Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 50, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS AND SYSTEMS

ZHIJUN ZHANG

> AbStract. Under simple conditions on f and g, we show that existence of positive radial solutions for the quasilinear elliptic equation $$
\operatorname{div}\left(\phi_{1}(|\nabla u|) \nabla u\right)=a(|x|) f(u) \quad x \in \mathbb{R}^{N}
$$ and for the system $$
\begin{array}{l}\operatorname{div}\left(\phi_{1}(|\nabla u|) \nabla u\right)=a(|x|) f(v) \quad x \in \mathbb{R}^{N} \\ \qquad \operatorname{div}\left(\phi_{2}(|\nabla v|) \nabla v\right)=b(|x|) g(u) \quad x \in \mathbb{R}^{N}\end{array}
$$

1. Introduction

The purpose of this article is to study the existence of positive radial solutions to the quasilinear elliptic equation

$$
\begin{equation*}
\Delta_{\phi_{1}} u:=\operatorname{div}\left(\phi_{1}(|\nabla u|) \nabla u\right)=a(|x|) f(u), \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

and for the system

$$
\begin{align*}
\operatorname{div}\left(\phi_{1}(|\nabla u|) \nabla u\right) & =a(|x|) f(v), & & x \in \mathbb{R}^{N} \\
\operatorname{div}\left(\phi_{2}(|\nabla v|) \nabla v\right) & =b(|x|) g(u), & & x \in \mathbb{R}^{N} \tag{1.2}
\end{align*}
$$

In this article by a solution we mean a solution on the entire domain, as opposed to a local solution. To emphasize this property some authors use entire solution, while others use global solution. We assume the following assumptions:
(A1) $a, b: \mathbb{R}^{N} \rightarrow[0, \infty)$ are continuous;
(A2) $f, g:[0, \infty) \rightarrow[0, \infty)$ are continuous and increasing,
(A3) $\phi_{i} \in C^{1}((0, \infty),(0, \infty))(i=1,2)$ satisfy $\left(t \phi_{i}(t)\right)^{\prime}>0$, for all $t>0$;
(A4) there exist $p_{i}, q_{i}>1$ such that

$$
p_{i} \leq \frac{t \Psi_{i}^{\prime}(t)}{\Psi_{i}(t)} \leq q_{i}, \quad \forall t>0
$$

where $\Psi_{i}(t)=\int_{0}^{t} s \phi_{i}(s) d s, t>0$;
(A5) there exist $k_{i}, l_{i}>0$ such that

$$
k_{i} \leq \frac{t \Psi_{i}^{\prime \prime}(t)}{\Psi_{i}^{\prime}(t)} \leq l_{i}, \quad \forall t>0
$$

[^0]The function ϕ_{1} appears in mathematical models in nonlinear elasticity, plasticity, generalized Newtonian fluids, and in quantum physics, see e.g., Benci, Fortunato and Pisani [8, Cencelj, Repovš and Virk [9, Fuchs and Li [13], Fuchs and Osmolovski [14], Fukagai and Narukawa [15], Rădulescu [28] and [29], Rădulescu and Repovs̆ [30, Repovs̆ 31, Zhang and Yuan 39] and Fukagai and Narukawa [16].

Positive solutions to 1.1 were first considered by Santos, Zhou and Santos [32]. Some classical examples of ϕ_{1}-Laplacian functions are:
(1) when $\phi_{1}(t) \equiv 2, \Psi_{1}(t)=t^{2}, t>0, \Delta_{\phi_{1}} u=\Delta u$ is the Laplacian operator. In this case, $p_{1}=q_{1}=2$ in (A4), and $k_{1}=l_{1}=1$ in (A5);
(2) when $\phi_{1}(t)=p t^{p-2}, \Psi_{1}(t)=t^{p}, t>0, p>1, \Delta_{\phi_{1}} u=\Delta_{p} u$ is the p Laplacian operator. In this case, $p_{1}=q_{1}=p$ in (A4), and $k_{1}=l_{1}=p-1$ in (A5);
(3) when $\phi_{1}(t)=p t^{p-2}+q t^{q-2}, \Psi_{1}(t)=t^{p}+t^{q}, t>0,1<p<q, \Delta_{\phi_{1}} u=$ $\Delta_{p} u+\Delta_{q} u$ is called as the $(p+q)$-Laplacian operator, $p_{1}=p, q_{1}=q$ in (A4), and $k_{1}=p-1, l_{1}=q-1$ in (A5);
(4) when $\phi_{1}(t)=2 p\left(1+t^{2}\right)^{p-1}, \Psi_{1}(t)=\left(1+t^{2}\right)^{p}-1, t>0, p>1 / 2$, $p_{1}=\min \{2,2 p\}, q_{1}=\max \{2,2 p\}$ in $(\mathrm{A} 4)$, and $k_{1}=\min \{1,2 p-1\}$, $l_{1}=\max \{1,2 p-1\}$ in (A5);
(5) when $\phi_{1}(t)=\frac{p\left(\sqrt{1+t^{2}}-1\right)^{p-1}}{\sqrt{1+t^{2}}}, \Psi_{1}(t)=\left(\sqrt{1+t^{2}}-1\right)^{p}, t>0, p>1, p_{1}=p$, $q_{1}=2 p$ in (A4), and $k_{1}=p-1, l_{1}=2 p-1$ in (A5);
(6) when $\phi_{1}(t)=p t^{p-2}(\ln (1+t))^{q}+\frac{q t^{p-1}(\ln (1+t))^{q-1}}{1+t}, \Psi_{1}(t)=t^{p}(\ln (1+t))^{q}$, $t>0, p>1, q>0, p_{1}=p, q_{1}=p+q$ in (A4), and $k_{1}=p-1, l_{1}=p+q-1$ in (A5).
We say that $u \in C^{1}\left(\mathbb{R}^{N}\right)$ is a solution of 1.1) if

