α(t), H2α(t) :=
∫ t

α

dτ

Θ−1
1 (f(τ)) + Θ−1

2 (g(τ))
. (1.9)
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We see that for t > α,

H ′1α(t) =
1

Θ−1
1 (f(t))

> 0,

H ′2α(t) =
1

Θ−1
1 (f(t)) + Θ−1

2 (g(t))
> 0,

and that H1α, H2α have the inverse functions H−1
1α and H−1

2α on [0, H1α(∞)) and
[0, H2α(∞)), respectively.

First, let us review the model

∆u = a(|x|)f(u), x ∈ RN . (1.10)

For a(x) ≡ 1 on RN : when f satisfies (A2), Keller [18] and Osserman [27] supplied
a necessary and sufficient condition∫ ∞

1

dt√
2F (t)

=∞, F (t) =
∫ t

0

f(s)ds, (1.11)

for the existence of positive radial large solutions to (1.10).
For N ≥ 3, f(u) = uγ , γ ∈ (0, 1], and a satisfies (A1) with a(x) = a(|x|), Lair

and Wood [19] first showed that equation (1.10) has infinitely many positive radial
large solutions if and only if ∫ ∞

0

ra(r)dr =∞. (1.12)

The above results have been extended by many authors and in many contexts, see,
for instance, [2, 4, 5, 11, 12, 20, 23, 33, 35, 36] and the references therein.

Next we review the system

∆u = a(x)f(v), x ∈ RN ,

∆v = b(x)g(u), x ∈ RN .
(1.13)

When N ≥ 3, f(v) = vγ1 , g(u) = uγ2 , 0 < γ1 ≤ γ2, and a(x) = a(|x|), b(x) = b(|x|),
Lair and Wood [21] have considered the existence and nonexistence of positive radial
solutions to system (1.13). For further results, see for instance, [1, 3, 6, 7, 10, 17,
24, 25, 26, 34, 37, 38] and the references therein.

Now we return to equation (1.1). Recently, Santos, Zhou and Santos [32] con-
sidered the existence of positive radial and nonradial large solutions to equation

div(φ1(|∇u|)∇u) = a(x)f(u), x ∈ RN .

A basic result read as follows.

Lemma 1.1 ([32, Corollary 1.2]). Let (A3)–(A5) hold, f satisfy (A2), and a satisfy
(A1) with a(x) = a(|x|) for x ∈ RN . If

I1a(∞) =∞,

then (1.1) admits a sequence of symmetric radial large solutions um(|x|) ∈ C1(RN )
with um(0)→∞ as m→∞ if and only if f satisfies∫ ∞

1

dt

Ψ−1
1 (F (t))

=∞,

where Ψ−1
1 is the inverse of Ψ1 which is given in (A4).
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Inspired by the above works, by using a monotone iterative method and Arzela-
Ascoli theorem, we show existence of positive radial solutions to equation (1.1) and
system (1.2) under simple conditions on f and g. Our main results for equation
(1.1) read as follows.

Theorem 1.2. Let (A1)–(A5) hold. If
(A6) H1α(∞) =∞,

then (1.1) has a positive radial solution u ∈ C1(RN ). Moreover, if I1a(∞) < ∞,
then u is bounded, and limr→∞ u(r) =∞ provided I1a(∞) =∞.

Theorem 1.3. Under assumptions (A1)–(A5) and
(A7) I1a(∞) < H1α(∞) <∞,

equation (1.1) has a positive radial bounded solution u ∈ C1(RN ) satisfying

α+ θ−1
1 (f(α))I1a(r) ≤ u(r) ≤ H−1

1α (I1a(r)), ∀r ≥ 0,

where θ−1
1 is given in (1.7).

Remark 1.4. When
∫ 1

0
dτ

Θ−1
1 (f(τ))

= ∞, there exists α > 0 sufficiently small such

that (A7) holds provided I1a(∞) <∞ and H1α(∞) <∞.

Remark 1.5. For f(s) = sγ1 with s ≥ 0, γ1 > 0, since Θ−1
1 (t) = 1

p1
, t ≥ 1, one can

see that when γ1 > p1, H1α(∞) < ∞, and H1α(∞) = ∞ provided γ1 ≤ p1, where
p1 is given as in (A4).

Remark 1.6. For f(s) = (1 + s)γ1(ln(1 + s))µ1 with s ≥ 0, µ1, γ1 > 0, one can
see that when γ1 > p1 or γ1 = p1 and µ1 > p1, H1α(∞) < ∞, and H1α(∞) = ∞
provided γ1 < p1 or γ1 = p1 and µ1 ≤ p1.

Remark 1.7. For f(s) = exp(c1s), s ≥ 0, c1 > 0, one can see that H1α(∞) <∞.

Our main results for system (1.2) are as follows.

