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INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR
KIRCHHOFF-TYPE EQUATIONS WITH POWER

NONLINEARITY

XIANZHONG YAO, CHUNLAI MU

Abstract. In this article we consider the Kirchhoff-type elliptic problem

−(a + b

Z
Ω
|∇u|2dx)∆u = |u|p−2u, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN and p ∈ (2, 2∗) with 2∗ = 2N
N−2

if N ≥ 3, and 2∗ = +∞ other-

wise. We show that the problem possesses infinitely many sign-changing solu-

tions by using combination of invariant sets of descent flow and the Ljusternik-

Schnirelman type minimax method.

1. Introduction

We are concerned with the existence of sign-changing solutions to the Kirchhoff-
type elliptic problem

−(a+ b

∫
Ω

|∇u|2dx)∆u = |u|p−2u, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary and p ∈ (2, 2∗) with
2∗ = 2N

N−2 if N ≥ 3 and 2∗ = +∞ otherwise.
Kirchhoff-type problems are often referred as being nonlocal because of the pres-

ence of the integral terms, which makes it difficult to be solved. While this motivates
the researcher’s interest to study it.

Over the past two decades, a great deal of effort has been devoted to the study of
existence of solutions to Kirchhoff-type equations such as (1.1) with more general
nonlinearities. And there have been interesting results in the existence of various
kind of solutions, and just a few in sign-changing (nodal) solutions to the Kirchhoff-
type problem.

In recent years, several scholars have studied the existence of sign-changing solu-
tions to the Kirchhoff-type problem with general nonlinearity in bounded domains
or in the whole space. Zhang [17] used variational methods and invariant sets of
descent flow to obtain a sign-changing solution for (1.1) with general nonlinearity
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f(x, u) in three cases: sublinear, asymptotically-linear, and superlinear at infinity.
Mao and Zhang [11] employed the same methods as [10, 17] to show the existence
of one sign-changing solution. In [5, 6, 14, 16], the authors studied Kirchhoff-type
problem with some different assumptions and showed that there exists one least
energy sign-changing solution by variational methods and the quantitative defor-
mation lemma. Batkam [3] obtained infinitely many sign-changing solutions to (1.1)
with general nonlinearity, by applying a new version of the symmetric mountain
pass theorem. For the existence of sign-changing solutions related problems we
refer the reader to [1, 7, 8, 9, 15, 18].

To the best of our knowledge, there is no result in the literature on the existence
of sign-changing to problem (1.1) for p ∈ (2, 4]. We apply the approach used in
[3, 5, 6, 11, 14, 16] where their results are valid only for f(x, u) = |u|p−2u with
p ∈ (4, 2∗). We give the existence of sign-changing solution to (1.1) for p ∈ (2, 4].

In this article, E := H1
0 (Ω) with norm ‖u‖ = (

∫
Ω
|∇u|2dx)1/2. While Lq(Ω) for

q ∈ (1,∞) is the usual Lebesgue space with the norm |u|p = (
∫

Ω
|u|pdx)1/p. We use

the letter C to denote various positive constants and allow it to be difference from
line to line.

Our main results read as follows.

Theorem 1.1. For each p ∈ (2, 2∗), problem (1.1) has a sequence of sign-changing
solutions {uk} such that I(uk)→∞ as k →∞.

The remainder of this paper is organized as follows. In Section 2, we present
some preliminary results; and in Section 3, we prove Theorem 1.1.

2. Preliminaries

First we define the energy functional associated with (1.1),

I(u) =
a

2

∫
Ω

|∇u|2dx+
b

4

(∫
Ω

|∇u|2dx
)2

− 1
p

∫
Ω

|u|pdx.

Clearly, I ∈ C1(E,R). It is well-known that solutions of (1.1) are critical points of
the functional I and that

〈I ′(u), v〉 = (a+ b

∫
Ω

|∇u|2dx)
∫

Ω

∇u∇v dx−
∫

Ω

|u|p−2uv dx,

for every v ∈ E. Hence, if u ∈ E is a critical point of I, then u is a solution of
equations (1.1). Then the gradient of I has the form ∇I

a+b‖u‖2 = id−A (see [11, 17]),
where 〈∇I(u), v〉 = 〈I ′(u), v〉 for all v ∈ E and A : E → E given by

A(u) := (−∆)−1 |u|p−2u

a+ b‖u‖2
.