$$
\int_{\mathbb{R}^{N}} \phi_{1}(|\nabla u|) \nabla u \nabla \psi d x=-\int_{\mathbb{R}^{N}} a(x) f(u) \psi d x, \quad \forall \psi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

When $\lim _{|x| \rightarrow \infty} u(x)=+\infty$, we say that u is a large solution to equation 1.1).
For convenience, we denote by

$$
\begin{gather*}
h_{i}^{-1} \text { the inverses of } h_{i}(t)=t \phi_{i}(t), \quad t>0 \tag{1.3}\\
I_{i \rho}(\infty):=\lim _{r \rightarrow \infty} I_{i \rho}(r), \quad I_{i \rho}(r):=\int_{0}^{r} h_{i}^{-1}\left(\Lambda_{\rho}(t)\right) d t, \quad r \geq 0 \tag{1.4}
\end{gather*}
$$

where $\rho \in C([0, \infty),[0, \infty))$ and

$$
\begin{gather*}
\Lambda_{\rho}(t):=t^{1-N} \int_{0}^{t} s^{N-1} \rho(s) d s, \quad t>0 \tag{1.5}\\
\theta_{i}(t):=\min \left\{t^{p_{i}}, t^{q_{i}}\right\}, \quad \Theta_{i}(t):=\max \left\{t^{p_{i}}, t^{q_{i}}\right\}, \quad t \geq 0 \tag{1.6}\\
\theta_{i}^{-1}(t):=\min \left\{t^{1 / p_{i}}, t^{1 / q_{i}}\right\}, \quad \Theta_{i}^{-1}(t):=\max \left\{t^{1 / p_{i}}, t^{1 / q_{i}}\right\}, \quad t \geq 0 \tag{1.7}
\end{gather*}
$$

and, for an arbitrary $\alpha>0$ and $t \geq \alpha$,

$$
\begin{gather*}
H_{1 \alpha}(\infty):=\lim _{t \rightarrow \infty} H_{1 \alpha}(t), \quad H_{1 \alpha}(t):=\int_{\alpha}^{t} \frac{d \tau}{\Theta_{1}^{-1}(f(\tau))} \tag{1.8}\\
H_{2 \alpha}(\infty):=\lim _{t \rightarrow \infty} H_{2 \alpha}(t), \quad H_{2 \alpha}(t):=\int_{\alpha}^{t} \frac{d \tau}{\Theta_{1}^{-1}(f(\tau))+\Theta_{2}^{-1}(g(\tau))} . \tag{1.9}
\end{gather*}
$$

We see that for $t>\alpha$,

$$
\begin{gathered}
H_{1 \alpha}^{\prime}(t)=\frac{1}{\Theta_{1}^{-1}(f(t))}>0 \\
H_{2 \alpha}^{\prime}(t)=\frac{1}{\Theta_{1}^{-1}(f(t))+\Theta_{2}^{-1}(g(t))}>0
\end{gathered}
$$

and that $H_{1 \alpha}, H_{2 \alpha}$ have the inverse functions $H_{1 \alpha}^{-1}$ and $H_{2 \alpha}^{-1}$ on $\left[0, H_{1 \alpha}(\infty)\right)$ and $\left[0, H_{2 \alpha}(\infty)\right)$, respectively.

