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APPROXIMATE CONTROLLABILITY OF NEUTRAL
STOCHASTIC INTEGRO-DIFFERENTIAL SYSTEMS WITH

IMPULSIVE EFFECTS

MEILI LI, XIANG LI

Abstract. This paper studies the approximate controllability of neutral sto-
chastic integro-differential systems with impulsive effects. Sufficient conditions

are formulated and proved for the approximate controllability. The results are

obtained by using the Nussbaum fixed point theorem and the theory of ana-
lytic resolvent operator. An example is given to show the applications of the

proposed results.

1. Introduction

In this article, we study the approximate controllability of the following neutral
stochastic integro-differential systems with impulsive effects

d[x(t) + F (t, xt)] = [−Ax(t) +
∫ t

0

γ(t− s)x(s) ds+Bu(t)]dt+G(t, xt)dw(t),

t ∈ J, t 6= tk,

∆x(t) = Ik(x(t−)), t = tk, k = 1, 2, 3, . . . ,m,

x0 = φ ∈ L2(Ω, Cα), t ∈ [−r, 0],
(1.1)

where J = [0, T ], φ is F0-measurable and the linear operator −A generates an
analytic semigroup on a separable Hilbert space H with inner product 〈·, ·〉 and
norm ‖ · ‖. u(·) ∈ LFt

2 (J, U) is the control function where U is a Hilbert space. γ(·)
is a family of closed linear operators to be specified later. B is a bounded linear
operator from U into H. Define the Banach space D(Aα) with the norm ‖x‖α =
‖Aαx‖ for x ∈ D(Aα), where D(Aα) denotes the domain of the fractional power
operator Aα : H → H. Let Hα := D(Aα) and Cα = C([−r, 0], Hα) be the space
of all continuous functions from [−r, 0] into Hα. Define K be an another separable
Hilbert space. Suppose w(t) is a given K-valued wiener process with a finite trace
nuclear covariance operator Q ≥ 0. F : J ×Cα → Hα, G : J ×Cα → L0

2(K,H) and
Ik : H → H, where L0

2(K,H) is the space of all Q-Hilbert-Schmidt operators from
K into H. The collection of all strongly measurable, square integrable, Cα-valued
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random variables denoted by L2(Ω, Cα). The histories xt : Ω → Cα, t ∈ J , which
are defined by setting xt(θ) = x(t+ θ), θ ∈ [−r, 0]. ∆x(t) denotes the jump of x at
t, ∆x(t) = x(t+)− x(t−) = x(t+)− x(t).

The concept of controllability is an important part of mathematical control the-
ory. Generally speaking, controllability means that it is possible to steer a dynami-
cal control system from an arbitrary initial state to an arbitrary final state using the
set of admissible controls. Controllability problems for different kinds of dynamical
systems have been studied by several authors, see [4, 8, 9, 15, 18, 19].

Dauer and Mahmudov [4] established sufficient conditions for the controllability
of stochastic semi-linear functional differential equations in Hilbert spaces under
the assumption that the associated linear part of systems is approximately control-
lable. They obtained the results by using the Banach fixed point theorem and the
fractional power theory. Sakthivel et al [18] considered the approximate control-
lability issue for nonlinear impulsive differential and neutral functional differential
equations in Hilbert spaces. Finally, they applied their results to a control system
governed by a heat equation with impulses.

In [19], the authors studied the approximate controllability of stochastic impul-
sive functional system with infinite delay in abstract space. They obtained some
sufficient conditions with no compactness requirement imposed on the semigroup
generated by the linear part of the system by using the contraction mapping prin-
ciple. Then they dropped the restriction of the combination of system parameters
with the help of the Nussbaum fixed point theorem.

The theory of integro-differential systems has recently become an important
area of investigation, stimulated by their numerous applications to problems from
electronics, fluid dynamics, biological models. In many cases, deterministic models
often fluctuate due to noise, which is random or at least to be so. So, we have to
move from deterministic problems to stochastic ones.

Balachandran et al [1] derived sufficient conditions for the controllability of sto-
chastic integro-differential systems in finite dimensional spaces. Muthukumar and
Balasubramaniam [11] investigated the appromimate controllability of mixed sto-
chastic Volterra-Fredholm type integro-differential in Hilbert space by employing
the Banach fixed point theorem.

In recent years, the study of impulsive integro-differential systems has received
increasing interest, since dynamical systems involving impulsive effects occur in nu-
merous applications: the radiation of electromagnetic waves, population dynamics,
biological systems, etc. Subalakshmi and Balachandran [21] studied the approxi-
mate controllability properties of nonlinear stochastic impulsive integro-differential
and neutral stochastic impulsive integro-differential equations in Hilbert spaces un-
der the assumption that the associated linear part of system is approximately con-
trollable. Moreover, Shen et al. [20] obtained the complete controllability of impul-
sive stochastic integro-differential systems by using Schaefer’s fixed point theorem.