Thus we note that following three statement are equivalent: u is a solution of
(1.1), u is a critical point of I, and u is a fixed point of A. Then we consider the
initial-value problem

d

dt
ϕ(t, u) = −W (ϕ(t, u)), t ≥ 0,

ϕ(0, u) = u.
(2.1)

where

W (ϕ) =
∇I(ϕ)

a+ b‖ϕ‖2
= ϕ−Aϕ.
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It is easy to see that W is locally Lipschitz continuous in E. Thus, for (2.1),
there exists a unique solution in some maximal existence interval [0, T ), where
T = T (u) ≤ +∞. Then

d

dt
(I(ϕ(t, u))) = 〈∇I(ϕ),

dϕ

dt
〉 = −‖∇I(ϕ(t, u))‖2

a+ b‖u‖2
≤ 0.

Therefore, I is decreasing along the orbits; that is, decreasing in t ∈ [0, T ).
To obtain sign-changing solutions, we use cones of the positive and negative

functions as in many reference such as [1, 2, 7, 8, 9]. Precisely, define

P+ := {u ∈ E : u ≥ 0} and P− := {u ∈ E : u ≤ 0}.
For ε > 0 denote

P+
ε := {u ∈ E : dist(u, P+) < ε} and P−ε := {u ∈ E : dist(u, P−) < ε}.

Obviously, P+
ε = −P−ε . Set W := P+

ε ∪ P−ε . Then W is a symmetric subset of E
and Q := E\W contains only sign-changing functions. Recall that a subset D ⊂ E
is an invariant set with respect to ϕ if ϕ(t, u) ∈ D for any u ∈ D and t ∈ [0, T ). On
the other hand, the next lemma shows that, for ε small, P+

ε and P−ε are invariant
set with respect to ϕ and ϕ(t, ∂W ) ⊂ int(W ) for t ∈ [0, T ). Then all sign-changing
solutions of equations (1.1) are contained in Q = E\W .

Lemma 2.1. There exists ε0 such that for any ε ∈ (0, ε0), the following results
hold

A(∂P+
ε ) ⊂ P+

ε , A(∂P−ε ) ⊂ P−ε ,

ϕ(t, u) ∈ P±ε for all t > 0 and u ∈ P±ε .

Furthermore, every nontrivial solutions u ∈ P+
ε and u ∈ P−ε of equation (1.1) are

positive and negative, respectively.

The proof is similar to the proofs of [2, Lemma 3.1 and Proposition 3.2] and [4,
Lemma 2], we omit it.

Lemma 2.2. Functional I satisfies the Palais-Smale condition.

Proof. When p ∈ [4, 2∗), it is trivial to see that functional I satisfies the Palais-
Smale condition. While in case p ∈ (2, 4), let {un} be a Palais-Smale sequence for
I, that is,

I(un)→ c, I ′(un)→ 0 as n→∞.
Then by computations,

I(un) =
a

2

∫
Ω

|∇u|2dx+
b

4

(∫
Ω

|∇u|2dx
)2

− 1
p

∫
Ω

|u|pdx

≥ a

2
‖un‖2 +

b

4
‖un‖4 − C‖un‖p,

(2.2)

which implies that I is coercive, it follows that {un} is bounded in E. Then, going
if necessary to a subsequence, we may assume that there exists u ∈ E such that

un ⇀ u weakly in E,

un → u strongly in Lq(Ω) for q ∈ (2, 2∗).
(2.3)

Since 〈I ′(un), (un − u)〉 → 0, un → u strongly in E by (2.3). This completes the
proof. �
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Before stating next lemma, we need some preparation. Denote Ic := {u ∈ E :
I(u) ≤ c}, Kc := {u ∈ E : I(u) = c and I ′(u) = 0}, Kw

c := Kc ∩W , Kq
c := Kc ∩Q

and Kw
c,ρ := {u ∈ E : dist(u,Kw

c ) < ρ}, Kq
c,ρ := {u ∈ E : dist(u,Kq

c ) < ρ} and
Br := {u ∈ E : ‖u‖ ≤ r}. Because I satisfies the Palais-Smale condition, we have
the following deforming lemma [9, Lemma 5.1].