First, let us review the model

$$
\begin{equation*}
\Delta u=a(|x|) f(u), \quad x \in \mathbb{R}^{N} \tag{1.10}
\end{equation*}
$$

For $a(x) \equiv 1$ on \mathbb{R}^{N} : when f satisfies (A2), Keller [18] and Osserman [27] supplied a necessary and sufficient condition

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d t}{\sqrt{2 F(t)}}=\infty, \quad F(t)=\int_{0}^{t} f(s) d s \tag{1.11}
\end{equation*}
$$

for the existence of positive radial large solutions to 1.10.
For $N \geq 3, f(u)=u^{\gamma}, \gamma \in(0,1]$, and a satisfies (A1) with $a(x)=a(|x|)$, Lair and Wood 19 first showed that equation 1.10 has infinitely many positive radial large solutions if and only if

$$
\begin{equation*}
\int_{0}^{\infty} r a(r) d r=\infty \tag{1.12}
\end{equation*}
$$

The above results have been extended by many authors and in many contexts, see, for instance, [2, 4, 5, 11, 12, 20, 23, 33, 35, 36] and the references therein.

Next we review the system

$$
\begin{align*}
& \Delta u=a(x) f(v), x \in \mathbb{R}^{N} \\
& \Delta v=b(x) g(u), \tag{1.13}\\
& x \in \mathbb{R}^{N}
\end{align*}
$$

When $N \geq 3, f(v)=v^{\gamma_{1}}, g(u)=u^{\gamma_{2}}, 0<\gamma_{1} \leq \gamma_{2}$, and $a(x)=a(|x|), b(x)=b(|x|)$, Lair and Wood [21] have considered the existence and nonexistence of positive radial solutions to system (1.13). For further results, see for instance, [1, 3, 6, 7, 10, 17, 24, 25, 26, 34, 37, 38 and the references therein.

Now we return to equation 1.1). Recently, Santos, Zhou and Santos [32] considered the existence of positive radial and nonradial large solutions to equation

$$
\operatorname{div}\left(\phi_{1}(|\nabla u|) \nabla u\right)=a(x) f(u), \quad x \in \mathbb{R}^{N}
$$

A basic result read as follows.
Lemma 1.1 ([32, Corollary 1.2]). Let (A3)-(A5) hold, f satisfy (A2), and a satisfy (A1) with $a(x)=a(|x|)$ for $x \in \mathbb{R}^{N}$. If

$$
I_{1 a}(\infty)=\infty
$$

then (1.1) admits a sequence of symmetric radial large solutions $u_{m}(|x|) \in C^{1}\left(\mathbb{R}^{N}\right)$ with $u_{m}(0) \rightarrow \infty$ as $m \rightarrow \infty$ if and only if f satisfies

$$
\int_{1}^{\infty} \frac{d t}{\Psi_{1}^{-1}(F(t))}=\infty
$$

where Ψ_{1}^{-1} is the inverse of Ψ_{1} which is given in (A4).

Inspired by the above works, by using a monotone iterative method and ArzelaAscoli theorem, we show existence of positive radial solutions to equation 1.1) and system (1.2) under simple conditions on f and g. Our main results for equation (1.1) read as follows.

Theorem 1.2. Let (A1)-(A5) hold. If
(A6) $H_{1 \alpha}(\infty)=\infty$,
then 1.1 has a positive radial solution $u \in C^{1}\left(\mathbb{R}^{N}\right)$. Moreover, if $I_{1 a}(\infty)<\infty$, then u is bounded, and $\lim _{r \rightarrow \infty} u(r)=\infty$ provided $I_{1 a}(\infty)=\infty$.
Theorem 1.3. Under assumptions (A1)-(A5) and
(A7) $I_{1 a}(\infty)<H_{1 \alpha}(\infty)<\infty$,
equation 1.1 has a positive radial bounded solution $u \in C^{1}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\alpha+\theta_{1}^{-1}(f(\alpha)) I_{1 a}(r) \leq u(r) \leq H_{1 \alpha}^{-1}\left(I_{1 a}(r)\right), \quad \forall r \geq 0
$$