Theorem 1.8. Let (A1)–(A5) hold. If
(A8) H2α(∞) =∞,

then (1.2) has a positive radial solution (u, v) in C1(RN ) × C1(RN ). Moreover,
when I1a(∞) + I2b(∞) < ∞, u and v are bounded; when Ia(∞) = Ib(∞) = ∞,
limr→∞ u(r) = limr→∞ v(r) =∞.

Theorem 1.9. Under hypotheses (A1)–(A5) and
(A9)

I1a(∞) + I2b(∞) < H2α(∞) <∞,
system (1.2) has a positive radial bounded solution (u, v) in C1(RN ) × C1(RN )
satisfying

α/2 + θ−1
1 (f(α/2))I1a(r) ≤ u(r) ≤ H−1

2α (I1a(r) + I2b(r)), ∀r ≥ 0;

α/2 + θ−1
2 (g(α/2))I2b(r) ≤ v(r) ≤ H−1

2α (I1a(r) + I2b(r)), ∀r ≥ 0.

Remark 1.10. By a similar proof, we can see extend Theorems 1.8 and 1.9 to the
more general system

div(φ1(|∇u|)∇u) = a(|x|)f1(v)f2(u), x ∈ RN ,

div(φ2(|∇v|)∇v) = b(|x|)g1(v)g2(u), x ∈ RN ,
(1.14)

where fi, gi (i = 1, 2) satisfy (A2).
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Remark 1.11. For f(s) = sγ1 , g(s) = sγ2 , s ≥ 0, γ1, γ2 > 0, when γ1 > p1 or
γ2 > p2, H2α(∞) <∞, and H2α(∞) =∞ provided γ1 ≤ p1 and γ2 ≤ p2, where p1

and p2 are given as in (A4).

Remark 1.12. For f(s) = (1 + s)γ1(ln(1 + s))µ1 , g(s) = (1 + s)γ2(ln(1 + s))µ2 ,
s ≥ 0, γi, µi > 0 (i = 1, 2), when γ1 > p1 or γ2 > p2; or γ1 = p1 and η1 > p1;
or γ2 = p2 and η2 > p2, H2α(∞) < ∞, and H2α(∞) = ∞ provided γ1 < p1 and
γ2 < p2; or γ1 = p1, η1 ≤ p1 and γ2 = p2, η2 ≤ p2.

Remark 1.13. For f(s) = exp(c1s) or g(s) = exp(c2s), s ≥ 0, c1, c2 > 0, one can
see that H2α(∞) <∞.

2. Proof of Theorems 1.2 and 1.3

Lemma 2.1 ([32, Lemma 2.2]). Let (A3)–(A5) hold, θi,Θi and θ−1
i ,Θ−1

i (i = 1, 2)
be given as in (1.6) and (1.7). We have

(i) θi, Θi, θ−1
i and Θ−1

i are strictly increasing on (0,∞);
(ii) θ−1

i (β)h−1
i (t) ≤ h−1

i (βt) ≤ Θ−1
i (β)h−1

i (t), for all β, t > 0.

Let us consider the initial value problem(
rN−1φ1(u′(r))u′(r)

)′ = rN−1a(r)f(u), r > 0,

u(0) = α, u′(0) = 0,
(2.1)

by a simple calculation,

u′(r) = h−1
1

(
r1−N

∫ r

0

sN−1a(s)f(u(s))ds
)
, r > 0, u(0) = α, (2.2)

and thus

u(r) = α+
∫ r

0

h−1
1

(
t1−N

∫ t

0

sN−1a(s)f(u(s))ds
)
dt, r ≥ 0. (2.3)

Note that solutions in C[0,∞) to problem (2.3) are solutions in C1[0,∞) to problem
(2.1).

Let {um}m≥1 be the sequence of positive continuous functions defined on [0,∞)
by

u0(r) = α,

um(r) = α+
∫ r

0

h−1
1

(
t1−N

∫ t

0

sN−1a(s)f(um−1(s))ds
)
dt, r ≥ 0.

(2.4)

Obviously,

u′m(r) = h−1
1

(
r1−N

∫ r

0

sN−1a(s)f(um−1(s))ds
)
, r > 0, (2.5)

and, for all r ≥ 0 and m ∈ N, um(r) ≥ α, and u0 ≤ u1. Then (A1)–(A3) and
Lemma 2.1 yield u1(r) ≤ u2(r) for all r ≥ 0. Continuing this line of reasoning, we
obtain that the sequence {um} is non-decreasing on [0,∞). Moreover, we obtain
by (A1)–(A3) and Lemma 2.1 that for each r > 0,

u′m(r) = h−1
1

(
r1−N

∫ r

0

sN−1a(s)f(um−1(s))ds
)

≤ h−1
1

(
f(um(r))r1−N

∫ r

0

sN−1a(s)ds
)
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≤ Θ−1
1 (f(um(r)))h−1

1

(
r1−N

∫ r

0

sN−1a(s)ds
)
,

and ∫ um(r)

a

dτ

Θ−1
1 (f(τ))

≤ I1a(r).