Lemma 2.3. Let ρ > 0 be such that Kw
c,ρ ⊂W . Then there exists ε0 such that for

any ε ∈ (0, ε0), there is an η ∈ C([0, 1]× E,E) satisfying:
(1) η(t, u) = u if t = 0 or u /∈ I−1([c− ε0, c+ ε0])\Kq

c,ρ.
(2) η(1, Ic+ε∪W\Kq

c,3ρ) ⊂ Ic−ε∪W and η(1, Ic+ε∪W ) ⊂ Ic−ε∪W if Kq
c = ∅.

(3) η(t, ·) is odd and an homeomorphism of E for any t ∈ [0, 1].
(4) η(t,W ) ⊂W for any t ∈ [0, 1].
(5) I(η(·, u)) is non-increasing.
(6) ‖η(t, u)− u‖ ≤ ρ for any (t, u) ∈ [0, 1]× E.

3. Proof of Theorem 1.1

To prove the result, we first need to construct a class of sets for Ljusternik-
Schnirelman type minimax process. Set R = R(Em), where Em is a m-dimensional
subspace of E. Let

Gm := {h ∈ C(BR ∩ Em, E) : h is odd and h = id on ∂BR ∩ Em}.
Observe that id ∈ Gm for all m ∈ N so Gm 6= ∅. Define for all k ≥ 2

Γk := {h(BR ∩ Em\Y ) : h ∈ Gm,m ≥ k, Y = −Y is close and γ(Y ) ≤ m− k}.
Then, according to [13, Proposition 9.18], we have the following results:

(1) Γk 6= ∅ and Γk+1 ⊂ Γk for all k ≥ 2;
(2) If φ ∈ C(E,E) is odd and φ = id on ∂BR ∩ Em for all m ≥ k, then

φ : Γk → Γk;
(3) If B ∈ Γk, Z = −Z is close and γ(Z) ≤ s < k, then B\Z ∈ Γk−s.

Proof of Theorem 1.1. We split it into three steps.
Step 1. Assume ρ small such that ∂Bρ ⊂ O. Define for k ≥ 2,

ck := inf
B∈Γk

sup
u∈B∩Q

I(u).

We first need to prove that ck is well-defined for each k ≥ 2. It suffices to show
that for any B ∈ Γk, B ∩ Q 6= ∅ and ck > −∞. To see it, we first consider the
attracting domains of 0 in E:

O := {u ∈ E : ϕ(t, u)→ 0, as t→∞}.
Because 0 is a local minimum of the functional I, then we observe that O is open
by the continuous dependence of ODE on initial data. Moreover, ∂O is an invariant
set with respect to ϕ and P+

ε ∩ P−ε ⊂ O (see [2, Lemma 3.4]). In particular, there
holds I(u) > 0 for u ∈ P+

ε ∩ P−ε \{0}. We now claim that for any B ∈ Γk with
k ≥ 2, it holds that

B ∩Q ∩ ∂O 6= ∅. (3.1)
By the assumption of ρ above, then we have supB∩Q I ≥ inf∂O I ≥ inf∂Bρ I ≥ C >

0. To see (3.1), take B = h(BR ∩ Em\Y ) with γ(Y ) ≤ m− k and k ≥ 2. Define

Θ := {u ∈ BR ∩ Em : h(u) ∈ O}.
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Then note Θ is a bounded open symmetric set with 0 ∈ Θ and Θ ⊂ BR ∩ Em.
Therefore, due to Borsuk-Ulam Theorem, there is γ(∂Θ) = m and we conclude
that h(∂Θ) ⊂ ∂O by the continuity of h. Consequently, h(∂Θ\Y ) ⊂ B ∩ ∂O and