Recently, Mokkedem and Fu [12] studied the approximate controllability of the
following semi-linear neutral integro-differential equations with finite delay

d

dt
[x(t) + F (t, xt)] = −Ax(t) +

∫ t

0

γ(t− s)x(s) ds+Bu(t) +G(t, xt), t ∈ J,

x0 = φ, t ∈ [−r, 0]. (1.2)
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They assumed that the linear control system corresponding to system (1.2)

d

dt
x(t) = −Ax(t) +

∫ t

0

γ(t− s)x(s) ds+Bu(t), t ∈ J,

x(t) = φ(t), t ∈ [−r, 0],
(1.3)

is approximately controllable on J . With the help of the theory of analytic re-
solvent operator, the authors defined the mild solution of system (1.2), then they
used the Sadovskii fixed point theorem and the fractional power operator theorem
to prove the existence of solution. Then the authors obtained the approximate
controllability of semi-linear neutral integro-differential systems with finite delay in
Hilbert space. However, the authors did not consider the stochastic and impulsive
effects. Very recently, Yan and Lu [22] studied the approximate controllability of
a class of impulsive partial stochastic functional integro-differential inclusions with
infinite delay in Hilbert spaces of the form

d[x(t)−G(t, xt)] ∈ A[x(t) +
∫ t

0

h(t− s)x(s)ds]dt+Bu(t)dt+ F (t, xt)dw(t),

t ∈ J = [0, b], t 6= tk, k = 1, 2, . . . ,m,

x0 = ϕ ∈ B, (1.4)

∆x(tk) = Ik(xtk), k = 1, 2, . . . ,m.

They achieved the approximate controllability result for (1.4) by imposing com-
pactness assumption on the resolvent operator Φ(t), they also assumed that the
corresponding linear system of (1.4) is approximately controllable.

The aim of the present work is to study the approximate controllability for
the system (1.1) with the aid of the resolvent operator theory and the fractional
power theory. The resolvent operator is similar to the semigroup operator for
abstract differential equations in Banach spaces. However, the resolvent operator
does not satisfy semigroup properties. In many practical models the nonlinear
terms involve frequently spacial derivatives, in this case, we can not discuss the
problem on the whole space H because the history variables of the functions F
and G are only defined on C([−r, 0];Hα). In order to study the controllability for
system (1.1), we first apply the theory of fractional power operator and α-norm.
We also suppose that (−A,D(−A)) generates a compact analytic semigroup on H
so that the resolvent operator Φ(t) is analytic. We point out here that we do not
require that the resolvent operator be compact which differs greatly from that in
[22]. Then with the help of the Nussbaum fixed theorem, some sufficient conditions
will be obtained.

This article is organized as follows. In section 2, we give the preliminaries for
the paper. In section 3, we consider the existence of mild solutions of system (1.1)
and provide the main result. In section 4, an example is given to illustrate the
applications of the approximate controllability results.

2. Preliminaries

In this article, the operator −A is the infinitesimal generator of a compact an-
alytic semigroup (S(t))t≥0. Hα is the space (D(Aα), ‖ · ‖α), Hα ⊂ H. For each
0 < α ≤ 1, Hα is a Banach space, Hα → Hβ for 0 < β < α ≤ 1 and the embedding
is compact whenever the resolvent operator of A is compact. £(Hα;Hβ) is the
space of bounded linear operators from Hα into Hβ with norm ‖·‖α,β and H0 = H.
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Let (Ω,F, P ) be a probability space on which an increasing and right continuous
family { Ft : t ≥ 0} of complete sub-σ-algebras of F is defined. The collection
of all square integrable and Ft-adapted processes is denoted by LFt

2 (J,H). Let
βn(t)(n = 1, 2, · · · ) be a sequence of real valued one dimensional standard Brownian
motions mutually independent over (Ω,F, P ). We assume there exists a complete
orthonormal basis {en} in K and a bounded sequence of nonnegative real numbers
λn such that w(t) =

∑∞
n=1

√
λnβn(t)en, t ≥ 0. Let Q ∈ L(K,K) be an operator

defined by Qen = λnen, (n = 1, 2, 3 . . .) with finite trace trQ =
∑∞
n=1 λn < ∞.

Then the above K-valued stochastic process w(t) is called a Q-Wiener process. We
assume that Ft = σ(w(s) : 0 ≤ s ≤ t) is the σ-algebra generated by w and Ft = F.
Let Ψ ∈ L0

2(K,H) with the norm

‖Ψ‖2Q = tr(ΨQΨ∗) =
∞∑
n=1

‖
√
λnΨen‖2.

If ‖Ψ‖Q < ∞, then Ψ is called a Q-Hilbert-Schmidt operator. Define the space of
all F0-measurable Cα-valued function ψ : Ω→ Cα with the norm

E‖ψ‖2Cα = E{ sup
θ∈[−r,0]

‖Aαψ(θ)‖2} <∞.

Let L2(Ω,F, P ;H) be the space of all Ft-measurable square integrable random
variables with value in H. We assume that: PC(J0, L2(Ω,F, P ;H)) = {x(t) :
J0 = [−r, T ] → L2(Ω,F, P ;H) is continuous everywhere except some tk at which
x(t+k ) and x(t−k ) exist with x(tk) = x(t−k ) satisfying sups∈J0E‖x(s)‖2 < ∞}. Let
PC(J0, L2) be the closed subspace of PC(J0, L2(Ω,F, P ;H)) consisting of measur-
able and Ft-adapted processes and F0-adapted processes y ∈ L2(Ω,F0, P ;Cα). Let
‖ · ‖∗ be a seminorm in PC(J0, L2) defined by ‖y‖∗ = (supt∈J E‖yt‖2Cα)1/2 <∞.

