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STABILITY OF SOLUTIONS TO IMPULSIVE CAPUTO
FRACTIONAL DIFFERENTIAL EQUATIONS

RAVI AGARWAL, SNEZHANA HRISTOVA, DONAL O’REGAN

Abstract. Stability of the solutions to a nonlinear impulsive Caputo frac-

tional differential equation is studied using Lyapunov like functions. The

derivative of piecewise continuous Lyapunov functions among the nonlinear
impulsive Caputo differential equation of fractional order is defined. This def-

inition is a natural generalization of the Caputo fractional Dini derivative of

a function. Several sufficient conditions for stability, uniform stability and as-
ymptotic uniform stability of the solution are established. Some examples are

given to illustrate the results.

1. Introduction

The study of stability for fractional order systems is quite recent. There are
several approaches in the literature to study stability, one of which is the Lyapunov
approach. One of the main difficulties on the application of a Lyapunov function to
fractional order differential equations is the appropriate definition of its derivative
among the fractional differential equations. We give a brief brief overview of the
literature and we use the so called Caputo fractional Dini derivative.

The presence of impulses in fractional differential equations lead to complications
with the concept of the solution. Mainly there are two different approaches: either
keeping the lower limit at the initial time t0 or change the nature of fractional differ-
ential equation by moving the lower limits of the fractional derivative to the points
of impulses. In this paper the second approach is used. The Caputo fractional
Dini derivative is generalized to piecewise continuous Lyapunov functions among
the studied nonlinear fractional equations with impulses. Comparison results using
this definition and scalar impulsive fractional differential equations are presented.
Several sufficient conditions for stability, uniform stability and asymptotic uniform
stability are obtained. Some examples illustrate the obtained results.

2. Notes on fractional calculus

Fractional calculus generalizes the derivative and the integral of a function to
a non-integer order [11, 19, 24, 26] and there are several definitions of fractional
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derivatives and fractional integrals. In engineering, the fractional order q is often
less than 1, so we restrict our attention to q ∈ (0, 1).
(1) The Riemann–Liouville (RL) fractional derivative of order q ∈ (0, 1) of m(t) is
given by (see for example [11, Section 1.4.1.1])

RL
t0 Dqm(t) =

1
Γ(1− q)

d

dt

∫ t

t0

(t− s)−qm(s)ds, t ≥ t0,

where Γ(·) denotes the usual Gamma function.
(2) The Caputo fractional derivative of order q ∈ (0, 1) is defined by (see for example
[11, Section 1.4.1.3])

c
t0D

qm(t) =
1

Γ(1− q)

∫ t

t0

(t− s)−qm′(s)ds, t ≥ t0. (2.1)

The properties of the Caputo derivative are quite similar to those of ordinary deriva-
tives. Also, the initial conditions of fractional differential equations with the Ca-
puto derivative has a clear physical meaning and as a result the Caputo derivative
is usually used in real applications.
(3) The Grunwald-Letnikov fractional derivative is given by (see for example [11,
Section 1.4.1.2])

GL
t0 Dqm(t) = lim

h→0

1
hq

[
t−t0
h ]∑
r=0

(−1)r(qCr)m(t− rh), t ≥ t0,

and the Grunwald-Letnikov fractional Dini derivative by

GL
t0 Dq

+m(t) = lim sup
h→0+

1
hq

[
t−t0
h ]∑
r=0

(−1)r(qCr)m(t− rh), t ≥ t0, (2.2)

where qCr = q(q−1)(q−1)...(q−r+1)
r! and [ t−t0h ] denotes the integer part of the fraction

t−t0
h .

Proposition 2.1 ([13, Theorem 2.25]). Let m ∈ C1[t0, b]. Then
GL
t0 Dqm(t) = RL

t0 Dqm(t) for t ∈ (t0, b].

Also, by [13, Lemma 3.4] we have c
t0D

q
tm(t) = RL

t0 Dq
tm(t)−m(t0) (t−t0)−q

Γ(1−q) .
From the relation between the Caputo fractional derivative and the Grunwald-

Letnikov fractional derivative using (2.2) we define the Caputo fractional Dini de-
rivative as

c
t0D

q
+m(t) = GL

t0 Dq
+[m(t)−m(t0)], (2.3)

i.e.
c
t0D

q
+m(t)

= lim sup
h→0+

1
hq

[
m(t)−m(t0)−

[
t−t0
h ]∑
r=1

(−1)r+1(qCr)
(
m(t− rh)−m(t0)

)]
.

(2.4)

Definition 2.2 ([12]). We say m ∈ Cq([t0, T ],Rn) if m(t) is differentiable (i.e.
m′(t) exists), the Caputo derivative ct0D

qm(t) exists and satisfies (2.1) for t ∈ [t0, T ].

Remark 2.3. Definition 2.2 could be extended to any interval I ⊂ R+.
If m ∈ Cq([t0, T ],Rn) then c

t0D
q
+m(t) = c

t0D
qm(t).
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3. Impulses in fractional differential equations

Consider the initial value problem (IVP) for the system of fractional differential
equations (FrDE) with a Caputo derivative for 0 < q < 1,

c
τ0D

qx = f(t, x) for t ≥ τ0 with x(τ0) = x0, (3.1)

where x ∈ Rn, f ∈ C[R+ × Rn,Rn], and (τ0, x0) ∈ R+ × Rn is an arbitrary initial
data.

We suppose that the function f(t, x) is smooth enough on R+ × Rn, such that
for any initial data (τ0, x0) ∈ R+ × Rn the IVP for FrDE (3.1) has a solution
x(t) = x(t; τ0, x0) ∈ Cq([τ0,∞),Rn). Some sufficient conditions for the existence of
global solutions to (3.1) are given in [8, 19].

The IVP for FrDE (3.1) is equivalent to the following integral equation

x(t) = x0 +
1

Γ(q)

∫ t

τ0

(t− s)q−1f(s, x(s))ds for t ≥ τ0.

In this article we assume the points ti, i = 1, 2, . . . are fixed such that t1 < t2 < . . .
and limk→∞ tk =∞. Let τ ∈ R+ and define the set Ωτ = {k : tk > τ}.

Consider the initial value problem for the system of impulsive fractional differ-
ential equations (IFrDE) with a Caputo derivative for 0 < q < 1,

c
t0D

qx = f(t, x) for t ≥ t0, t 6= ti,

x(ti + 0) = Φi(x(ti)) for i ∈ Ωt0 ,

x(t0) = x0,

(3.2)

where x, x0 ∈ Rn, f : R+ × Rn → Rn, t0 ∈ R+, Φi : Rn → Rn, i = 1, 2, 3, . . . .
Without loss of generality we will assume 0 ≤ t0 < t1.

Remark 3.1. In the literature the second equation in (3.2), the so called impulsive
condition is also given in the equivalent form ∆x(ti) = Ii(x(ti)), i ∈ Ωt0 where
∆x(ti) = x(ti + 0)− x(ti − 0) and the function Ii(x) = Φi(x)− x gives the amount
of the jump of the solution at the point ti.

Let J ⊂ R+ be a given interval and ∆ ⊂ Rn. Let Jimp = {t ∈ J : t 6= tk, k =
1, 2, . . . } and introduce the following classes of functions

Cq(Jimp,∆) = ∪∞k=0C
q((tk, tk+1),∆), C(Jimp,∆) = ∪∞k=0C((tk, tk+1),∆),

PCq(J,∆) =
{
u ∈ Cq(Jimp,∆) : u(tk) = lim

t↑tk
u(t) <∞, u(tk + 0) = lim

t↓tk
u(t) <∞

u′(tk) = lim
t↑tk

u′(t) <∞, u′(tk + 0) = lim
t↓tk

u′(t) <∞

for all k : tk ∈ J
}
,

PC(J,∆) =
{
u ∈ C(Jimp,∆) : u(tk) = lim

t↑tk
u(t) <∞, u(tk + 0) = lim

t↓tk
u(t) <∞

for all k : tk ∈ J
}
.