γ(B ∩ ∂O) ≥ γ(h(∂Θ\Y )) ≥ γ(∂Θ\Y ) ≥ γ(∂Θ)− γ(Y ) ≥ k

by [13, Proposition 7.5]. From P+
ε ∩ P−ε ⊂ O, we have P+

ε ∩ P−ε ∩ ∂O = ∅. We
define a continuous and odd function ϕ : W ∩ ∂O → S0 := {1,−1} given by

ϕ(u) =

{
1 if u ∈ P+

ε ∩ ∂O;
−1 if u ∈ P−ε ∩ ∂O.

Then, according to the definition of genus γ in so-called Liusternik-Schnirelmann
category theory, we can easily get γ(W ∩ ∂O) = 1. Hence for k ≥ 2, we deduce
that

γ(B ∩Q ∩ ∂O) ≥ γ(B ∩ ∂O)− γ(W ∩ ∂O) ≥ k − 1 ≥ 1,
which implies that (3.1) holds. So for each k ≥ 2, ck is well-defined and increasing
with respect to k by the item (1).
Step 2. Next we show that for every k ≥ 2 equation (1.1) possesses some sign-
changing solutions at level ck. Claim first that Kck ∩Q 6= ∅ for every k ≥ 2, which
implies that there exist some sign-changing critical points uk such that I(uk) = ck
and conclusion follows. To see the claim, arguing by contradiction, we may suppose
Kck ∩ Q = ∅ for some k ≥ 2. From the foregoing discussions, we know that
ck ≥ C > 0 for all k ≥ 2. Owing to the deformation lemma above, there exist ε > 0
and η ∈ C([0, 1]× E,E) such that η(1, ·) is odd, η(1, u) = u for u ∈ Ick−2ε and

η(1, Ick+ε ∪W ) ⊂ Ick−ε ∪W. (3.2)

Then, thanks to the definition of ck, there is B ∈ Γk such that supB∩Q I ≤ ck + ε.
Setting D = η(1, B), by (3.2), we know that supD∩Q I ≤ ck−ε. On the other hand,
we can obtain I(u) ≤ ck − 2ε for u ∈ ∂BR ∩ Em by choosing R small. Then, gain
D ∈ Γk by the item (2). Consequently, ck ≤ ck − ε, this is absurd.
Step 3. We prove that ck →∞ as k →∞. Indeed, we may assume that ck → c <
∞ as k → ∞. Because I satisfies Palais-Smale condition, Kc 6= ∅ and is compact.
Moreover, we note that Kq

c 6= ∅. We take a sequence of sign-changing solutions
{uk} to equation (1.1) with I(uk) = ck. By the Sobolev embedding inequality,
we obtain ‖u±k ‖ ≥ c > 0. Since I satisfies the Palais-Smale condition and the
mapping u 7→ u± is continuous in E, up to a subsequence, the limit u of {uk} is
still sign-changing and u ∈ Kq

c , where u± := min{±u ≥ 0}.
Suppose γ(Kq

c ) = s. By Palais-Smale condition again and statement above, Kq
c

is compact. And there exists a neighborhood N of Kq
c with Kq

c ⊂ N such that
γ(N) = s, owing to the “continuous” property of the genus (cf. [13, Proposition
7.5]).

Then, by the deformation lemma again, there exist ε > 0 and η ∈ C([0, 1]×E,E)
such that η(1, ·) is odd, η(1, u) = u for u ∈ Ic−2ε and

η(1, Ic+ε ∪W\N) ⊂ Ic−ε ∪W. (3.3)

In view of the assumption that ck → c as k → ∞ and monotonicity of ck, ck+s ≥
ck ≥ c − 1

2ε for k enough large. By virtue of the definition of ck+s, we can find a
B ∈ Γk+s such that

I(u) ≤ ck+s + ε ≤ c+ ε, for all u ∈ B ∩Q.
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Then this derives B ⊂ Ic+ε ∪W , and by (3.3),

η(1, B\N) ⊂ Ic−ε ∪W.