Definition 2.1 ([5]). A family of bounded linear operators Φ(t) ∈ £(H) for t ∈ J
is called resolvent operator for

d

dt
x(t) = −Ax(t) +

∫ t

0

γ(t− s)x(s) ds, t ∈ J,

x(0) = x0 ∈ H,
(2.1)

if
(i) Φ(0) = I and ‖Φ(t)‖ ≤ N1e

ωt for some N1 > 0, ω ∈ R.
(ii) For all x ∈ H, Φ(t)x is strongly continuous in t on J .
(iii) Φ(t) ∈ £(Y ), for t ∈ J , where Y is the Banach space formed from D(−A)

endowed with the graph norm. Moreover for x ∈ Y,Φ(·)x ∈ C1(J ;H) ∩
C(J ;Y ) and, for t ≥ 0, the following equality holds

d

dt
Φ(t)x = −AΦ(t)x+

∫ t

0

γ(t− s)Φ(s)x ds = −Φ(t)Ax+
∫ t

0

Φ(t− s)γ(s)x ds.

The hypotheses on the operator A and γ(·) follow from [12, Hypotheses (V1) −
(V3)]. Then, Φ(t) is also analytic and there exist N,Nα > 0 such that ‖Φ(t)‖ ≤ N
and

‖AαΦ(t)‖ ≤ Nα
tα
, 0 < t ≤ T, 0 ≤ α ≤ 1.

Lemma 2.2 ([6]). Φ(t) is continuous for t > 0 in the uniform operator topology of
£(H).
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Lemma 2.3 ([7]). AΦ(t) is continuous for t > 0 in the uniform operator topology
of £(H).

To simplify notation, let AαΦ(t)x = Φ(t)Aαx, for any 0 ≤ α ≤ 1, x ∈ D(Aα).
Now we define the mild solution of (1.1) expressed by the resolvent operator Φ(t).

Definition 2.4. A stochastic process x(·) ∈ PC(J0, L2(Ω,F, P ;H)) is called a mild
solution of (1.1) if the following condition are satisfied:

(1) the initial value φ ∈ L2(Ω, Cα) and the control u(·) ∈ LFt
2 (J, U).

(2) the function AΦ(t− s)F (s, xs), s ∈ J is integrable and on J0 it satisfies

x(t) =


φ(t), t ∈ [−r, 0],
Φ(t)(φ(0) + F (0, φ))− F (t, xt) +

∫ t
0
AΦ(t− s)F (s, xs) ds

+
∫ t

0
Φ(t− s)Bu(s) ds−

∫ t
0

Φ(t− s)
∫ s

0
γ(s− v)F (v, xv) dv ds

+
∫ t

0
Φ(t− s)G(s, xs) dw(s) + Σ0<tk<tΦ(t− tk)Ik(x(tk), t ∈ J.

(2.2)

Definition 2.5. System (1.1) is said to be approximately controllable on J if

R(T ;φ, u) = L2(Ω,F, P ;H),

where R(T ;φ, u) = {x(T ;φ, u), u(·) ∈ LFt
2 (J, U)}.

To discuss the approximate controllability of system (1.1), we introduce the
following operators.

(1) The controllability Grammian ΓTt is defined by

ΓTt =
∫ T

t

Φ(T − s)BB∗Φ∗(T − s) ds,

where Φ∗ denotes the adjoint operator of Φ.
(2) The resolvent operator

R(λ,ΓTt ) = (λI + ΓTt )−1.

At first, we assume

(H0) λR(λ,ΓTt )→ 0, as λ→ 0+ in the strong operator topology.

Note that the deterministic linear system corresponding to (1.1) is approximately
controllable on [t, T ] if and only if (H0) holds , see [13].

We need the Nussbaum fixed-point theorem to prove the existence of mild solu-
tions of system (1.1).

Lemma 2.6 ([16]). Let S be a closed, bounded convex subset of a Banach space
H, and P1, P2 be continuous mappings from S into H such that (P1 + P2)S ⊂
S, ‖P1x−P1y‖ ≤ k‖x− y‖ for all x, y ∈ S, where 0 ≤ k < 1 is a constant, and P2S
is compact, then the operator P1 + P2 has a fixed point in S.

Lemma 2.7 ([14]). For any h ∈ L2(Ω,F, P ;H), there exist ϕ ∈ LFt
2 (J, L0

2(K,H))
such that

h = Eh+
∫ T

0

ϕ(s) dw(s).
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3. Approximate controllability

To study the approximate controllability of system (1.1), we introduce the fol-
lowing hypotheses:

(H1) There exist positive constants M1, d and dk, k = 1, 2, · · ·m, such that

‖B‖ ≤M1, ‖Ik(x)‖ ≤ dk, d =
m∑
k=1

dk.

(H2) For arbitrary β, ξ ∈ Cα, x, y ∈ H and t ∈ J , suppose that there exists
constants d1k, N1 > 0, such that

‖F (t, β)− F (t, ξ)‖2α + ‖G(t, β)−G(t, ξ)‖2Q ≤ N1‖β − ξ‖2Cα ,
‖F (t, ξ)‖2α + ‖G(t, ξ)‖2Q ≤ N1(1 + ‖ξ‖2Cα),

‖Ik(x)− Ik(y)‖2 ≤ d1k‖x− y‖2.
(H3) The function γ(t) ∈ L(Hα, H) for each t ∈ J suppose that there exist a

positive constant M2, such that ‖γ(t)‖α,0 ≤M2.
(H4) The function F : J ×Cα → Hα and G : J ×Cα → L0

2(K,H) are uniformly
bounded for t ∈ J , xt ∈ Cα, there exist a positive constant M3, such that

‖F (t, xt)‖α + ‖G(t, xt)‖Q ≤M3.