where θ_{1}^{-1} is given in 1.7).
Remark 1.4. When $\int_{0}^{1} \frac{d \tau}{\Theta_{1}^{-1}(f(\tau))}=\infty$, there exists $\alpha>0$ sufficiently small such that (A7) holds provided $I_{1 a}(\infty)<\infty$ and $H_{1 \alpha}(\infty)<\infty$.
Remark 1.5. For $f(s)=s^{\gamma_{1}}$ with $s \geq 0, \gamma_{1}>0$, since $\Theta_{1}^{-1}(t)=\frac{1}{p_{1}}, t \geq 1$, one can see that when $\gamma_{1}>p_{1}, H_{1 \alpha}(\infty)<\infty$, and $H_{1 \alpha}(\infty)=\infty$ provided $\gamma_{1} \leq p_{1}$, where p_{1} is given as in (A4).
Remark 1.6. For $f(s)=(1+s)^{\gamma_{1}}(\ln (1+s))^{\mu_{1}}$ with $s \geq 0, \mu_{1}, \gamma_{1}>0$, one can see that when $\gamma_{1}>p_{1}$ or $\gamma_{1}=p_{1}$ and $\mu_{1}>p_{1}, H_{1 \alpha}(\infty)<\infty$, and $H_{1 \alpha}(\infty)=\infty$ provided $\gamma_{1}<p_{1}$ or $\gamma_{1}=p_{1}$ and $\mu_{1} \leq p_{1}$.
Remark 1.7. For $f(s)=\exp \left(c_{1} s\right), s \geq 0, c_{1}>0$, one can see that $H_{1 \alpha}(\infty)<\infty$.
Our main results for system $\sqrt[1.2]{ }$ are as follows.
Theorem 1.8. Let (A1)-(A5) hold. If
(A8) $H_{2 \alpha}(\infty)=\infty$,
then 1.2 has a positive radial solution (u, v) in $C^{1}\left(\mathbb{R}^{N}\right) \times C^{1}\left(\mathbb{R}^{N}\right)$. Moreover, when $\overline{I_{1 a}}(\infty)+I_{2 b}(\infty)<\infty$, u and v are bounded; when $I_{a}(\infty)=I_{b}(\infty)=\infty$, $\lim _{r \rightarrow \infty} u(r)=\lim _{r \rightarrow \infty} v(r)=\infty$.
Theorem 1.9. Under hypotheses (A1)-(A5) and

$$
\begin{equation*}
I_{1 a}(\infty)+I_{2 b}(\infty)<H_{2 \alpha}(\infty)<\infty \tag{A9}
\end{equation*}
$$

system 1.2 has a positive radial bounded solution (u, v) in $C^{1}\left(\mathbb{R}^{N}\right) \times C^{1}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\begin{aligned}
& \alpha / 2+\theta_{1}^{-1}(f(\alpha / 2)) I_{1 a}(r) \leq u(r) \leq H_{2 \alpha}^{-1}\left(I_{1 a}(r)+I_{2 b}(r)\right), \forall r \geq 0 \\
& \alpha / 2+\theta_{2}^{-1}(g(\alpha / 2)) I_{2 b}(r) \leq v(r) \leq H_{2 \alpha}^{-1}\left(I_{1 a}(r)+I_{2 b}(r)\right), \quad \forall r \geq 0
\end{aligned}
$$

Remark 1.10. By a similar proof, we can see extend Theorems 1.8 and 1.9 to the more general system

$$
\begin{align*}
\operatorname{div}\left(\phi_{1}(|\nabla u|) \nabla u\right) & =a(|x|) f_{1}(v) f_{2}(u),
\end{align*} \quad x \in \mathbb{R}^{N},
$$

where $f_{i}, g_{i}(i=1,2)$ satisfy (A2).

Remark 1.11. For $f(s)=s^{\gamma_{1}}, g(s)=s^{\gamma_{2}}, s \geq 0, \gamma_{1}, \gamma_{2}>0$, when $\gamma_{1}>p_{1}$ or $\gamma_{2}>p_{2}, H_{2 \alpha}(\infty)<\infty$, and $H_{2 \alpha}(\infty)=\infty$ provided $\gamma_{1} \leq p_{1}$ and $\gamma_{2} \leq p_{2}$, where p_{1} and p_{2} are given as in (A4).
Remark 1.12. For $f(s)=(1+s)^{\gamma_{1}}(\ln (1+s))^{\mu_{1}}, g(s)=(1+s)^{\gamma_{2}}(\ln (1+s))^{\mu_{2}}$, $s \geq 0, \gamma_{i}, \mu_{i}>0(i=1,2)$, when $\gamma_{1}>p_{1}$ or $\gamma_{2}>p_{2}$; or $\gamma_{1}=p_{1}$ and $\eta_{1}>p_{1}$; or $\gamma_{2}=p_{2}$ and $\eta_{2}>p_{2}, H_{2 \alpha}(\infty)<\infty$, and $H_{2 \alpha}(\infty)=\infty$ provided $\gamma_{1}<p_{1}$ and $\gamma_{2}<p_{2}$; or $\gamma_{1}=p_{1}, \eta_{1} \leq p_{1}$ and $\gamma_{2}=p_{2}, \eta_{2} \leq p_{2}$.
Remark 1.13. For $f(s)=\exp \left(c_{1} s\right)$ or $g(s)=\exp \left(c_{2} s\right), s \geq 0, c_{1}, c_{2}>0$, one can see that $H_{2 \alpha}(\infty)<\infty$.