Impulsive fractional differential equations is an important area of study. There
are many qualitative results obtained for equations of type (3.2). We look at the
concept of a solutions to fractional differential equations with impulses. There are
mainly two viewpoints:
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(V1) using the classical Caputo derivative and working in each subinterval, deter-
mined by the impulses (see for example [1, 2, 7, 9, 10]). This approach is based
on the idea that on each interval between two consecutive impulses (tk, tk+1) the
solution is determined by the differential equation of fractional order. Since the
Caputo fractional derivative depends significantly on the initial point (which is
different for the ordinary derivative) it leads to a change of the equation on each
interval (tk, tk+1). This approach neglects the lower limit of the Caputo fractional
derivative at t0 and moves it to each impulsive time tk. Then the IVP for IFrDE
(3.2) is equivalent to the integral equation

x(t) =


x0 + 1

Γ(q)

∫ t
t0

(t− s)q−1f(s, x(s))ds for t ∈ [t0, t1]

x0 + 1
Γ(q)

∑k
i=1

∫ ti
ti−1

(ti − s)q−1f(s, x(s))ds

+ 1
Γ(q)

∫ t
tk

(t− s)q−1f(s, x(s))ds+
∑k
i=1 Ii(x(ti − 0))

for t ∈ (tk, tk+1], k = 1, 2, 3, . . .

(3.3)

where Ik(x) = Φk(x)− x, k = 1, 2, . . . .
Using approach (V1) the solution x(t; t0, x0) of (3.2) is

x(t; t0, x0) =


X0(t; t0, x0) for t ∈ [t0, t1]
X1(t; t1,Φ1(X0(t1; t0, x0))) for t ∈ (t1, t2]
X2(t; t2,Φ2(X1(t2; t1,Φ2(X0(t1; t0, x0))) for t ∈ (t2, t3]
. . .

(3.4)

• X0(t; t0, x0) is the solution of IVP for FrDE (3.1) with τ0 = t0,
• X1(t; t1,Φ1(X0(t1; t0, x0))) is the solution of IVP for FrDE (3.1) with τ0 =
t1, x0 = Φ1(X0(t1; t0, x0)),

• X2(t; t2,Φ1(X1(t2; t1,Φ1(X0(t1; t0, x0))) is the solution of IVP for the FrDE
(3.1) with τ0 = t2, x0 = Φ2(X1(t2; t1,Φ1(X0(t1; t0, x0)),

and so on.
Viewpoint (V1) and the corresponding equivalent integral equations are based

on the presence of impulses in the differential equation (see for example book [18]
and the cited references therein).

(V2) Keeping the lower limit t0 of the Caputo derivative for all t ≥ t0 but con-
sidering different initial conditions on each interval (tk, tk+1) (see for example
[15, 16, 29, 30, 31]). This approach is based on the fact that the restriction of
the fractional derivative c

t0D
qx(t) on any interval (tk, tk+1), k = 1, 2, . . . does not

change. Then the fractional equation is kept on each interval between two consecu-
tive impulses with only the initial condition changed. Then the IVP for the IFrDE
(3.2) is equivalent to the following integral equation (see [15, formula(10)])

x(t) =


x0 + 1

Γ(q)

∫ t
t0

(t− s)q−1f(s, x(s))ds for t ∈ [t0, t1]

x0 + 1
Γ(q)

∫ t
t0

(t− s)q−1f(s, x(s))ds+
∑k
i=1 Ii(x(ti − 0))

for t ∈ (tk, tk+1], k = 1, 2, 3, . . .

(3.5)
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As a result using approach (V2) the solution x(t; t0, x0) of (3.2) is

x(t; t0, x0) =


X0(t; t0, x0) for t ∈ [t0, t1]

X0(t; t0, x0) +
∑k
j=1 Φj(x(tj ; t0, x0))

for t ∈ (tk, tk+1], k = 1, 2, . . .

(3.6)

where X0(t; t0, x0) is the solution of IVP for FrDE (3.1) with τ0 = t0.

Remark 3.2. From the above any solution of (3.2) is from the class PCq([t0, b)),
b ≤ ∞.

In the case f(t, x) ≡ 0 both formulas (3.3) and (3.5) coincide and both approaches
(V1) and (V2) are equivalent.

Example 3.3. Consider the initial value problem for the scalar IFrDE with a
Caputo derivative for 0 < q < 1,

c
t0D

qx = Ax, for t ≥ t0, t 6= ti,

x(ti + 0) = Φi(x(ti − 0)) for i = 1, 2, . . . ,

x(t0) = x0,

(3.7)

where x ∈ R, A is a given real constant.
Case 1. Let Φi(x) = ai + x where ai 6= 0, i = 1, 2, . . . . Applying (V1) and (3.3)
we obtain the solution of (3.7), namely

x(t; t0, x0) =
(
x0

k∏
i=1

Eq(A(ti − ti−1)q) +
k∑
i=1

ai

k∏
j=i+1

Eq(A(tj − tj−1)q)
)

× Eq(A(t− tk)q) for t ∈ (tk, tk+1], k = 0, 1, 2, 3, . . . ,

(3.8)

where the Mittag-Leffler function (with one parameter) is defined by Eq(z) =∑∞
k=0

zk

Γ(qk+1) .
Applying (V2) and (3.6), we obtain the solution of (3.7), namely

x(t; t0, x0) = x0Eq(A(t− t0)q) +
k∑
i=1

ak (3.9)

for t ∈ (tk, tk+1], k = 0, 1, 2, 3, . . . . In this case it looks like (3.8) is closer to the
ordinary case (q = 1).
Case 2. Let Φi(x) = aix where ai 6= 1, i = 1, 2, . . . are constants. Applying (V1)
and (3.3) we obtain the solution of (3.7), namely

x(t; t0, x0) = x0

( k∏
i=1

aiEq(A(ti − ti−1)q)
)
Eq(A(t− tk)q) (3.10)

for t ∈ (tk, tk+1], k = 0, 1, 2, . . . .
Applying (V2) and (3.6), using λ

Γ(q)

∫ t
0
Eq(λs

q)
(t−s)q ds = Eq(λtq) − 1 we obtain the

solution of (3.7), namely

x(t; t0, x0) = x0

(
Eq(A(t− t0)q) +

k∑
i=1

Eq(A(ti − t0)q)(ai − 1)
k∏

j=i+1

aj

)
, (3.11)

for t ∈ (tk, tk+1], k = 0, 1, 2, 3, . . . . In this case it looks like (3.10) is closer to the
ordinary case (q = 1).
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The concept of the FrDE with impulses is rather problematic. In [15], the authors
pointed out that the formula, based on (V1) of solutions for IFrDE in [1], [7] is
incorrect and gave a new formula using approach (V2). In [30, 31] the authors
established a general framework to find solutions for impulsive fractional boundary
value problems and obtained some sufficient conditions for the existence of solutions
to impulsive fractional differential equations based on (V1). In [28] the authors
discussed (V1) and criticized the viewpoint (V2) in [15, 30, 31]. Next, in [16] the
authors considered the counterexample in [15] and provided further explanations
about (V2). In this article we use approach (V1).

Note if for some natural k, a component of the function Φk : Rn → Rn,
Φk = (Φk,1,Φk,2, . . . ,Φk,n) satisfies the equality Φk,j(x) = xj where x ∈ Rn :
x = (x1, x2, . . . , xn), then there will be no impulse at the point tk for the compo-
nent xj(t) of the solution of IFrDE (3.2) and (3.3) is not correct in this case. To
avoid this confusing situation in the application of approach (V1), mentioned above
we will assume:

(H1) If x 6= 0 then Φk,j(x) 6= xj for all j = 1, 2 . . . , n and k = 1, 2, 3, . . . where x ∈
Rn, x = (x1, x2, . . . , xn) and Φk : Rn → Rn, Φk = (Φk,1,Φk,2, . . . ,Φk,n).

Note that (H1) is equivalent to Ik,j(x) 6= 0 if x 6= 0 for all k = 1, 2, 3, . . . and
j = 1, 2 . . . , n where Ik = (Ik,1, Ik,2, . . . , Ik,n).

4. Definitions about stability and Lyapunov functions

The goal of the article is to study the stability of zero solution of system IFrDEs
(3.2). We will assume the following condition is satisfied

(H2) f(t, 0) ≡ 0 for t ∈ R+ and Φi(0) = 0 for i = 1, 2, 3 . . . .
In the definition below we let x(t; t0, x0) ∈ PCq([t0,∞),Rn) be any solution of
(3.2).