Selecting R small such that I(u) < c − 2ε for all u ∈ ∂BR ∩ Em, it follows that
η(1, B\N) ∈ Γk and

ck ≤ sup
η(1,B\N)∩Q

I ≤ c− ε,

which is a contradiction with ck ≥ c − 1
2ε. Therefore it holds that ck → ∞ as

k →∞.
From Step 2, we know that for any k ≥ 2, equations (1.1) possesses some sign-

changing solutions at level ck. By arbitrariness of k ≥ 2 and ck →∞ as k →∞, we
obtain that equations (1.1) possesses infinity many sign-changing solutions. The
proof is complete. �
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4. Addendum posted on April 27, 2017

In response to a reader’s suggestion, the authors want to introduce the additional
conditions p ∈ (4, 2∗) and N = 1, 2, 3 for Theorem 1.1. First we present a lemma
whose proof is standard and is omitted here.

Lemma 4.1. For each m ≥ 1, there exists R = R(Em) such that

sup
u∈BcR∩Em

I(u) < 0,

where BcR = E \BR.

Now we replace Theorem 1.1 with the following theorem.

Theorem 4.2. Assume that N = 1, 2, 3. For each p ∈ (4, 2∗), problem 1.1 has a
sequence of sign-changing solutions {uk} such that I(uk)→∞ as k →∞.

Proof. Step 1. Assume that ρ is small such that ∂Bρ ⊂ O. For k ≥ 2, we define

ck := inf
B∈Γk

sup
u∈B∩Q

I(u).

We first need to prove that ck is well-defined. It suffices to show that for any
B ∈ Γk, B ∩ Q 6= ∅ and ck > −∞. To see this, we first consider the attracting
domain of 0 in E:

O := {u ∈ BR/2 ∩ Em : ϕ(t, u)→ 0, as t→∞}.

Because 0 is a local minimum of the functional I, we observe that O is open, by the
continuous dependence of ODE on initial data. Moreover, ∂O is an invariant set
with respect to ϕ and P+

ε ∩P−ε ⊂ O. In particular, I(u) > 0 for u ∈ P+
ε ∩P−ε \{0}.

We now claim that for any B ∈ Γk with k ≥ 2, it holds

B ∩Q ∩ ∂O 6= ∅. (4.1)

Since ∂O ⊂ BR, we have inf∂O I > 0 by Lemma 4.1. Then according to the
selection of ρ, we can see inf∂O I ≥ inf∂Bρ I ≥ C > 0. Therefore,

sup
B∩Q

I ≥ inf
∂O

I ≥ inf
∂Bρ

I ≥ C > 0.

To obtain (4.1), we take B = h(BR ∩ Em\Y ) with γ(Y ) ≤ m−k and k ≥ 2. Define

Θ := {u ∈ BR ∩ Em : h(u) ∈ O}.

Then note that Θ is a bounded, open and symmetric set with 0 ∈ Θ and Θ ⊂
BR ∩Em. Therefore, by Borsuk-Ulam Theorem, γ(∂Θ) = m and we conclude that
h(∂Θ) ⊂ ∂O by the continuity of h. Consequently, h(∂Θ\Y ) ⊂ B ∩ ∂O and

γ(B ∩ ∂O) ≥ γ(h(∂Θ\Y )) ≥ γ(∂Θ\Y ) ≥ γ(∂Θ)− γ(Y ) ≥ k.