2. Proof of Theorems 1.2 and 1.3

Lemma 2.1 (32, Lemma 2.2]). Let (A3)-(A5) hold, θ_{i}, Θ_{i} and $\theta_{i}^{-1}, \Theta_{i}^{-1} \quad(i=1,2)$ be given as in 1.6 and 1.7). We have
(i) $\theta_{i}, \Theta_{i}, \theta_{i}^{-1}$ and Θ_{i}^{-1} are strictly increasing on $(0, \infty)$;
(ii) $\theta_{i}^{-1}(\beta) h_{i}^{-1}(t) \leq h_{i}^{-1}(\beta t) \leq \Theta_{i}^{-1}(\beta) h_{i}^{-1}(t)$, for all $\beta, t>0$.

Let us consider the initial value problem

$$
\begin{gather*}
\left(r^{N-1} \phi_{1}\left(u^{\prime}(r)\right) u^{\prime}(r)\right)^{\prime}=r^{N-1} a(r) f(u), \quad r>0, \tag{2.1}\\
u(0)=\alpha, \quad u^{\prime}(0)=0
\end{gather*}
$$

by a simple calculation,

$$
\begin{equation*}
u^{\prime}(r)=h_{1}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} a(s) f(u(s)) d s\right), \quad r>0, \quad u(0)=\alpha \tag{2.2}
\end{equation*}
$$

and thus

$$
\begin{equation*}
u(r)=\alpha+\int_{0}^{r} h_{1}^{-1}\left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) f(u(s)) d s\right) d t, \quad r \geq 0 \tag{2.3}
\end{equation*}
$$

Note that solutions in $C[0, \infty)$ to problem (2.3) are solutions in $C^{1}[0, \infty)$ to problem (2.1).

Let $\left\{u_{m}\right\}_{m \geq 1}$ be the sequence of positive continuous functions defined on $[0, \infty)$ by

$$
\begin{gather*}
u_{0}(r)=\alpha \\
u_{m}(r)=\alpha+\int_{0}^{r} h_{1}^{-1}\left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) f\left(u_{m-1}(s)\right) d s\right) d t, \quad r \geq 0 \tag{2.4}
\end{gather*}
$$

Obviously,

$$
\begin{equation*}
u_{m}^{\prime}(r)=h_{1}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} a(s) f\left(u_{m-1}(s)\right) d s\right), \quad r>0 \tag{2.5}
\end{equation*}
$$

and, for all $r \geq 0$ and $m \in \mathbb{N}, u_{m}(r) \geq \alpha$, and $u_{0} \leq u_{1}$. Then (A1)-(A3) and Lemma 2.1 yield $u_{1}(r) \leq u_{2}(r)$ for all $r \geq 0$. Continuing this line of reasoning, we obtain that the sequence $\left\{u_{m}\right\}$ is non-decreasing on $[0, \infty)$. Moreover, we obtain by (A1)-(A3) and Lemma 2.1 that for each $r>0$,

$$
\begin{aligned}
u_{m}^{\prime}(r) & =h_{1}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} a(s) f\left(u_{m-1}(s)\right) d s\right) \\
& \leq h_{1}^{-1}\left(f\left(u_{m}(r)\right) r^{1-N} \int_{0}^{r} s^{N-1} a(s) d s\right)
\end{aligned}
$$

$$
\leq \Theta_{1}^{-1}\left(f\left(u_{m}(r)\right)\right) h_{1}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} a(s) d s\right)
$$

and

$$
\int_{a}^{u_{m}(r)} \frac{d \tau}{\Theta_{1}^{-1}(f(\tau))} \leq I_{1 a}(r)
$$

Consequently, for an arbitrary $R>0$,

$$
\begin{equation*}
H_{1 \alpha}\left(u_{m}(r)\right) \leq I_{1 a}(r) \leq I_{1 a}(R), \quad \forall r \in[0, R] \tag{2.6}
\end{equation*}
$$

(i) When (A6) holds, we see that

$$
\begin{equation*}
H_{1 \alpha}^{-1}(\infty)=\infty, \quad u_{m}(r) \leq H_{1 \alpha}^{-1}\left(I_{1 a}(r)\right) \leq H_{1 \alpha}^{-1}\left(I_{1 a}(R)\right), \quad \forall r \in[0, R] \tag{2.7}
\end{equation*}
$$

i.e., the sequence $\left\{u_{m}\right\}$ is bounded on $[0, R]$ for an arbitrary $R>0$.