For any λ ∈ (0, 1], we define the control function for system (1.1) as:

uλ(t, x) = B∗Φ∗(T − t)R(λ,ΓT0 )[Eh− Φ(T )(φ(0) + F (0, φ)) + F (T, xT )]

−B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )AΦ(T − s)F (s, xs) ds

+B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )Φ(T − s)
∫ s

0

γ(s− v)F (v, xv) dvds

−B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )[Φ(T − s)G(s, xs)− ϕ(s)] dw(s)

−B∗Φ∗(T − t)R(λ,ΓT0 )
∑

0<tk<t

Φ(T − tk)Ik(x(tk)).

and the operator Pλ on PC(J0, L2(Ω,F, P ;H) as follows

(Pλx)(t)

=



φ(t), t ∈ [−r, 0],
Φ(t)(φ(0) + F (0, φ))− F (t, xt) +

∫ t
0
AΦ(t− s)F (s, xs) ds

+
∫ t

0
Φ(t− s)G(s, xs) dw(s)

−
∫ t

0
Φ(t− s)

∫ s
0
γ(s− v)F (v, xv) dv ds

+
∫ t

0
Φ(t− s)Buλ(s, x) ds+

∑
0<tk<t

Φ(t− tk)Ik(x(tk)), t ∈ J.

(3.1)

We can see the fixed point of Pλ is a mild solution of system (1.1). Now, we prove
the following existence theorem.

Theorem 3.1. Let φ ∈ L2(Ω, Cα). If the assumptions (H0)–(H3) are satisfied
then, the operator Pλ has a fixed point provided that

K := 2N1

(
‖A−α‖2 +

N2
1−αT

2α

α2

)
< 1.
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Proof. We prove this theorem by using Lemma 2.6. Put

Yr = {x ∈ PC(J0, L2), ‖x‖∗ ≤ r}.

It is obvious that Yr is a bounded, closed and convex set. We first prove that for
arbitrary 0 < λ ≤ 1, there is a positive constant r0 = r0(λ) such that Pλ(Yr0) ⊂ Yr0 .
For any x ∈ Yr0 , we have

E‖uλ(t, x)‖2

= E‖B∗Φ∗(T − t)R(λ,ΓT0 )[Eh− Φ(T )(φ(0) + F (0, φ)) + F (T, xT )]

−B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )AΦ(T − s)F (s, xs) ds

+B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )Φ(T − s)
∫ s

0

γ(s− v)F (v, xv) dv ds

−B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )[Φ(T − s)G(s, xs)− ϕ(s)] dw(s)

−B∗Φ∗(T − t)R(λ,ΓT0 )
∑

0<tk<t

Φ(T − tk)Ik(x(tk))‖2 (3.2)

≤ 6E‖B∗Φ∗(T − t)R(λ,ΓT0 )[Eh− Φ(T )(φ(0) + F (0, φ))]‖2

+ 6E‖B∗Φ∗(T − t)R(λ,ΓT0 )A−αAαF (T, xT )‖2

+ 6E‖B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )A1−αAαΦ(t− s)F (s, xs) ds‖2

+ 6E‖B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )Φ(T − s)
∫ s

0

γ(s− v)F (v, xv) dvds‖2

+ 6E‖B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )[Φ(T − s)G(s, xs)− ϕ(s)] dw(s)‖2

+ 6E‖B∗Φ∗(T − t)R(λ,ΓT0 )
∑

0<tk<t

Φ(T − tk)Ik(x(tk))‖2

≤ 6M2
1N

2

λ2
E‖Eh−N(φ(0) + F (0, φ))‖2 +

6M2
1N

2

λ2
‖A−α‖2E‖F (T, xT )‖2α

+
6M2

1N
2

λ2

N2
1−αT

2α

α2
E‖F (s, xs)‖2α +

6M2
1N

4M2
2T

2

λ2
E
∫ T

0

‖F (v, xv)‖2α dv

+
12M2

1N
4

λ2
E
∫ T

0

‖G(s, xs)‖2Q ds+
12M2

1N
2

λ2
E
∫ T

0

‖ϕ(s)‖2Q ds+
6M2

1N
4d2

λ2

≤ 6M2
1N

2

λ2
E{‖Eh−N(φ(0) + F (0, φ))‖2 + ‖A−α‖2N1(1 + ‖xs‖2Cα)

+
N2

1−αT
2α

α2
N1(1 + ‖xs‖2Cα) +N2(2 +M2

2T
2)
∫ T

0

N1(1 + ‖xs‖2Cα) ds

+ 2
∫ T

0

‖ϕ(s)‖2Q ds+N2d2}.

Here we employ the assumption (H0) that

‖R(λ,ΓTs )‖ ≤ 1
λ
, λ ∈ (0, 1].
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Similarly, for x, y ∈ PC(J0, L2), we can also obtain

E‖uλ(t, x)− uλ(t, y)‖2

≤ 5E‖B∗Φ∗(T − t)R(λ,ΓT0 )A−αAα[F (T, xT )− F (T, yT )]‖2

+ 5E‖B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )A1−αAαΦ(T − s)[F (s, xs)− F (s, ys)] ds‖2

+ 5E‖B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )Φ(T − s)

×
∫ s

0

γ(s− v)[F (v, xv)− F (v, yv)] dvds‖2

+ 5E‖B∗Φ∗(T − t)
∫ t

0

R(λ,ΓTs )Φ(T − s)[G(s, xs)−G(s, ys)] dw(s)‖2

+ 5E‖B∗Φ∗(T − t)R(λ,ΓT0 )
∑

0<tk<t

Φ(T − tk)[Ik(x(tk))− Ik(y(tk))]‖2

≤ 5M2
1N

2

λ2
‖A−α‖2EN1‖xT − yT ‖2Cα (3.3)