Definition 4.1. The zero solution of (3.2) is said to be
• stable if for every ε > 0 and t0 ∈ R+ there exist δ = δ(ε, t0) > 0 such that

for any x0 ∈ Rn the inequality ‖x0‖ < δ implies ‖x(t; t0, x0)‖ < ε for t ≥ t0;
• uniformly stable if for every ε > 0 there exist δ = δ(ε) > 0 such that for
t0 ∈ R+, x0 ∈ Rn with ‖x0‖ < δ the inequality ‖x(t; t0, x0)‖ < ε holds for
t ≥ t0;

• uniformly attractive if for β > 0: for every ε > 0 there exist T = T (ε) >
0 such that for any t0 ∈ R+, x0 ∈ Rn with ‖x0‖ < β the inequality
‖x(t; t0, x0)‖ < ε holds for t ≥ t0 + T ;

• uniformly asymptotically stable if the zero solution is uniformly stable and
uniformly attractive.

In this article we use the followings two sets:

K = {a ∈ C[R+,R+] : a is strictly increasing and a(0) = 0},
S(A) = {x ∈ Rn : ‖x‖ ≤ A}, A > 0.

Furthermore we consider the initial value problem for a scalar FrDE
c
τD

qu = g(t, u) for t ≥ τ,
u(τ) = u0,

(4.1)

where u, u0 ∈ R, τ ∈ R+, g : R+ × R→ R.
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Consider also the IVP for scalar impulsive fractional differential equations
c
t0D

qu = g(t, u) for t ≥ t0, t 6= ti,

u(ti + 0) = Ψi(u(ti − 0)) for i = 1, 2, . . . ,

u(t0) = u0,

(4.2)

where u, u0 ∈ R, g : R+ × R→ R, Ψi : R→ R, i = 1, 2, . . . .
For the scalar IFrDE (4.2) we consider approach (V1) and similar to condition

(H1) we assume the following conditions
(H3) If u 6= 0 then Ψk(u) 6= u for all k = 1, 2, 3, . . . .
(H4) g(t, 0) ≡ 0 for t ∈ R+ and Ψi(0) = 0 for i = 1, 2, 3, . . . .
Note the stability of the zero solution of the scalar IFrDE (4.2) is defined in a

similar manner to that in Definition 4.1.

Remark 4.2. Note in the case Ψi(u) ≡ u for i = 1, 2, . . . the impulsive fractional
equation (4.2) is reduced to the fractional differential equation (4.1).

Example 4.3. Consider the scalar impulsive Caputo fractional differential equa-
tion (3.7) where A < 0, ai ∈ [−1, 0) ∪ (0, 1], i = 1, 2, 3, . . . are constants.

According to Example 3.3 the IVP for IFrDE (3.7) has a solution x(t; t0, x0)
defined by (3.10). Therefore, applying 0 < Eq(A(T − τ)q) ≤ 1 for T ≥ τ we obtain
|x(t; t0, x0)| ≤ |x0| which guarantees that the zero solution is uniformly stable.

Example 4.4. Consider the IVP for the scalar impulsive Caputo fractional differ-
ential equation

c
t0D

qu = 0, for t ≥ t0, t 6= ti,

u(ti + 0) = ai u(ti − 0) for i ∈ Ωt0 ,

u(t0) = u0,

(4.3)

where ai 6= 0, 1, i = 1, 2, 3, . . . are constants and there exists a constant M > 0
with

∏∞
i=1 |ai| ≤M .

The IVP for IFrDE (4.3) has a solution defined by u(t; t0, v0) = u0

∏k
i=1 ai for

t ∈ (tk, tk+1], k = 0, 1, 2, . . . . Therefore, we obtain |u(t; t0, u0)| ≤ |u0|
∏k
i=1 |ai| for

t ∈ (tk, tk+1] which guarantees that the zero solution of (4.3) is uniformly stable.
Note the existence of a constant M > 0 with

∏∞
i=1 |ai| ≤ M is guaranteed if

ai ∈ [−1, 0) ∪ (0, 1), i = 1, 2, 3, . . . .

In this article we study the connection between the stability properties of the
solutions of a nonlinear system IFrDE (3.2) and the stability properties of the zero
solution of a corresponding scalar IFrDE (4.2) or corresponding scalar FrDE (4.1).

We now introduce the class Λ of piecewise continuous Lyapunov-like functions
which will be used to investigate the stability of the system IFrDE (3.2).

Definition 4.5. Let J ∈ R+ be a given interval, and ∆ ⊂ Rn, 0 ∈ ∆ be a given
set. We will say that the function V (t, x) : J ×∆→ R+, V (t, 0) ≡ 0 belongs to the
class Λ(J,∆) if

(1) The function V (t, x) is continuous on J/{tk ∈ J} × ∆ and it is locally
Lipschitzian with respect to its second argument;

(2) For each tk ∈ J and x ∈ ∆ there exist finite limits

V (tk − 0, x) = lim
t↑tk

V (t, x), V (tk + 0, x) = lim
t↓tk

V (t, x)

and the equalities V (tk − 0, x) = V (tk, x) are valid.
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Remark 4.6. When the function V (t, x) ∈ Λ(J,∆) is additionally continuous on
the whole interval J , we will say V (t, x) ∈ ΛC(J,∆).

Lyapunov like functions used to discuss stability for differential equations re-
quire an appropriate definition of the derivative of the Lyapunov function along the
studied differential equations. For nonlinear Caputo fractional differential equations
(3.2) the following types of derivatives of Lyapunov functions along the nonlinear
Caputo fractional differential equations are used:

- Caputo fractional derivative of Lyapunov functions c
τ0D

q
tV (t, x(t)), where x(t)

is a solution of the studied fractional differential equation (3.1) [21, 22]. This
approach requires the function to be smooth enough (at least continuously differ-
entiable). It works well for quadratic Lyapunov functions but in the general case
when the Lyapunov function depends on t it can cause some problems (see Example
4.8).

- Dini fractional derivative of Lyapunov functions [19, 20] given by

Dq
+V (t, x) = lim sup

h→0+

1
hq
(
V (t, x)− V (t− h, x− hqf(t, x)

)
(4.4)

where 0 < q < 1. The Dini fractional derivative seems to be a natural generaliza-
tion of the ordinary case (q = 1). This definition requires only continuity of the
Lyapunov function. However it can be quite restrictive (see Example 4.8) and it
can present some problems (see Example 4.9).

- Caputo fractional Dini derivative of Lyapunov functions [3, 4, 5]:
c
(3.1)D

q
+V (t, x; τ0, x0)

= lim sup
h→0+

1
hq

{
V (t, x)− V (τ0, x0)

−
[
t−τ0
h ]∑
r=1

(−1)r+1qCr
[
V (t− rh, x− hqf(t, x))− V (τ0, x0)

]} (4.5)

for t ∈ (τ0, T ), where V (t, x) ∈ ΛC([τ0, T ),∆), x, x0 ∈ ∆, and there exists h1 > 0
such that t − h ∈ [τ0, T ), x − hqf(t, x) ∈ ∆ for 0 < h ≤ h1. The above formula is
based on the formula (2.4) from fractional calculus. This definition requires only
continuity of the Lyapunov function.

Note in [12] the authors defined a derivative of a Lyapunov function and called
it the Caputo fractional Dini derivative of V (t, x) (see [12, Definition 3.2]):

cDq
+V (t, x) = lim sup

h→0+

1
hq
[
V (t, x)−

n∑
r=1

V (t− rh, x− hqf(t, x))− V (t0, x0)
]
, (4.6)

(we feel (−1)r+1qCr is missing in the formula).
The formula (4.6) is quite different than the the Caputo fractional Dini derivative

of a function (2.4). Also, in [12, Definition 5.1] the authors define the Caputo
fractional Dini derivative of Lyapunov function V (s, y(t, s, x)) by

cDq
+V (t, y(t, s, x))

= lim sup
h→0+

1
hq
[
V (t, y(t, s, x))

−
n∑
r=1

(−1)r+1qCrV (s− rh, y(t, s− rh, x− hqF (t, x)))
]
.

(4.7)
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Formula (4.7) is also quite different than the Caputo fractional Dini derivative of a
function (2.4).

We will use definition (4.5) as the definition of Caputo fractional Dini derivative
of a Lyapunov function.