Consequently, for an arbitrary R > 0,

H1α(um(r)) ≤ I1a(r) ≤ I1a(R), ∀r ∈ [0, R]. (2.6)

(i) When (A6) holds, we see that

H−1
1α (∞) =∞, um(r) ≤ H−1

1α (I1a(r)) ≤ H−1
1α (I1a(R)), ∀r ∈ [0, R], (2.7)

i.e., the sequence {um} is bounded on [0, R] for an arbitrary R > 0.
It follows from (2.5) that {u′m} is bounded on [0, R]. By the Arzela-Ascoli

theorem, {um} has a subsequence converging uniformly to u on [0, R]. Since {um}
is non-decreasing on [0,∞), we see that {um} itself converges uniformly to u on
[0, R]. By the arbitrariness of R, we see that u is a positive radial solution to
equation (1.1). Moreover, when I1a(∞) <∞, we see by (2.7) that

u(r) ≤ H−1
1α (I1a(∞)), ∀r ≥ 0;

when I1a(∞) =∞, we see by (A2) and Lemma 2.1 that

u(r) ≥ α+ θ−1
1 (f(α))I1a(r), ∀r ≥ 0.

Thus limr→∞ u(r) =∞.
(ii) When (A7) holds, we see by (2.6) that

H1α(um(r)) ≤ I1a(∞) < H1α(∞) <∞. (2.8)

Since H−1
1α is strictly increasing on [0, H1α(∞)), we have

um(r) ≤ H−1
1α (I1a(∞)) <∞, ∀r ≥ 0. (2.9)

The rest of the proof follows from (i).

3. Proof of Theorems 1.8 and 1.9

Let us consider the initial value problem(
rN−1φ1(u′(r))u′(r)

)′ = rN−1a(r)f(v), r > 0,(
rN−1φ2(v′(r))v′(r)

)′ = rN−1b(r)g(u), r > 0,

u(0) = v(0) = α/2, u′(0) = v′(0) = 0,

which is equivalent to

u(r) = α/2 +
∫ r

0

h−1
1

(
t1−N

∫ t

0

sN−1a(s)f(v(s))ds
)
dt, r ≥ 0,

v(r) = α/2 +
∫ r

0

h−1
2

(
t1−N

∫ t

0

sN−1b(s)g(u(s))ds
)
dt, r ≥ 0.

Let {um}m≥1 and {vm}m≥0 be the sequences of positive continuous functions de-
fined on [0,∞) by

v0(r) = α/2,

um(r) = α/2 +
∫ r

0

h−1
1

(
t1−N

∫ t

0

sN−1a(s)f(vm−1(s))ds
)
dt, r ≥ 0,
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vm(r) = α/2 +
∫ r

0

h−1
2

(
t1−N

∫ t

0

sN−1b(s)g(um(s))ds
)
dt, r ≥ 0.

Obviously, for all r ≥ 0 and m ∈ N, um(r) ≥ α/2, vm(r) ≥ α/2 and v0 ≤ v1.
Assumptions (A1)–(A3) and Lemma 2.1 yield u1(r) ≤ u2(r), for all r ≥ 0, then
v1(r) ≤ v2(r), for all r ≥ 0. Continuing this line of reasoning, we obtain that the
sequences {um} and {vm} are increasing on [0,∞). Moreover, by (A1)-(A3) and
Lemma 2.1 that for each r > 0, we obtain

u′m(r) = h−1
1

(
r1−N

∫ r

0

sN−1a(s)f(vm−1(s))ds
)

≤ h−1
1

(
f(vm(r))r1−N

∫ r

0

sN−1a(s)ds
)

≤ Θ−1
1 (f(vm(r)))h−1

1

(
r1−N

∫ r

0

sN−1a(s)ds
)

≤ Θ−1
1 (f(um(r) + vm(r)))(h−1

1 (Λa(r)) + h−1
2 (Λb(r)));

and

v′m(r) = h−1
2

(
r1−N

∫ r

0

sN−1b(s)g(um(s))ds
)

≤ Θ−1
2 (g(um(r)))h−1

2

(
r1−N

∫ r

0

sN−1b(s)ds
)

≤ Θ−1
2 (g(um(r) + vm(r)))

(
h−1

1 (Λa(r)) + h−1
2 (Λb(r))

)
.

Consequently,

u′m(r) + v′m(r) ≤
(
Θ−1

1 (f(vm(r) + um(r)))

+ Θ−1
2 (g(vm(r) + um(r)))

)(
h−1

1 (Λa(r)) + h−1
2 (Λb(r))

)
, r > 0,

and ∫ um(r)+vm(r)

a

dτ

Θ−1
1 (f(τ)) + Θ−1

2 (g(τ))
≤ I1a(r) + I2b(r), r > 0,

H2α(um(r) + vm(r)) ≤ I1a(r) + I2b(r), ∀r ≥ 0.
(3.1)

The remaining proofs are similar to that for Theorems 1.2 and 1.3. Here we omit
their proof.
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