+
5M2

1N
2

λ2

N2
1−αT

2α

α2
EN1‖xs − ys‖2Cα

+
5M2

1N
4M2

2T
2

λ2

∫ T

0

EN1‖xs − ys‖2Cα ds

+
5M2

1N
4

λ2

∫ T

0

EN1‖xs − ys‖2Cα ds

+
5M2

1N
4

λ2

m∑
k=1

d2
1kE‖xtk − ytk‖2

≤ 5M2
1N

2

λ2
{N1[N2T (M2

2T
2 + 1) +

N2
1−αT

2α

α2

+ ‖A−α‖2] +N2
m∑
k=1

d2
1k}‖x− y‖2∗.

Then we have

E‖(Pλx)(t)‖2

= E‖Φ(t)(φ(0) + F (0, φ))− F (t, xt) +
∫ t

0

AΦ(t− s)F (s, xs) ds

+
∫ t

0

Φ(t− s)G(s, xs) dw(s)−
∫ t

0

Φ(t− s)
∫ s

0

γ(s− v)F (v, xv) dv ds

+
∫ t

0

Φ(t− s)Buλ(s) ds+
∑

0<tk<t

Φ(t− tk)Ik(x(tk))‖2

≤ 7E‖Φ(t)(φ(0) + F (0, φ))‖2 + 7E‖A−αAαF (t, xt)‖2

+ 7E‖
∫ t

0

A1−αAαΦ(t− s)F (s, xs) ds‖2 + 7E‖
∫ t

0

Φ(t− s)Buλ(s) ds‖2
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+ 7E‖
∫ t

0

Φ(t− s)
∫ s

0

γ(s− v)F (v, xv) dvds‖2

+ 7E‖
∫ t

0

Φ(t− s)G(s, xs) dw(s)‖2 + 7E‖
∑

0<tk<t

Φ(t− tk)Ik(x(tk))‖2

≤ 7E‖N(φ(0) + F (0, φ))‖2 + 7N1‖A−α‖2(1 + ‖x‖2∗)

+ 7
N2

1−αT
2α

α2
N1(1 + ‖x‖2∗) + 7T 4N2M2

2N1(1 + ‖x‖2∗)

+ 7N2TN1(1 + ‖x‖2∗) + 7N2M2
1TE‖uλ(t, s)‖2 + 7N2d2

≤ 7N1(1 + ‖x‖2∗)(‖A−α‖2 +
N2

1−αT
2α

α2
+ T 4N2M2

2 +N2T )

+ 7E‖N(φ(0) + F (0, φ))‖2 + 7N2M2
1TE‖uλ(t, s)‖2 + 7N2d2.

From (3.2) we can imply that E‖(Pλx)(t)‖2 <∞. So there exist a constant r0 such
that Pλ(Yr0) ∈ Yr0 .

Next we prove that Pλ has a fixed point on Yr0 . To begin, we rewrite Pλ as
Pλ = Pλ1 + Pλ2 , where

(Pλ1 x)(t) =

{
0, t ∈ [−r, 0],
Φ(t)F (0, φ)− F (t, xt) +

∫ t
0
AΦ(t− s)F (s, xs) ds, t ∈ J.

(Pλ2 x)(t)

=


φ(t), t ∈ [−r, 0],
Φ(t)φ(0) +

∫ t
0

Φ(t− s)G(s, xs) dw(s)
−
∫ t

0
Φ(t− s)

∫ s
0
γ(s− v)F (v, xv) dv ds

+
∫ t

0
Φ(t− s)Buλ(s, x) ds+

∑
0<tk<t

Φ(t− tk)Ik(x(tk)), t ∈ J.

To prove that Pλ1 is a contraction, we take x, y ∈ Yr0 , then, for each t ∈ J , we can
verify

E‖(Pλ1 x)(t)− (Pλ1 y)(t)‖2

= E‖A−αAα(F (t, xt)− F (t, yt)) +
∫ t

0

A1−αAαΦ(t− s)(F (t, xs)− F (t, ys)) ds‖2

≤ 2‖A−α‖2N1‖x− y‖2∗ + 2
N2

1−αT
2α

α2
N1‖x− y‖2∗

= 2N1(‖A−α‖2 +
N2

1−αT
2α

α2
)‖x− y‖2∗.

So we have
‖Pλ1 x− Pλ1 y‖2∗ ≤ K‖x− y‖2∗.

So Pλ1 is a contraction mapping on Yr0 .
Next we prove that Pλ2 is continuous on Yr0 . Let {xm(·)} ⊆ Yr0 with xm(·) →

x(·), (m→∞). Then we have

E‖(Pλ2 xm)(t)− (Pλ2 x)(t)‖2

≤ 4E‖
∫ t

0

Φ(t− s)[G(s, xms )−G(s, xs) dw(s)]‖2
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+ 4E‖
∫ t

0

Φ(t− s)
∫ s

0

γ(s− v)[F (v, xmv )− F (v, xv)] dvds‖2

+ 4E‖
∫ t

0

Φ(t− s)B[uλ(s, xm)− uλ(s, x)] ds‖2

+ 4E‖
∑

0<tk<t

Φ(t− tk)[Ik(xm(tk))− Ik(x(tk))]‖2

≤ 4N2E
∫ T

0

N1‖xms − xs‖2Cα) ds

+ 4N2M2
2 E
∫ T

0

∫ T

0

N1‖xmv − xv‖2Cα dv ds

+ 4N2M2
1

∫ T

0

E‖uλ(s, xm)− uλ(s, x)‖2 ds

+ 4N2
m∑
k=1

d2
1kE‖xmtk − xtk‖

2.