Example 4.7. Consider the quadratic Lyapunov function, i.e. V (t, x) = x2 for
x ∈ R. Recall the scalar ordinary case (q = 1), i.e. the ordinary differential
equation x′ = f(t, x), x ∈ R, and the Dini derivative of the quadratic Lyapunov
function applied to it,

D+V (t, x(t)) = 2xf(t, x(t)). (4.8)

Let x ∈ Cq([τ0, T ],R) be a solution of FrDE(3.1). Then the Caputo fractional
derivative of the quadratic Lyapunov function c

τ0D
q
t(x(t))2 exists and the equality

c
τ0D

q
t(x(t))2 = 2x(t)f(t, x(t)) (4.9)

holds (see for example [6]).
Apply (4.4) to obtain Dini fractional derivative of the quadratic Lyapunov func-

tion, namely

Dq
+V (t, x(t))

= Dq
+(x(t))2

= lim sup
h→0+

1
hq
(
(x(t))2 − (x(t− h)− hqf(t, x(t− h)))2

)
= lim sup

h→0+

1
hq
(
x(t)− x(t− h) + hqf(t, x(t− h))

)(
x(t) + x(t− h)

− hqf(t, x(t− h)
)

= lim sup
h→0+

(x(t)− x(t− h)
h

h1−q + f(t, x(t− h))
)(
x(t) + x(t− h)

− hqf(t, x(t− h)
)

= 2x(t)f(t, x(t)).

(4.10)

Finally, apply (4.5) to obtain the Caputo fractional derivative of the quadratic
Lyapunov function

c
(3.1)D

q
+V (t, x(t); τ0, x0)

= lim sup
h→0+

1
hq

{
(x(t))2 − x2

0

−
[
t−τ0
h ]∑
r=1

(−1)r+1qCr
[(
x(t− rh)− hqf(t, x(t− rh))

)2

− (x0)2
]}

= lim sup
h→0+

1
hq

{ [
t−τ0
h ]∑
r=0

(−1)rqCr
[
(x(t− rh))2 − (x0)2

]

+
[
t−τ0
h ]∑
r=1

(−1)rqCr
[(
x(t− rh)− hqf(t, x(t− rh))

)2

− (x(t− rh))2
]}
.

(4.11)
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Using (2.2), (2.3) and lim suph→0+

∑[
t−τ0
h ]

r=0 (−1)rqCr = 0 we obtain

c
(3.1)D

q
+V (t, x(t); τ0, x0)

=GL
τ0 Dq

+

[
(x(t))2 − (x0)2

]
− lim sup

h→0+

[
t−τ0
h ]∑
r=0

(−1)rqCrf(t, x(t− rh))
[
2x(t− rh)− hqf(t, x(t− rh))

]

=c
τ0 D

q(x(t))2 − 2 lim sup
h→0+

[
t−τ0
h ]∑
r=0

(−1)rqCrf(t, x(t− rh))x(t− rh)

+ lim sup
h→0+

hq
[
t−τ0
h ]∑
r=0

(−1)rqCrf(t, x(t− rh))f(t, x(t− rh))

=c
τ0 D

q(x(t))2 = 2x(t)f(t, x(t)).

(4.12)

From (4.9), (4.10) and (4.12) we see that (in the scalar case) the above derivatives
coincide with the ordinary case (4.8).

Example 4.8. Let V : R+ × R → R+ be given by V (t, x) = m2(t)x2 for x ∈ R
where m ∈ C1(R+,R). Recall the Dini derivative of the Lyapunov function in the
ordinary case (q = 1) is

D+V (t, x) = 2x m2(t)f(t, x) +
d

dt

[
m2(t)x2

]
. (4.13)

If x ∈ Cq([τ0, T ],R) is a solution of FrDE(3.1), then to obtain the Caputo frac-
tional derivative c

τ0D
q
t

(
m2(t)(x(t))2

)
we need a multiplication rule from fractional

calculus, so it could lead to some difficulties in calculations of the derivative.
Now, let (t, x) ∈ R+ × R and apply formula (4.4) to obtain Dini fractional

derivative of V , namely

Dq
+V (t, x)

= lim sup
h→0+

1
hq

[
m2(t)x2 −m2(t− h)

(
x− hqf(t, x)

)2]
= lim sup

h→0+

[m(t)−m(t− h)
h

xh1−q +m(t− h)f(t, x)
)

×
(

(m(t) +m(t− h))x−m(t− h)hqf(t, x)
)]

= 2x m2(t)f(t, x).

(4.14)

Now we look at (4.13) and (4.14). Both differ significantly. In the fractional Dini
derivative (4.14) one term is missing. Additionally, the Dini fractional derivative
(4.14) is independent of the order of the differential equation q. However the be-
havior of solutions of fractional differential equations depends significantly on the
order q.
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Let t, τ0 ∈ R+, x, x0 ∈ R. Now use (4.5) to obtain the Caputo fractional Dini
derivative of V , namely
c
(3.1)D

q
+V (t, x; τ0, x0)

= lim
h→0+

sup
1
hq

[
m2(t)x2 −m2(τ0)x2

0

[
t−τ0
h ]∑
r=0

(−1)rqCr

−
[
t−τ0
h ]∑
r=1

(−1)r+1qCr m2(t− rh)
(
x− hqf(t, x)

)2]

= lim
h→0+

sup
1
hq

[
m2(t)hqf(t, x)(2x− hqf(t, x))−m2(τ0)x2

0

[
t−τ0
h ]∑
r=0

(−1)rqCr

+
(
x− hqf(t, x)

)2
[
t−τ0
h ]∑
r=0

(−1)rqCrm2(t− rh)
]
.

(4.15)

Now using (2.2) from (4.15) we obtain

c
(3.1)D

q
+V (t, x; τ0, x0) = 2x m2(t)f(t, x) + RL

τ0 D
q
(
m2(t)x2 − x2

0m
2(τ0)

)
. (4.16)

Note the Caputo fractional Dini derivative depends not only on the fractional or-
der q but also on the initial data (τ0, x0) of (3.1) which is similar to the Caputo
fractional derivative of a function.

Formula (4.16) is similar to the ordinary case q = 1 and formula (4.13) consists
of two terms where the ordinary derivative is replaced by the fractional one.

It seems that formula (4.5) is a natural generalization of the one for ordinary
differential equations. Also, if the function V (t, x) ≡ c, c is a constant, then for
any t, τ0 ∈ R+, x, x0 ∈ R the equality c

(3.1)D
q
+V (t, x; τ0, x0) = 0 holds.

In this article we use piecewise continuous Lyapunov functions from the class
Λ(J,∆). We define the derivative of piecewise continuous Lyapunov functions using
the idea of the Caputo fractional Dini derivative of a function m(t) given by (2.4)
and based on (4.5). We define the generalized Caputo fractional Dini derivative of
the function V (t, x) ∈ Λ([t0, T ),∆) along trajectories of solutions of IVP for the
system IFrDE (3.2) as follows:

c
(3.2)D

q
+V (t, x; t0, x0)

= lim sup
h→0+

1
hq

{
V (t, x)− V (t0, x0)

−
[
t−t0
h ]∑
r=1

(−1)r+1qCr
[
V (t− rh, x− hqf(t, x))− V (t0, x0)

]} (4.17)

for t ∈ (t0, T ) : t 6= tk, where x, x0 ∈ ∆, and there exists h1 > 0 such that
t− h ∈ [t0, T ), x− hqf(t, x) ∈ ∆ for 0 < h ≤ h1.

Example 4.9. Consider the scalar IFrDE (4.3) with t0 = 0, tk = k, ak = 1√
2
, k =

1, 2, . . . , and u0 = 2
√
a, a > 0 is a constant. According to Example 4.4 the solution

of (4.3) is x(t; t0, u0) = 2
√

a
2k

on (k, k + 1], k = 0, 1, 2, . . . .



12 R. AGARWAL, S. HRISTOVA, D. O’REGAN EJDE-2016/58

Consider the IFrDE (4.3) with t0 = 0, tk = k, ak = 1
2 , k = 1, 2, . . . , and u0 = a.

Then IFrDE (4.3) has an unique solution u+(t; t0, u0) = a
2k

for t ∈ (k, k + 1],
k = 0, 1, 2, . . . .

Let the Lyapunov function V : R+ × R → R+ be given by V (t, x) = x2 sin2 t.
It is locally Lipshitz with respect to its second argument x. According to Exam-
ple 4.8 and formula (4.14) we obtain the Dini fractional derivative of V , namely
cDq

+V (t, x) = 2x sin2(t)f(t, x) ≡ 0.
All the conditions in [27, Theorem 3.1] are satisfied and therefore, the inequal-

ity V (t, x(t; t0, x0)) ≤ u+(t; t0, u0)) has to be hold for all t ≥ t0. However, the
inequality

V (t, 2
√

a

2k
) = 4

a

2k
sin2 t ≤ a

2k
,

i.e. sin2 t ≤ 1
4 is not satisfied for all t ≥ 0.