It follows from 2.5 that $\left\{u_{m}^{\prime}\right\}$ is bounded on $[0, R]$. By the Arzela-Ascoli theorem, $\left\{u_{m}\right\}$ has a subsequence converging uniformly to u on $[0, R]$. Since $\left\{u_{m}\right\}$ is non-decreasing on $[0, \infty)$, we see that $\left\{u_{m}\right\}$ itself converges uniformly to u on $[0, R]$. By the arbitrariness of R, we see that u is a positive radial solution to equation 1.1. Moreover, when $I_{1 a}(\infty)<\infty$, we see by (2.7) that

$$
u(r) \leq H_{1 \alpha}^{-1}\left(I_{1 a}(\infty)\right), \quad \forall r \geq 0
$$

when $I_{1 a}(\infty)=\infty$, we see by (A2) and Lemma 2.1 that

$$
u(r) \geq \alpha+\theta_{1}^{-1}(f(\alpha)) I_{1 a}(r), \quad \forall r \geq 0
$$

Thus $\lim _{r \rightarrow \infty} u(r)=\infty$.
(ii) When (A7) holds, we see by (2.6) that

$$
\begin{equation*}
H_{1 \alpha}\left(u_{m}(r)\right) \leq I_{1 a}(\infty)<H_{1 \alpha}(\infty)<\infty \tag{2.8}
\end{equation*}
$$

Since $H_{1 \alpha}^{-1}$ is strictly increasing on $\left[0, H_{1 \alpha}(\infty)\right)$, we have

$$
\begin{equation*}
u_{m}(r) \leq H_{1 \alpha}^{-1}\left(I_{1 a}(\infty)\right)<\infty, \quad \forall r \geq 0 \tag{2.9}
\end{equation*}
$$

The rest of the proof follows from (i).

3. Proof of Theorems 1.8 and 1.9

Let us consider the initial value problem

$$
\begin{gathered}
\left(r^{N-1} \phi_{1}\left(u^{\prime}(r)\right) u^{\prime}(r)\right)^{\prime}=r^{N-1} a(r) f(v), \quad r>0, \\
\left(r^{N-1} \phi_{2}\left(v^{\prime}(r)\right) v^{\prime}(r)\right)^{\prime}=r^{N-1} b(r) g(u), \quad r>0, \\
u(0)=v(0)=\alpha / 2, \quad u^{\prime}(0)=v^{\prime}(0)=0,
\end{gathered}
$$

which is equivalent to

$$
\begin{aligned}
& u(r)=\alpha / 2+\int_{0}^{r} h_{1}^{-1}\left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) f(v(s)) d s\right) d t, \quad r \geq 0 \\
& v(r)=\alpha / 2+\int_{0}^{r} h_{2}^{-1}\left(t^{1-N} \int_{0}^{t} s^{N-1} b(s) g(u(s)) d s\right) d t, \quad r \geq 0
\end{aligned}
$$

Let $\left\{u_{m}\right\}_{m \geq 1}$ and $\left\{v_{m}\right\}_{m \geq 0}$ be the sequences of positive continuous functions defined on $[0, \infty)$ by

$$
\begin{gathered}
v_{0}(r)=\alpha / 2 \\
u_{m}(r)=\alpha / 2+\int_{0}^{r} h_{1}^{-1}\left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) f\left(v_{m-1}(s)\right) d s\right) d t, \quad r \geq 0
\end{gathered}
$$

$$
v_{m}(r)=\alpha / 2+\int_{0}^{r} h_{2}^{-1}\left(t^{1-N} \int_{0}^{t} s^{N-1} b(s) g\left(u_{m}(s)\right) d s\right) d t, \quad r \geq 0
$$