From P+
ε ∩ P−ε ⊂ O, we have P+

ε ∩ P−ε ∩ ∂O = ∅. We define a continuous and odd
function ϕ : W ∩ ∂O → S0 := {1,−1} by

ϕ(u) =

{
1 if u ∈ P+

ε ∩ ∂O,
−1 if u ∈ P−ε ∩ ∂O.
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Then, according to the definition of genus γ in the so-called Liusternik-Schnirelmann
category theory, we can easily get γ(W ∩ ∂O) = 1. Hence for k ≥ 2, we deduce
that

γ(B ∩Q ∩ ∂O) ≥ γ(B ∩ ∂O)− γ(W ∩ ∂O) ≥ k − 1 ≥ 1,
which implies that (4.1) holds. So for each k ≥ 2, ck is well-defined and increasing
with respect to k, by item (1) just above the proof of Theorem 1.1.
Step 2. Next we show that for every k ≥ 2, the problem possesses sign-changing
solutions at level ck. First we claim that Kck ∩ Q 6= ∅ for every k ≥ 2, which
implies that there exist some sign-changing critical points uk such that I(uk) = ck
and the conclusion follows. To see the claim, arguing by contradiction, we assume
that Kck ∩ Q = ∅ for some k ≥ 2. From the above discussions, we know that
ck ≥ C > 0 for all k ≥ 2. Owing to the deformation lemma above, there exist ε > 0
and η ∈ C([0, 1]× E,E) such that η(1, ·) is odd, η(1, u) = u for u ∈ Ick−2ε and

η(1, Ick+ε ∪W ) ⊂ Ick−ε ∪W. (4.2)

Then, thanks to the definition of ck, there is B ∈ Γk such that supB∩Q I ≤ ck + ε.
Setting D = η(1, B), by (4.2), we know that supD∩Q I ≤ ck−ε. On the other hand,
we can obtain I(u) ≤ ck − 2ε for u ∈ ∂BR ∩Em by Lemma 4.1 Then, gain D ∈ Γk
by item (2), just above the proof of Theorem 1.1. Consequently, ck ≤ ck − ε, this
is absurd.
Step 3. We prove that ck →∞ as k →∞. Indeed, we may assume that ck → c <
∞ as k → ∞. Because I satisfies Palais-Smale condition, Kc 6= ∅ and is compact.
Moreover, we note that Kq

c 6= ∅. We take a sequence of sign-changing solutions {uk}
to the problem with I(uk) = ck. By the Sobolev embedding inequality, we obtain
‖u±k ‖ ≥ c > 0. Since I satisfies the Palais-Smale condition and the mapping u 7→ u±

is continuous on E, up to a subsequence, the limit u of {uk} is still sign-changing
and u ∈ Kq

c , where u± := min{±u ≥ 0}.
Suppose γ(Kq

c ) = s. By Palais-Smale condition again and the statement above,
Kq
c is compact. And there exists a neighborhood N of Kq

c with Kq
c ⊂ N such that

γ(N) = s, owing to the “continuous” property of the genus.
Then, by the deformation lemma again, there exist ε > 0 and η ∈ C([0, 1]×E,E)

such that η(1, ·) is odd, η(1, u) = u for u ∈ Ic−2ε and

η(1, Ic+ε ∪W\N) ⊂ Ic−ε ∪W. (4.3)

In view of the assumption that ck → c as k → ∞ and monotonicity of ck, ck+s ≥
ck ≥ c− 1

2ε for k enough large. By the definition of ck+s, we can find a B ∈ Γk+s

such that
I(u) ≤ ck+s + ε ≤ c+ ε, for all u ∈ B ∩Q.

Then this implies B ⊂ Ic+ε ∪W , and by (3.3),

η(1, B\N) ⊂ Ic−ε ∪W.
From Lemma 4.1, it is easy to see I(u) < c − 2ε for all u ∈ ∂BR ∩ Em, it follows
that η(1, B\N) ∈ Γk and

ck ≤ sup
η(1,B\N)∩Q

I ≤ c− ε,

which contradicts ck ≥ c− 1
2ε. Therefore ck →∞ as k →∞.

From Step 2, we know that for any k ≥ 2, the problem possesses sign-changing
solutions at level ck. By the arbitrariness of k ≥ 2 and ck → ∞ as k → ∞, we
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obtain that the problem possesses infinity many sign-changing solutions. The proof
is complete. �

To conclude this addendum, the authors want to express their sincere gratitude
to the readers who pointed out our mistake in the original proof.
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