5. Comparison results for scalar impulsive Caputo fractional
differential equations

We use the following results for Caputo fractional Dini derivative of a continuous
Lyapunov function.

Lemma 5.1 (Comparison result [3]). Assume the following conditions are satisfied:

(1) The function x∗(t) = x(t; τ0, x0) ∈ Cq([τ0, T̃ ],∆) is a solution of the FrDE
(3.1) where ∆ ⊂ Rn, 0 ∈ ∆, τ0, T̃ ∈ R+, τ0 < T̃ are given constants,
x0 ∈ ∆.

(2) The function g ∈ C([τ0, T̃ ]× R,R).
(3) The function V ∈ ΛC([τ0, T̃ ],∆) and

c
(3.1)D

q
+V (t, x; τ0, x0) ≤ g(t, V (t, x)) for (t, x) ∈ [τ0, T̃ ]×∆ .

(4) The function u∗(t) = u(t; τ0, u0), u∗ ∈ Cq([τ0, T̃ ],R), is the maximal solu-
tion of the initial value problem (4.1) with τ = τ0.

Then the inequality V (τ0, x0) ≤ u0 implies V (t, x∗(t)) ≤ u∗(t) for t ∈ [τ0, T̃ ].

When g(t, x) ≡ 0 in Lemma 5.1 we obtain the following result.

Corollary 5.2 ([3]). Let (1) in Lemma 5.1 be satisfied and V ∈ ΛC([τ0, T̃ ],∆) be
such that for any points t ∈ [τ0, T̃ ], x ∈ ∆ the inequality c

(3.1)D
q
+V (t, x; τ0, x0) ≤ 0

holds. Then for t ∈ [τ0, T̃ ] the inequality V (t, x∗(t)) ≤ V (τ0, x0) holds.

If the derivative of the Lyapunov function is negative, the following result is true.

Lemma 5.3 ([3]). Let Condition (1) of Lemma 5.1 be satisfied and the function
V ∈ ΛC([t0, T̃ ],∆) be such that for any points t ∈ [τ0, T̃ ], x ∈ ∆ the

c
(3.1)D

q
+V (t, x; τ0, x0) ≤ −c(‖x‖) ,

where c ∈ K. Then for t ∈ [τ0, T̃ ],

V (t, x∗(t)) ≤ V (τ0, x0)− 1
Γ(q)

∫ t

τ0

(t− s)q−1c(‖x∗(s)‖)ds . (5.1)
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Now we prove some comparison results for the system of IFrDE (3.2) and piece-
wise continuous Lyapunov functions applying the generalized Caputo fractional
Dini derivative (4.17). Recall limk→∞ tk = ∞. In this section we assume without
loss of generality that 0 ≤ t0 < t1 < T .

As a comparison scalar equation we use the impulsive Caputo fractional differ-
ential equation (4.2) or the Caputo fractional differential equation (4.1).

Lemma 5.4 (Comparison result by scalar IFrDE). Assume that the following con-
ditions are satisfied:

(1) Let conditions (H1) and (H3) be satisfied for all k ∈ {i : ti ∈ (t0, T )} where
t0, T ∈ R+, t0 < T are given constants.

(2) The function x∗(t) = x(t; t0, x0) ∈ PCq([t0, T ],∆) is a solution of the
IFrDE (3.2) where ∆ ⊂ Rn, 0 ∈ ∆, x0 ∈ ∆.

(3) The function g ∈ C([t0, T ]× R,R) and the IVP for the IFrDE (4.2) has a
unique maximal solution u∗(t) = u(t; t0, u0) ∈ PCq([t0, T ],R).

(4) The functions Ψk : R→ R, k ∈ {i : ti ∈ (t0, T )}, are nondecreasing.
(5) The function V ∈ Λ([t0, T ],∆) and

(i) for any τ0 ∈ [t0, T ) and x0 ∈ ∆, the inequality c
(3.2)D

q
+V (t, x; τ0, x0) ≤

g(t, V (t, x)) for (t, x) ∈ [τ0, T ]×∆, t 6= tk holds;
(ii) for any points tk ∈ (t0, T ) and x ∈ ∆ we have

V (tk + 0,Φk(x)) ≤ Ψk(V (tk, x)).

Then the inequality V (t0, x0) ≤ u0 implies V (t, x∗(t)) ≤ u∗(t) for t ∈ [t0, T ].

Proof. We use induction. Let t ∈ [t0, t1]. By Lemma 5.1 the claim in Lemma 5.4
holds on [t0, t1].

Let t ∈ (t1, t2]∩ [t0, T ]. Then the function u1(t) ≡ u∗(t) is the maximal solution
of IVP for FrDE (4.1) for τ = t1 and u1(t1) = Ψ1(u∗(t1 − 0))(= Ψ1(u∗(t1))) =
u∗(t1 + 0) and the function x1(t) ≡ x∗(t) is a solution of IVP for FrDE (3.1) for
τ0 = t1 and x0 = Φ1(x∗(t1 − 0)) = x∗(t1 + 0). Using conditions (4), (5)(ii) and the
above proved inequality V (t1, x∗(t1)) = V (t1, x∗(t1 − 0)) ≤ u∗(t1 − 0) we obtain

V (t1 + 0, x1(t1)) = V (t1 + 0, x∗(t1 + 0))

= V (t1 + 0,Φ1(x∗(t1 − 0))) = V (t1 + 0,Φ1(x∗(t1)))

≤ Ψ1(V (t1, x∗(t1))) ≤ Ψ1(u∗(t1 − 0))

= u∗(t1 + 0) = u1(t1).

(5.2)

By Lemma 5.1 for τ0 = t1 and T̃ = min{T, t2} we obtain V (t, x1(t)) ≤ u1(t) for
t ∈ [t1, t2] ∩ [t0, T ]. Therefore, V (t, x∗(t)) ≤ u∗(t) for t ∈ (t1, t2] ∩ [t0, T ], i.e. the
claim of Lemma 5.4 holds on [t0, t2] ∩ [t0, T ].

Continuing this process and an induction argument proves that the claim is true
on [t0, T ]. �

Example 5.5. Consider the scalar IFrDE (4.3) with t0 = 0, tk = k, ak = 1√
2
, k =

1, 2, . . . , and u0 = 2
√
a, a > 0 is a constant. According to Example 4.4 the solution

of (4.3) is x(t; t0, u0) = 2
√

a
2k

on (k, k + 1], k = 0, 1, 2, . . . .
Consider the IFrDE (4.3) with t0 = 0, tk = k, ak = 1

2 , k = 1, 2, . . . , and u0 = a.
Then IFrDE (4.3) has an unique solution u+(t; t0, u0) = a

2k
for t ∈ (k, k + 1],

k = 0, 1, 2, . . . .
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Let the Lyapunov function V : R+×R→ R+ be given by V (t, x) = x2 sin2 t. By
Example 4.8 and formula (4.16) we obtain the Caputo fractional Dini derivative of
V , namely c

(4.3)D
q
+V (t, x; 0, x0) = x2RL

0 Dq[sin2 t]. Using sin2 t−0.5−0.5 cos(2t) and
RL
0 Dq cos(2t) = 2q cos(2t+ qπ

2 ) it follows that the inequality c
(4.3)D

q
+V (t, x; 0, x0) ≤ 0

is not satisfied, i.e. condition (5)(i) of Lemma 5.4 is not satisfied for g(t, x) ≡ 0 so
we cannot claim that the inequality V (t, x(t; 0, x0)) ≤ u+(t; 0, u0)) has to be hold
for all t ≥ t0, i.e. the application of Lemma 5.4 and the Caputo fractional Dini
derivative does not lead to a contradiction as in [27] (compare with Example 4.9).

The result in Lemma 5.4 is also true on the half line (recall [3] that Lemma 5.1
extends to the half line).

Corollary 5.6. Suppose all the conditions of Lemma 5.4 are satisfied with [t0, T ]
replaced by [t0,∞). Then the inequality V (t0, x0) ≤ u0 implies V (t, x∗(t)) ≤ u∗(t)
for t ≥ t0.