Obviously, for all $r \geq 0$ and $m \in \mathbb{N}, u_{m}(r) \geq \alpha / 2, v_{m}(r) \geq \alpha / 2$ and $v_{0} \leq v_{1}$. Assumptions (A1)-(A3) and Lemma 2.1 yield $u_{1}(r) \leq u_{2}(r)$, for all $r \geq 0$, then $v_{1}(r) \leq v_{2}(r)$, for all $r \geq 0$. Continuing this line of reasoning, we obtain that the sequences $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ are increasing on $[0, \infty)$. Moreover, by (A1)-(A3) and Lemma 2.1 that for each $r>0$, we obtain

$$
\begin{aligned}
u_{m}^{\prime}(r) & =h_{1}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} a(s) f\left(v_{m-1}(s)\right) d s\right) \\
& \leq h_{1}^{-1}\left(f\left(v_{m}(r)\right) r^{1-N} \int_{0}^{r} s^{N-1} a(s) d s\right) \\
& \leq \Theta_{1}^{-1}\left(f\left(v_{m}(r)\right)\right) h_{1}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} a(s) d s\right) \\
& \leq \Theta_{1}^{-1}\left(f\left(u_{m}(r)+v_{m}(r)\right)\right)\left(h_{1}^{-1}\left(\Lambda_{a}(r)\right)+h_{2}^{-1}\left(\Lambda_{b}(r)\right)\right) ;
\end{aligned}
$$

and

$$
\begin{aligned}
v_{m}^{\prime}(r) & =h_{2}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} b(s) g\left(u_{m}(s)\right) d s\right) \\
& \leq \Theta_{2}^{-1}\left(g\left(u_{m}(r)\right)\right) h_{2}^{-1}\left(r^{1-N} \int_{0}^{r} s^{N-1} b(s) d s\right) \\
& \leq \Theta_{2}^{-1}\left(g\left(u_{m}(r)+v_{m}(r)\right)\right)\left(h_{1}^{-1}\left(\Lambda_{a}(r)\right)+h_{2}^{-1}\left(\Lambda_{b}(r)\right)\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
u_{m}^{\prime}(r)+v_{m}^{\prime}(r) \leq & \left(\Theta_{1}^{-1}\left(f\left(v_{m}(r)+u_{m}(r)\right)\right)\right. \\
& \left.+\Theta_{2}^{-1}\left(g\left(v_{m}(r)+u_{m}(r)\right)\right)\right)\left(h_{1}^{-1}\left(\Lambda_{a}(r)\right)+h_{2}^{-1}\left(\Lambda_{b}(r)\right)\right), \quad r>0
\end{aligned}
$$

and

$$
\begin{gather*}
\int_{a}^{u_{m}(r)+v_{m}(r)} \frac{d \tau}{\Theta_{1}^{-1}(f(\tau))+\Theta_{2}^{-1}(g(\tau))} \leq I_{1 a}(r)+I_{2 b}(r), \quad r>0 \tag{3.1}\\
H_{2 \alpha}\left(u_{m}(r)+v_{m}(r)\right) \leq I_{1 a}(r)+I_{2 b}(r), \quad \forall r \geq 0
\end{gather*}
$$

The remaining proofs are similar to that for Theorems 1.2 and 1.3 . Here we omit their proof.

Acknowledgment. This work is supported in part by NSF of China under grant 11571295.