From (3.3) and the Lebesgue-dominated convergence theorem, we obtain

E‖(Pλ2 xm)(t)− (Pλ2 x)(t)‖2 → 0,

as m→∞. So Pλ2 is continuous.
We finally prove that the operator Pλ2 maps Yr0 into a relatively compact subset

of Yr0 . Denote the set
V (t) = {(Pλ2 x)(t) : x ∈ Yr0}.

Step 1. Pλ2 (Yr0) is clearly bounded.
Step 2. we have to show that V (t) is equicontinuous on J0. Let x ∈ Yr0 , t1, t2 ∈
(0, T ]. Then

E‖(Pλ2 x)(t2)− (Pλ2 x)(t1)‖2

≤ 5E‖φ(0)(Φ(t2)− Φ(t1))‖2

+ 5E‖[
∫ t2

0

Φ(t2 − s)G(s, xs)−
∫ t1

0

Φ(t1 − s)G(s, xs)] dw(s)‖2

+ 5E‖
∫ s

0

γ(s− v)F (v, xv)
[ ∫ t2

0

Φ(t2 − s)−
∫ t1

0

Φ(t1 − s)
]
dvds‖2

+ 5E‖[
∫ t2

0

Φ(t2 − s)−
∫ t1

0

Φ(t1 − s)]Buλ(s, x) ds‖2

+ 5E‖
∑

0<tk<t

[
Φ(t2 − tk)− Φ(t2 − tk)

]
Ik(x(tk)‖2

= I1 + I2 + I3 + I4 + I5.

Thus we have

I2 ≤ 10E‖
∫ t1

0

(Φ(t2 − s)− Φ(t1 − s))G(s, xs) dw(s)‖2

+ 10E‖
∫ t2

t1

Φ(t2 − s)G(s, xs) dw(s)‖2

≤ 10N2N1T (1 + ‖x‖2∗)E‖Φ(t2 − t1)− I‖2 + 10N2N1(t2 − t1)(1 + ‖x‖2∗),
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I3 ≤ 10E‖
∫ t1

0

Φ(t1 − s)(Φ(t2 − t1)− I)
∫ s

0

γ(s− v)F (v, xv) dvds‖2

+ 10E‖
∫ t2

t1

Φ(t2 − s)
∫ s

0

γ(s− v)F (v, xv) dvds‖2

≤ 10N2M2
2T

2N1(1 + ‖x‖2∗)E‖Φ(t2 − t1)− I‖2

+ 10N2M2
2TN1(1 + ‖x‖2∗)(t2 − t1),

I4 ≤ 10E‖
∫ t1

0

Φ(t1 − s)(Φ(t2 − t1)− I)Buλ(s, x) ds‖2

+ 10E‖
∫ t2

t1

Φ(t2 − s)Buλ(s, x) ds‖2

≤ 10N2M2
1TE‖uλ(s, x)‖2‖Φ(t2 − t1)− I‖2 + 10N2M2

1 (t2 − t1)E‖uλ(s, x)‖2.
In a similar way, we have

I5 ≤ 10N2d2E‖Φ(t2 − t1)− I‖2 + 10N2d2(t2 − t1).

It is easy to see that, as t2 → t1 the right-hand side of the above inequality tends
to zero, since Φ(t) is continuous in t in the uniform operator topology by Lemma
2.2. So we obtain the equicontinuity of V .
Step3. We show that for fixed t, the set V (t) is relatively compact. Obviously,
V (t) = φ(t), t ∈ [−r, 0] which is trivially relatively compact. So let t ∈ (0, T ] be
fixed, then

V (t) = Φ(t)φ(0) +
m∑
k=1

Φ(t− tk)Ik(x(tk)) + V1(t),

where V1(t) is defined by

V1(t) :=
{
ν(t) =

∫ t

0

Φ(t− s)G(s, xs) dw(s)−
∫ t

0

Φ(t− s)
∫ s

0

γ(s− v)F (v, xv) dv ds

+
∫ t

0

Φ(t− s)Buλ(s, x) ds, x ∈ Yr0
}
.

Since
∑m
k=1 Φ(t − tk)Ik(x(tk)) is uniform bounded and equicontinuous. By the

Ascoli-Arzela theorem
∑m
k=1 Φ(t − tk)Ik(x(tk)) is relatively compact. Φ(t)φ(0) is

a single point in H. So we just have to show that V1(t) is relatively compact, let
0 < α < α1 < 1, we have

E‖Aα1ν(t)‖2 ≤ 3E‖
∫ t

0

Aα1Φ(t− s)G(s, xs) dw(s)‖2

+ 3E‖
∫ t

0

Aα1Φ(t− s)
∫ s

0

γ(s− v)F (v, xv) dvds‖2

+ 3E‖
∫ t

0

Aα1Φ(t− s)Buλ(s, x) ds‖2

≤ 3
N2
α1
T 2−2α1

(1− α1)2 (1 + ‖x‖2∗) + 3
N2
α1
T 4−2α1M2

2

(1− α1)2 (1 + ‖x‖2∗)

+ 3
N2
α1
T 2−2α1M2

1

(1− α1)2 E‖uλ(s, x)‖2 <∞,
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which implies that Aα1V1(t) is bounded in H. Hence we obtain that V1(t) is rela-
tively compact in Hα by the compactness of the operator A−α1 : H → Hα1 , (noting
that the embedding Hα1 → Hα is compact). Therefore, from the Ascoli-Arzela the-
orem, Pλ2 (Yr0) is compact. So, the operator Pλ = Pλ1 + Pλ2 has a fixed point from
Lemma 2.6. The proof is complete. �

Theorem 3.2. Assume that (H0)–(H4) are satisfied, then system (1.1) is approx-
imately controllable on J .