If Ψk(u) ≡ u for all k = 1, 2, . . . , we consider the scalar FrDE (4.1) as a compar-
ison equation.

Lemma 5.7 (Comparison result by scalar FrDE). Assume
(1) Condition (H1) is fulfilled for all k ∈ {i : ti ∈ (t0, T )} where t0, T ∈

R+, t0 < T are given constants.
(2) Condition (2) of Lemma 5.4 is fulfilled.
(3) The function g ∈ C([t0, T ] × R,R) and the IVP for the FrDE (4.1) with

τ = t0 has a unique maximal solution u∗(t) = u(t; t0, u0) ∈ Cq([t0, T ],R).
(4) The function V ∈ Λ([t0, T ],∆), it satisfies the condition (5)(i) of Lemma

5.4 and
(ii) for any points tk ∈ (t0, T ) and x ∈ ∆ we have

V (tk + 0,Φk(x)) ≤ V (tk, x).

Then the inequality V (t0, x0) ≤ u0 implies V (t, x∗(t)) ≤ u∗(t) for t ∈ [t0, T ].

Proof. The proof is similar to the one of Lemma 5.4 where the inequality (5.2) is
replaced by

V (t1 + 0, x1(t1)) = V (t1 + 0, x∗(t1 + 0))

= V (t1 + 0,Φ1(x∗(t1 − 0))) = V (t1 + 0,Φ1(x∗(t1)))

≤ V (t1 − 0, x∗(t1 − 0)) ≤ u∗(t1 − 0)

= u∗(t1 + 0) = u1(t1).

(5.3)

�

The result of Lemma 5.7 is also true on the half line.

Corollary 5.8. Suppose all the conditions of Lemma 5.7 are satisfied with [t0, T ]
replaced by [t0,∞). Then the inequality V (t0, x0) ≤ u0 implies V (t, x∗(t)) ≤ u∗(t)
for t ≥ t0.

Recall limk→∞ tk =∞. In our next result we assume with loss of generality that
tp < T ≤ tp+1 for some p ∈ {1, 2, . . . }. Next we present a comparison result for
negative Caputo fractional Dini derivative.

Lemma 5.9. Assume the following conditions are satisfied:
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(1) Conditions (1) and (2) of Lemma 5.7 are fulfilled.
(2) The function V ∈ Λ([t0, T ],∆) and

(i) for any τ0 ∈ [t0, T ) and x0 ∈ ∆, the inequality c
(3.2)D

q
+V (t, x; τ0, x0) ≤

−c(‖x‖) for (t, x) ∈ [τ0, T ]×∆, t 6= tk holds;
(ii) for any points tk ∈ (t0, T ) and x ∈ ∆ the inequalities V (tk+0,Φk(x)) ≤

V (tk, x) hold.
Then for t ∈ [t0, T ] the following inequalities hold:

V (t, x∗(t)) ≤ V (t0, x0)− 1
Γ(q)

∫ t

t0

(t− s)q−1c(‖x∗(s)‖)ds (5.4)

for t ∈ [t0, t1], and

V (t, x∗(t)) ≤ V (t0, x0)−
k−1∑
i=0

1
Γ(q)

∫ ti+1

ti

(ti+1 − s)q−1c(‖x∗(s)‖)ds

− 1
Γ(q)

∫ t

tk

(t− s)q−1c(‖x∗(s)‖)ds

(5.5)

for t ∈ (tk, t?k+1], k = 1, 2, . . . , p; here t?k+1 = tk+1 if k = 1, . . . , p− 1 and t?p+1 = T .

Proof. We use induction. Let t ∈ [t0, t1]. By Lemma 5.3 with τ0 = t0 and T̃ = t1
inequality (5.4) holds on [t0, t1].

Let t ∈ (t1, t2] ∩ [t0, T ]. Then the function x1(t) ≡ x∗(t) is a solution of IVP for
FrDE (3.1) for τ0 = t1 and x1(t1) = Φ1(x∗(t1 − 0))(= Φ1(x∗(t1))) = x∗(t1 + 0).
Using condition (2)(ii) we obtain

V (t1 + 0, x1(t1)) = V (t1 + 0, x∗(t1 + 0))

= V (t1 + 0,Φ1(x∗(t1 − 0))) = V (t1 + 0,Φ1(x∗(t1)))

≤ V (t1, x∗(t1)) = V (t1, x∗(t1 − 0)).
(5.6)

By Lemma 5.3 with τ0 = t1 and T̃ = min{T, t2}, inequality (5.6) and inequality
(5.4) with t = t1 we obtain

V (t, x1(t)) ≤ V (t1 + 0, x1(t1))− 1
Γ(q)

∫ t

t1

(t− s)q−1c(‖x∗(s)‖)ds

≤ V (t1, x∗(t1 − 0))− 1
Γ(q)

∫ t

t1

(t− s)q−1c(‖x∗(s)‖)ds

≤ V (t0, x0)− 1
Γ(q)

∫ t1

t0

(t1 − s)q−1c(‖x∗(s)‖)ds

− 1
Γ(q)

∫ t

t1

(t− s)q−1c(‖x∗(s)‖)ds.

Therefore, inequality (5.5) holds on (t1, t2]∩ [t0, T ]. Continuing this process and an
induction argument proves the claim is true on [t0, T ]. �

The result in Lemma 5.9 is also true on the half line (recall [3] that Lemma 5.3
extends to the half line).

Corollary 5.10. Suppose all the conditions of Lemma 5.9 are satisfied with [t0, T ]
replaced by [t0,∞). Then for any t ≥ t0 the inequalities (5.4), (5.5) (where k =
1, 2, . . . , p is replaced by k = 1, 2, . . . ) hold.
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Remark 5.11. In this paper we assumed an infinite number of points ti, i =
1, 2, . . . with t1 < t2 < . . . and limk→∞ tk = ∞. However it is worth noting that
the results in Section 5 (and elsewhere) hold if we only consider a finite of points
ti, i = 1, 2, . . . , p for some p ∈ {1, 2, . . . } and t1 < t2 < · · · < tp.

6. Main result

In this section we obtain sufficient conditions for stability of the zero solution of
nonlinear impulsive Caputo fractional differential equations.

Theorem 6.1. Let the following conditions be satisfied:
(1) Conditions (H1)–(H4) are satisfied.
(2) The functions f ∈ PC(R+,Rn), Φk : Rn → Rn, k = 1, 2, . . . , are such that

for any (t0, x0) ∈ R+ × Rn the IVP for the scalar of IFrDE (3.2) has a
solution x(t; t0, x0) ∈ PCq([t0,∞),Rn).

(3) The functions g ∈ C(R+ × R,R), Ψk : R → R, k = 1, 2, . . . , are such that
for any (t0, u0) ∈ R+×R the IVP for the scalar IFrDE (4.2) has a solution
u(t; t0, u0) ∈ PCq([t0,∞),R) and in the case of nonuniqueness the IVP has
a unique maximal solution.

(4) The functions Ψi : R→ R, i = 1, 2, . . . , are nondecreasing.
(5) There exists a function V ∈ Λ(R+,Rn) such that

(i) for any points t0 ∈ R+ and x, x0 ∈ Rn we have
c
(3.2)D

q
+V (t, x; t0, x0) ≤ g(t, V (t, x))

for t ≥ t0, t 6= tk, k = 1, 2, . . . ;
(ii) for any points tk, k = 1, 2, . . . and x ∈ Rn we have

V (tk + 0,Φk(x)) ≤ Ψk(V (tk, x));

(iii) b(‖x‖) ≤ V (t, x) for t ∈ R+, x ∈ Rn, where b ∈ K.
(6) The zero solution of the scalar IFrDE (4.2) is stable.

Then the zero solution of the system of IFrDE (3.2) is stable.

Proof. Let ε > 0 and t0 ∈ R+ be given. Without loss of generality we assume
t0 < t1. According to condition (6) there exists δ1 = δ1(t0, ε) > 0 such that the
inequality |u0| < δ1 implies

|u(t; t0, u0)| < b(ε), t ≥ t0, (6.1)

where u(t; t0, u0) is a solution of the scalar IFrDE (4.2). Since V (t0, 0) = 0 there
exists δ2 = δ2(t0, δ1) > 0 such that V (t0, x) < δ1 for ‖x‖ < δ2. Let x0 ∈ Rn
with ‖x0‖ < δ2. Then V (t0, x0) < δ1. Consider any solution x∗(t) = x(t; t0, x0) ∈
PCq([t0,∞),Rn) of the IFrDE (3.2) which exists according to condition (2). Now
let u∗0 = V (t0, x0). Then u∗0 < δ1 and inequality (6.1) holds for the unique maximal
solution u(t; t0, u∗0) of the scalar IFrDE (4.2) (with τ = t0 and u0 = u∗0).