References

[1] R. Alsaedi, H. Mâagli, V. Rădulescu, N. Zeddini; Positive bounded solutions for semilinear elliptic systems with indefinite weights in the half-space, Electronic J. Diff. Equations 2015 (2015), No. 177, 1-8.
[2] I. Bachar, N. Zeddini; On the existence of positive solutions for a class of semilinear elliptic equations, Nonlinear Anal. 52 (2003), 1239-1247.
[3] S. Barile, A. Salvatore; Existence and multiplicity results for some Lane-Emden elliptic systems: subquadratic case, Adv. Nonlinear Anal. 4 (2015), 25-35.
[4] N. Belhaj Rhouma, A. Drissi, W. Sayeb; Nonradial large solutions for a class of nonlinear problems, Complex Var. Elliptic Equations 59 (5) (2014), 706-722.
[5] N. Belhaj Rhouma, A. Drissi; Large and entire large solutions for a class of nonlinear problems, Appl. Math. Comput. 232 (2014), 272-284.
[6] A. Ben Dkhil, N. Zeddini; Bounded and large radially symmetric solutions for some (p, q) Laplacian stationary systems, Electronic J. Diff. Equations 2012 (2012), No. 71, 1-9.
[7] A. Ben Dkhil; Positive solutions for nonlinear elliptic systems, Electronic J. Diff. Equations 2012 (2012), No. 239, 1-10.
[8] V. Benci, D. Fortunato, L. Pisani; Solitons like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys. 10 (1998), 315-344.
[9] M. Cencelj, D. Repovš, Z. Virk; Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal. 119 (2015), 37-45.
[10] F. Cîrstea, V. Rădulescu; Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl. 81 (2002), 827-846.
[11] L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault; Entire large solutions for semilinear elliptic equations, J. Diff. Equations 253 (2012), 2224-2251.
[12] K. El Mabrouk, W. Hansen; Nonradial large solutions of sublinear elliptic problems, J. Math. Anal. Appl. 330 (2007), 1025-1041.
[13] M. Fuchs, G. Li; Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal. 3 (1998), 41-64.
[14] M. Fuchs, V. Osmolovski; Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwendungen 17 (1998), 393-415.
[15] N. Fukagai, K. Narukawa; Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J. 25 (1995), 19-41.
[16] N. Fukagai, K. Narukawa; On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Mat. Pura Appl. 4 (2007), 539-564.
[17] A. Ghanmi, H. Mâagli, V. Rădulescu, N. Zeddini; Large and bounded solutions for a class of nonlinear Schrödinger stationary systems, Analysis and Applications 7(4) (2009), 1-14.
[18] J. B. Keller; On solutions of $\Delta u=f(u)$, Commun. Pure Appl. Math. 10 (1957), 503-510.
[19] A. V. Lair, A. W. Wood; Large solutions of semilinear elliptic problems, Nonlinear Anal. 37 (1999), 805-812.
[20] A. V. Lair, A. W. Wood; Large solutions of sublinear elliptic equations, Nonlinear Anal. 39 (2000), 745-753.
[21] A. V. Lair, A. W. Wood; Existence of entire large positive solutions of semilnear elliptic systems, J. Diff. Equations 164 (2000), 380-394.
[22] A. V. Lair; Nonradial large solutions of sublinear elliptic equations, Appl. Anal. 82 (2003), 431-437.
[23] A. V. Lair; Large solutions of semilinear elliptic equations under the Keller-Osserman condition, J. Math. Anal. Appl. 328 (2007), 1247-1254.
[24] A. V. Lair; A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems, J. Math. Anal. Appl. 365 (2010), 103-108.
[25] A. V. Lair; Entire large solutions to semilinear elliptic systems, J. Math. Anal. Appl. 382 (2011), 324-333.
[26] H. Li, P. Zhang, Z. Zhang; A remark on the existence of entire positive solutions for a class of semilinear elliptic systems, J. Math. Anal. Appl. 365 (2010), 338-341.
[27] R. Osserman; On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7 (1957), 1641-1647.
[28] V. Rădulescu; Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, vol. 6, Hindawi Publ. Corp., 2008.
[29] V. Rădulescu; Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336-369.
[30] V. Rădulescu, D. Repovš; Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor and Francis Group, Boca Raton FL, 2015.
[31] D. Repovš; Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. 13 (2015), 645-661.
[32] C. A. Santos, J. Zhou, J. A. Santos; Necessary and sufficient conditions for existence of blowup solutions for elliptic problems in Orlicz-Sobolev spaces, arXiv preprint arXiv:1601.01267, 2016.
[33] S. Tao, Z. Zhang; On the existence of explosive solutions for a class of semilinear elliptic problems, Nonlinear Anal. 48 (2002), 1043-1050.
[34] X. Wang, A. W. Wood; Existence and nonexistence of entire positive solutions of semilinear elliptic systems, J. Math. Anal. Appl. 267 (2002), 361-362.
[35] H. Yang; On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in \mathbb{R}^{N}, Comm. Pure Appl. Anal. 4 (2005), 197-208.
[36] D. Ye, F. Zhou; Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dyn. Syst. 12 (3) (2005), 413-424.
[37] Z. Zhang; Existence of entire positive solutions for a class of semilinear elliptic systems, Electronic J. Diff. Equations 2010 (2010), No. 16, 1-5.
[38] Z. Zhang, Y. Shi, Y. Xue; Existence of entire solutions for semilinear elliptic systems under the Keller-Osserman condition, Electronic J. Diff. Equations 2011 (2011), No. 39, 1-9.
[39] Zhitao Zhang, R. Yuan; Infinitely-many solutions for subquadratic fractional Hamiltonian systems with potential changing sign, Adv. Nonlinear Anal. 4 (2015), 59-72.

Zhijun Zhang
School of Mathematics and Information Science, Yantai University, Yantai 264005, Shandong, China

E-mail address: chinazjzhang2002@163.com, zhangzj@ytu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 35J55, 35J60, 35J65.
 Key words and phrases. Quasilinear elliptic equation; radial solutions; existence. (c) 2016 Texas State University.

 Submitted November 23, 2015. Published February 17, 2016.