Proof. Because the hypotheses of Theorem 3.1 are fulfilled, there is a solution xλ(·)
of (1.1) under the control uλ(t, x). Using the stochastic Fubini theorem we can
obtain

xλ(T ) = Φ(T )(φ(0) + F (0, φ))− F (T, xλT ) +
∫ T

0

AΦ(T − s)F (s, xλs ) ds

+
∫ T

0

Φ(T − s)G(s, xλs ) dw(s)−
∫ T

0

Φ(T − s)
∫ s

0

γ(s− v)F (v, xλv ) dv ds

+
m∑
k=1

Φ(T − tk)Ik(xλ(tk)) + ΓT0 R(λ,ΓT0 )
[
Eh− Φ(T )(φ(0) + F (0, φ))

+ F (T, xT )
]

−
∫ T

0

∫ T

r

Φ(T − s)BB∗Φ∗(T − s)R(λ,ΓTr )AΦ(T − r)F (r, xλr ) ds dr

+
∫ T

0

∫ T

r

Φ(T − s)BB∗Φ∗(T − s)R(λ,ΓTr )Φ(T − r)

×
∫ r

0

γ(r − v)F (v, xλv ) dv ds dr

−
∫ T

0

∫ T

r

Φ(T − s)BB∗Φ∗(T − s)R(λ,ΓTr )

× [Φ(T − r)G(r, xλr )− ϕ(r)] ds dw(r)

− ΓT0 R(λ,ΓT0 )
m∑
k=1

Φ(T − tk)Ik(xλ(tk))

= h− λR(λ,ΓT0 )[Eh− Φ(T )(φ(0) + F (0, φ)) + F (T, xT )]

+
∫ T

0

λR(λ,ΓTs )AΦ(T − s)F (s, xλs ) ds

−
∫ T

0

λR(λ,ΓTs )Φ(T − s)
∫ s

0

γ(s− v)F (v, xλv ) dv ds

+
∫ T

0

λR(λ,ΓTs )[Φ(T − s)G(s, xλs )− ϕ(s)] dw(s)

+ λR(λ,ΓT0 )
m∑
k=1

Φ(T − tk)Ik(xλ(tk)).

By (H4),

‖F (t, xt)‖α + ‖G(t, xt)‖Q ≤M3.
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Then there is a subsequence, still denoted by {F (s, xλs ), G(s, xλs )}, weakly converg-
ing to say, {F (s, w), G(s, w)} in H×L0

2(K,H). By (H0), λR(λ,ΓTs )→ 0 as λ→ 0+

and ‖λR(λ,ΓTs )‖ ≤ 1, from which, together with Lebesgue dominated convergence
theorem, we have

E‖xλ(T )− h‖2

≤ 10E‖λR(λ,ΓT0 )[Eh− Φ(T )(φ(0) + F (0, φ))‖2

+ 10E‖λR(λ,ΓT0 )‖2‖A−α‖2‖F (T, xλT )]‖2α

+ 10E
(∫ T

0

‖λR(λ,ΓTs )‖‖AΦ(T − s)‖‖A−α‖‖F (s, xλs )− F (s)‖α ds
)2

+ 10E
(∫ T

0

‖λR(λ,ΓTs )‖‖AΦ(T − s)‖‖A−α‖‖F (s)‖α ds
)2

+ 10E
(∫ T

0

‖λR(λ,ΓTs )Φ(T − s)
∫ s

0

γ(s− v)A−α‖‖F (v, xλv )− F (v)‖α dv ds
)2

+ 10E
(∫ T

0

‖λR(λ,ΓTs )Φ(T − s)
∫ s

0

γ(s− v)F (v)‖ dvds
)2

+ 10E
∫ T

0

‖λR(λ,ΓTs )‖2‖Φ(T − s)‖2‖G(s, xλs )−G(s)‖2Q ds

+ 10E
∫ T

0

‖λR(λ,ΓTs )‖2‖Φ(T − s)‖2‖G(s)‖2Q ds

+ 10E
∫ T

0

‖λR(λ,ΓTs )‖2‖ϕ(s)‖2Q ds

+ 10E
∥∥λR(λ,ΓT0 )

m∑
k=1

Φ(T − tk)Ik(xλ(tk))
∥∥2 → 0, as λ→ 0+.

This gives the approximate controllability. The proof is complete. �

4. Example

As an application, we consider the neutral stochastic integro-differential system
with impulses,
d[z(t, x) + f(t, z(t− r1(t), x))]

=
[ ∂2

∂x2
z(t, x) + u(t, x) +

∫ t

0

b(t− s) ∂
2

∂x2
z(s, x)ds

]
dt+ g(t, z(t− r2(t), x))dβ(t),

0 < t ≤ T, t 6= tk, 0 ≤ x ≤ π,
z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T, (4.1)

z(t, x) = φ(t, x), −r ≤ t ≤ 0, 0 ≤ x ≤ π,

∆z(tk, x) =
∫ π

0

K(tk, x, y)z(tk, y) dy, k = 1, 2, 3, . . . ,m,

where r1, r2 are continuous functions with 0 < r1(t) ≤ r, 0 < r2(t) ≤ r for all t ∈ J ,
β(t) denotes a one-dimensional standard Brownian motion. The functions f, g, φ,K
and b will be described below.