According to Corollary 5.6 the inequality V (t, x∗(t)) ≤ u(t; t0, u∗0) holds for t ≥
t0. Then for any t ≥ t0 from condition (5)(iii) and inequality (6.1) we obtain

b(‖x∗(t)‖) ≤ V (t, x∗(t)) ≤ u(t; t0, u∗0) < b(ε),

so the result follows. �

If we consider the scalar FrDE (4.1) as a comparison equation then the following
result holds.
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Theorem 6.2. Let the following conditions be satisfied:
(1) Conditions (H1)–(H2) are satisfied.
(2) Conditions (2) and (5) of Theorem 6.1 are satisfied where the condition

(5)(ii) is replaced by
(ii) for any points tk, k = 1, 2, . . . and x ∈ Rn we have

V (tk + 0,Φk(x)) ≤ V (tk, x).

(3) The function g ∈ C(R+ × R,R), g(t, 0) ≡ 0 is such that for any (t0, u0) ∈
R+ × R the IVP for the scalar FrDE (4.1) has a solution u(t; t0, u0) ∈
Cq([t0,∞),R) and in the case of nonuniqueness the IVP has a unique max-
imal solution.

(4) The zero solution of the scalar FrDE (4.1) is stable.
Then the zero solution of the system of IFrDE (3.2) is stable.

The proof of above theorem is similar to the one of Theorem 6.1, applying
Corollary 5.8 instead of Corollary 5.6.

Now we present some sufficient conditions for stability of the zero solution of the
IFrDE in the case when the condition for the Caputo fractional Dini derivative of
the Lyapunov function is satisfied only on a ball.

Theorem 6.3. Let the following conditions be satisfied:
(1) Conditions (1)–(4) of Theorem 6.1 are fulfilled.
(2) There exists a function V ∈ Λ(R+, S(λ)) such that

(i) for any points t0 ∈ R+ and x, x0 ∈ S(λ) we have
c
(3.2)D

q
+V (t, x; t0, x0) ≤ g(t, V (t, x))

for t ≥ t0, t 6= tk, k = 1, 2, . . . ;
(ii) for any points tk, k = 1, 2, . . . and x ∈ S(λ) we have

V (tk + 0,Φk(x)) ≤ Ψk(V (tk, x));

(iii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ∈ R+, x ∈ S(λ), where a, b ∈ K.
(3) The zero solution of the scalar IFrDE (4.2) is uniformly stable.

Then the zero solution of the system of IFrDE (3.2) is uniformly stable.

Proof. Let ε ∈ (0, λ] and t0 ∈ R+ be given. From condition (3) of Theorem 6.3
there exists δ1 = δ1(ε) > 0 such that for any τ0 ≥ 0 the inequality |u0| < δ1 implies

|u(t; τ0, u0)| < b(ε), t ≥ τ0, (6.2)

where u(t; τ0, u0) is a solution of (4.2).
Let δ1 < min{ε, b(ε)}. From a ∈ K there exists δ2 = δ2(ε) > 0 so if s < δ2

then a(s) < δ1. Let δ = min(ε, δ2). Choose the initial value x0 ∈ Rn such that
‖x0‖ < δ. Therefore x0 ∈ S(λ). Also, let u∗0 = V (t0, x0). From the choice of
the point u∗0 and condition (3)(iii) we obtain u∗0 ≤ a(‖x0‖) < a(δ2) < δ1. Let
x∗(t) = x(t; t0, x0), t ≥ t0 be a solution of the IVP for IFrDE (3.2) and u∗(t; t0, u∗0)
be the maximal solution of the IVP for scalar IFrDE (2). Note u∗(t; t0, u∗0) satisfies
(6.2). We now prove that

‖x∗(t)‖ < ε, t ≥ t0. (6.3)
Assume inequality (6.3) is not true. Denote t∗ = inf{t > t0 : ‖x∗(t) ≥ ε}. Then

‖x∗(t)‖ < ε for t ∈ [t0, t∗) and ‖x∗(t∗)‖ = ε. (6.4)
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If t∗ 6= tk, k ∈ Z+ or t∗ = tp for some natural number p and ‖x∗(tp − 0)‖ = ε then
(6.3) is true. If for a natural number p we have t∗ = tp and ‖x∗(tp − 0)‖ < ε, then
according to Lemma 5.4 for T = t∗ and ∆ = S(λ) we get V (t, x∗(t)) ≤ u∗(t; t0, u∗0)
on [t0, t∗]. Then applying condition (3)(iii) and inequality (6.2) we obtain b(ε) =
b(‖x∗(t∗)‖) ≤ V (t∗, x∗(t∗)) ≤ u∗(t∗; t0, u∗0). Thus ‖x∗(t∗)|| ≤ b−1(u∗(t∗)) < ε and
this contradicts the choice of t∗. Therefore, (6.3) holds and then the zero solution
of IFrDE (3.2) is uniformly stable. �

Corollary 6.4. Suppose
(1) Conditions (H1)–(H2) are satisfied.
(2) Condition (2) of Theorem 6.1 is satisfied.
(3) Condition (3) of Theorem 6.3 is satisfied with g(t, x) = Au and Ψk(u) =

aku for k = 1, 2, . . . where A ≤ 0 and ak ∈ (0, 1).
Then the zero solution of the IFrDE (3.2) is uniformly stable.

The above corollary follows from Example 4.3 (if A < 0) and Example 4.4 (if
A = 0) and Theorem 6.3. If we consider the scalar FrDE (4.1) as a comparison
equation then the following result for uniform stability is true:

Theorem 6.5. Let the following conditions be satisfied:
(1) Conditions (1) and (3) of Theorem 6.2 are fulfilled.
(2) Condition (2) of Theorem 6.1 is fulfilled.
(3) There exists a function V ∈ Λ(R+, S(λ)) satisfying condition (2)(i) and

2(iii) of Theorem 6.3 and
(ii) for any points tk, k = 1, 2, . . . and x ∈ S(λ) we have

V (tk + 0,Φk(x)) ≤ V (tk, x);

(4) The zero solution of the scalar FrDE (4.1) is uniformly stable.
Then the zero solution of the system of IFrDE (3.2) is uniformly stable.

Now we present some sufficient conditions for uniform asymptotic stability of
the zero solution of a system of nonlinear IFrDE.

Theorem 6.6. Let the following conditions be satisfied:
(1) Conditions (H1) and (H2) are fulfilled.
(2) Condition (2) of Theorem 6.1 is fulfilled.
(3) There exists a function V ∈ Λ(R+,Rn) such that

(i) for any points t0 ∈ R+, and x, x0 ∈ Rn we have
c
(3.2)D

q
+V (t, x; t0, x0) ≤ −c(‖x‖)

for t ≥ t0, t 6= tk, k = 1, 2, . . . , where c ∈ K;
(ii) for any points tk, k = 1, 2, . . . and x ∈ Rn we have

V (tk + 0,Φk(x)) ≤ V (tk, x);

(iii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ∈ R+, x ∈ Rn, where a, b ∈ K.
Then the zero solution of the system of IFrDE (3.2) is uniformly asymptotically
stable.

Proof. From condition (3)(i) we have c
(3.2)D

q
+V (t, x; t0, x0) ≤ 0. Applying Theorem

6.5 with g(t, u0) ≡ 0 we see that the zero solution of the system of IFrDE (3.2) is
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uniformly stable. Therefore, for the number λ there exists α = α(λ) ∈ (0, λ) such
that for any t̃0 ∈ R+ and x̃0 ∈ Rn the inequality ‖x̃0‖ < α implies

‖x(t; t̃0, x̃0)‖ < λ for t ≥ t̃0 (6.5)

where x(t; t̃0, x̃0) is any solution of IFrDE (3.2) (with initial data (t̃0, x̃0)).
Now we prove the zero solution of IFrDE (3.2) is uniformly attractive. Consider

the constant β ∈ (0, α] such that b−1(a(β)) < α. Let ε ∈ (0, λ] be an arbitrary
number and x∗(t) = x(t; t0, x0) be any solution of (3.2) such that ‖x0‖ < β, t0 ∈ R+.
Then b(‖x0‖) ≤ a(‖x0‖) < a(β), i.e. ‖x0‖ ≤ b−1(a(β)) < α and therefore the
inequality

‖x∗(t)‖ < λ for t ≥ t0 (6.6)

holds. Choose a constant γ = γ(ε) ∈ (0, ε] such that a(γ) < b(ε). Let T >( qΓ(q)a(α)
c(γ)

)1/q, T = T (ε) > 0 and m ∈ {1, 2, . . . } with tm < t0 +T < tm+1. We now
prove that

‖x∗(t)‖ < ε for t ≥ t0 + T. (6.7)

Assume
‖x∗(t)‖ ≥ γ for every t ∈ [t0, t0 + T ]. (6.8)

Then from Lemma 5.7 (applied to the interval [tm, t0 + T ] and ∆ = Rn) and the
inequality aq + bq ≥ (a+ b)q for a, b > 0 we obtain

V (t0 + T, x∗(t0 + T ))

≤ V (t0, x0)−
m−1∑
i=0

1
Γ(q)

∫ ti+1

ti

(ti+1 − s)q−1c(‖x∗(s)‖)ds

− 1
Γ(q)

∫ t0+T

tm

(t0 + T − s)q−1c(‖x∗(s)‖)ds

≤ a(‖x0‖)−
m−1∑
i=0

c(γ)
Γ(q)

∫ ti+1

ti

(ti+1 − s)q−1ds− c(γ)
Γ(q)

∫ t0+T

tm

(t0 + T − s)q−1ds

< a(α)− c(γ)
qΓ(q)

(m−1∑
i=0

(ti+1 − ti)q + (T + t0 − tm)q
)

≤ a(α)− c(γ)
qΓ(q)

(m−1∑
i=0

(ti+1 − ti) + (T + t0 − tm)
)q

= a(α)− c(γ)
qΓ(q)

T q < 0.

This contradiction proves the existence of t∗ ∈ [t0, t0 + T ] such that ‖x∗(t∗)‖ < γ.
Now there are two cases to be considered, namely t∗ 6= tk for k = 1, 2, . . . or t∗ = tn
for some n ∈ {1, 2, . . . }.
Case 1. Let t∗ 6= tk for k = 1, 2, . . . . Without loss of generality assume there
exists j ∈ {1, 2, . . . } with tj < t∗ < tj+1. From Corollary 5.8 for any t ≥ t∗ and
∆ = Rn we have

V (t, x∗(t)) ≤ V (t∗, x∗(t∗))− 1
Γ(q)

∫ t

t∗
(t− s)q−1c(‖x∗(s)‖)ds

≤ V (t∗, x∗(t∗)) for t ∈ [t∗, tj+1]
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and

V (t, x∗(t)) ≤ V (t∗, x∗(t∗))− 1
Γ(q)

(∫ tj+1

t∗
(tj+1 − s)q−1c(‖x∗(s)‖)ds

+
l−1∑
i=j+1

∫ ti+1

ti

(ti+1 − s)q−1c(‖x∗(s)‖)ds

+
∫ t

tl

(t− s)q−1c(‖x∗(s)‖)ds
)

≤ V (t∗, x∗(t∗)) for t ∈ (tl, tl+1], l = j + 1, j + 2, . . . .

Then for any t ≥ t∗ we obtain

b(‖x∗(t)‖) ≤ V (t, x∗(t)) ≤ V (t∗, x∗(t∗)) ≤ a(‖x∗(t∗)‖) ≤ a(γ).

Then ‖x∗(t)‖ ≤ b−1(a(γ)) < ε for any t ≥ t∗.
Case 2. Let t∗ = tn for some n ∈ {1, 2, . . . }. Applying Corollary 5.8 for any
t > t∗ = tn, t ∈ (tl, tl+1], l = n, n+ 1, . . . , and ∆ = Rn and obtain

V (t, x∗(t)) ≤ V (tn + 0, x∗(tn + 0))− 1
Γ(q)

( l−1∑
i=n

∫ ti+1

ti

(ti+1 − s)q−1c(‖x∗(s)‖)ds

+
∫ t

tl

(t− s)q−1c(‖x∗(s)‖)ds
)

≤ V (tn + 0, x∗(tn + 0)).

Then for any t > t∗ = tn from conditions (2)(ii) and (2)(iii) we get

b(‖x∗(t)‖) ≤ V (t, x∗(t)) ≤ V (tn, x∗(tn + 0))

= V (tn,Φn(x∗(tn − 0))) ≤ V (tn, x∗(tn − 0))

≤ a(‖x∗(tn − 0)‖) ≤ a(γ).

Then ‖x∗(t)‖ ≤ b−1(a(γ)) < ε and therefore (6.7) holds for all t > t∗ (hence for
t ≥ t0 + T ). �

Remark 6.7. The study of stability of a nonzero solution x∗(t) of the IVP for
IFrDE (3.2) could be easily reduced to studing stability of the zero solution of an
appropriately chosen system of IFrDE.

7. Applications

Consider the generalized Caputo population model.

Example 7.1. Let the points tk, tk < tk+1, limk→∞tk = ∞ be fixed. Consider
the scalar impulsive Caputo fractional differential equation

c
0D

qx = −g(t)x(1 + x2) for t ≥ t0, t 6= tk, k = 1, 2, . . . ,

x(tk + 0) = Φk(x(tk − 0)), k = 1, 2, 3, . . . ,
(7.1)

where x ∈ R, the functions g ∈ C(R+,R+) : g(t) ≥ 1
2tqΓ(1−q) , Φk ∈ C(R,R) :

|Φk(x)| ≤ ck|x|, ck ∈ (0, 1), k = 1, 2, . . . , are given constants.
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Consider the function V (t, x) = x2. Then the inequality (Φk(x))2 ≤ Ψk(x2),
k = 1, 2, . . . holds with Ψk(x) = c2kx. The Caputo fractional Dini derivative of the
quadratic function for t > 0, t 6= tk is

c
(7.1)D

q
+V (t, x; 0, x0) = 2x

(
− g(t)x(1 + x2)

)
+ (x2 − x2

0)
1

tqΓ(1− q)

≤ x2
(
− 2g(t)(1 + x2) +

1
tqΓ(1− q)

)
≤ −2g(t)x4 ≤ 0.

(7.2)

Then by Theorem 6.1, the trivial solution of IFrDE (7.1) is stable.
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[25] V. Rădulescu, D. Repovš; Partial Differential Equations with Variable Exponents: Varia-

tional Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton
FL, 2015.

[26] G. Samko, A. A. Kilbas, O. I. Marichev; Fractional Integrals and Derivatives: Theory and

Applications, Gordon and Breach, 1993.
[27] I. Stamova; Global stability of impulsive fractional differential equations, Appl. Math. Com-

put. 237 (2014), 605–612.

[28] G. Wang, B. Ahmad, L. Zhang, J. Nieto; Comments on the concept of existence of solution
for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat. 19

(2014), 401–403.

[29] J. R. Wang, M. Feckan, Y. Zhou; Ulam’s type stability of impulsive ordinary differential
equations, J. Math. Anal. Appl. 395 (2012), 258–264.

[30] J. R. Wang, X. Li, W. Wei; On the natural solution of an impulsive fractional differential

equation of order q ∈ (1, 2), Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4384–4394.
[31] J. R. Wang, Y. Zhou, M. Feckan; On recent developments in the theory of boundary value

problems for impulsive fractional differential equations, Comput. Math. Appl. 64 (2012),
3008–3020.

Ravi Agarwal

Department of Mathematics, Texas A& M University-Kingsville, Kingsville, TX 78363,

USA
E-mail address: agarwal@tamuk.edu

Snezhana Hristova
Department of Applied Mathematics, Plovdiv University, Plovdiv, Bulgaria

E-mail address: snehri@gmail.com

Donal O’Regan

School of Mathematics, Statistics and Applied Mathematics, National University of

Ireland, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie


	1. Introduction
	2. Notes on fractional calculus
	3. Impulses in fractional differential equations
	4. Definitions about stability and Lyapunov functions
	5. Comparison results for scalar impulsive Caputo fractional differential equations
	6. Main result
	7. Applications
	Acknowledgments

	References