System (4.1) arises in the study of heat flow in materials of the so-called retarded
type [10, 17]. Here, z(t, x) represents the temperature of the point x at time t. As
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stated in [3], these problems also arise in systems related to couple oscillators in
a noisy environment or in viscoelastic materials under random or stochastic influ-
ences. Meanwhile, an impulsive perturbation occurs very often in many practical
models. For instance, the system of rigid heat conduction with impulsive effect can
be modeled in the form of (4.1).

Let H = L2[0, π], and let A : H → H be the operator defined by

Aξ = − ∂2

∂x2
ξ,

with domain

D(A) =
{
ξ ∈ H : ξ,

∂

∂x
ξ are absolutely continuous,

∂2

∂x2
ξ ∈ H, ξ(0) = ξ(π) = 0

}
.

Then −A is self-adjoint, negative definite and the resolvent operator R(λ,−A) =
(λI+A)−1 is compact when it exist. Moreover, −A generates a strongly semigroup
{S(t)}t≥0 which is analytic, compact and self-adjoint. There exists a complete or-

thonormal set {en} of eigenvectors of −A with en(x) =
√

2
Π sin(nx), n = 1, 2, 3, . . . .

Then the following properties hold:

Aξ =
∞∑
n=1

n2〈ξ, en〉en, ξ ∈ D(A),

S(t)ξ =
∞∑
n=1

exp(−n2t)〈ξ, en〉en, ξ ∈ H.

Set Hα = D(Aα) and Cα = C([−r, 0], Hα). By the classical spectral theorem, we
deduce that

AαS(t)ξ =
∞∑
n=1

(n2)αexp(−n2t)〈ξ, en〉en.

We assume that the following conditions hold:

(i) The functions f : J ×R→ R and g : J ×R→ R are continuous and global
Lipschitz continuous and uniformly bounded.

(ii) The function φ is defined by φ(θ)(x) = φ(θ, x) belongs to Cα.
(iii) b(t) ∈ L1(R+) ∩ C1(R+) with primitive B(t) ∈ L1

loc(R
+), B(t) is non-

positive, non-decreasing and B(0) = −1.
(iiii) K(t, x, y) : J → L2([0, π] × [0, π]) is measurable and continuous, thus

bounded. lk :=
∫ π

0

∫ π
0
|K(tk, x, y)|2 dxdy, k = 1, 2, . . . ,m.

Now define the abstract functions F , G, Ik and the operator γ(t) respectively by

F (t, ψ)(x) = f(t, ψ(−r1(t))(x), ψ ∈ Cα, x ∈ [0, π],

G(t, ψ)(x) = g(t, ψ(−r1(t))(x), ψ ∈ Cα, x ∈ [0, π],

Ik(ϕ)(x) =
∫ π

0

K(tk, x, y)ϕ(y) dy, ϕ ∈ H,

γ(t) = b(t)A, t ∈ J.

Then system (4.1) is rewritten into the form of (1.1). Moreover, B = I, satisfy
(H1), and γ(t) satisfies condition (H3). From [12], the linear system of (4.1) has an
analytic resolvent operator (W (t))t≥0 which is given by W (0) = I.
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By condition (i) we have

‖F (t, ψ)− F (t, φ)‖2α =
∫ π

0

|f(t, ψ(−r1(t))(x))− f(t, φ(−r1(t))(x))|2 dx

≤ N2‖ψ(−r1(t))(x)− φ(−r1(t))(x)‖2

= N2
∞∑
n=1

〈ψ(−r1(t))− φ(−r1(t)), en〉2

≤ N2
∞∑
n=1

n4α〈ψ(−r1(t))− φ(−r1(t)), en〉2

= N2‖Aα(ψ(−r1(t))− φ(−r1(t))‖2

≤ N2‖ψ − φ‖2Cα ,
where N is appropriate constant.

By condition (iiii) we have

‖Ik(ϕ1)− Ik(ϕ2)‖2 =
∫ π

0

[ ∫ π

0

K(tk, x, y)ϕ1(y) dy −
∫ π

0

K(tk, x, y)ϕ2(y) dy
]2
dx,

=
∫ π

0

[ ∫ π

0

K(tk, x, y)(ϕ1(y)− ϕ2(y))
]2
dx,

≤
∫ π

0

[ ∫ π

0

|K(tk, x, y)|2
∫ π

0

‖ϕ1(y)− ϕ2(y)‖2 dy
]
dx,

≤ πlk‖ϕ1 − ϕ2‖2.

Similarly we can show that F , G and Ik satisfy the assumptions (H2), (H4).
From [12, Lemma 4.1], the resolvent operator W (t) of (4.1) is self adjoint. Thus

B∗W ∗(t)ξ = W (t)ξ, ξ ∈ H.
Let B∗W ∗(t)ξ = 0, for all t ∈ J , thus

B∗W ∗(t)ξ = W (t)ξ = 0, t ∈ J.
It follows from the fact W (0) = I that ξ = 0, so by [2, Theorem 4.1.7], the
deterministic linear system corresponding to (4.1) is approximately controllable on
J . Hence, (H0) holds. Therefore, by Theorem 3.2, system (4.1) is approximately
controllable on J .
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