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STABLE SOLITARY WAVES FOR ONE-DIMENSIONAL
SCHRÖDINGER-POISSON SYSTEMS

GUOQING ZHANG, WEIGUO ZHANG, SANYANG LIU

Abstract. Based on the concentration compactness principle, we shoe the ex-

istence of ground state solitary wave solutions for one-dimensional Schrödinger-

Poisson systems with large L2-norm in the energy space. We also obtain orbital
stability for ground state solitary waves.

1. Introduction

Consider the one-dimensional Schrödinger-Poisson system

i∂tψ + ∂xxψ +Wψ + b|ψ|p−2ψ = 0, (t, x) ∈ R1+1,

−∂xxW = |ψ|2, (t, x) ∈ R1+1,

ψ(0, x) = ψ0(x),

(1.1)

where p > 3, b is a real constant. The self-consistent Poisson potential W is
explicitly given by

Wψ(t, x) = −1
2

(|x| ∗ |ψ(t, x)|2) = −1
2

∫ +∞

−∞
|x− y||ψ(t, y)|2dy.

Problem (1.1) can be reduced to the nonlinear nonlocal Schrödinger equation

i∂tψ + ∂xxψ −
1
2

(|x| ∗ |ψ(t, x)|2)ψ + b|ψ|p−2ψ = 0, (t, x) ∈ R1+1,

ψ(0, x) = ψ0(x).
(1.2)

The model equation (1.2) appears in various frameworks, such as wave propagation
in fibre optics to biophysics [8], one-dimensional reduction of electron density in
plasma physics [2].

Recently, one-dimensional (1D) Schrödinger-Poisson system have been studied
extensively. In 2005, Stimming [14] obtained the global existence result for (1.2)
by using the semi-group theory. In 2007, De Leo, Rial [7] studied the global well-
posedness and smoothing effect of (1.2). In 2011, Masaki [12] proved that (1.2) is
globally well-posed in the energy space, by means of perturbation methods.
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We are interested in the search of solitary wave solutions of (1.2), i.e., solutions
to (1.2) in the form

ψ(t, x) = e−iλtu(x), λ ∈ R,
and u solving

− ∂xxu+
1
2

(|x| ∗ |u|2)u− b|u|p−2u = λu, λ ∈ R. (1.3)

As b = 0, based on the rearrangement inequality, Choquard, Stubble [6] proved the
existence and uniqueness result of ground states for (1.3). Hartmann, Zakvzewski
[9] obtained the analytic solitary wave solutions which is approximated by a Gauss-
ian, and soloved (1.3) numerically.

In this article, we look for solutions u with a priori prescribed large L2-norm
by using the concentration compactness principle and the constraint minimization
method. Notice that the Schrödinger-Poisson system in three dimensional space,
Catto, Dolbeault, Sanchez, Soler [3] reviewed some recent results and open prob-
lems concerning the existence of solitary wave solutions in the frame work of the
concentration compactness principle.

This article is organized as follows. In Section 2, we give some preliminary results
and state our main theorems. In Section 3, we prove the existence of ground state
solitary wave solutions with sufficiently large L2-norm for (1.3).

2. Preliminary results and main theorems

For any 1 ≤ q < +∞, Lq(R) is the usual Lebesgue space endowed with the norm
|u|qq =

∫ +∞
−∞ |u|

qdx. H1(R) is the usual Sobolev space with the norm ‖u‖2H1(R) =∫ +∞
−∞ (|∂xu|2 + |u|2)dx. Consider the natural functional space X = {u : u ∈
H1(R),

√
|x|u ∈ L2(R)}. The energy space X [12] is a Hilbert space with norm

given by

‖u‖2X = ‖u‖2H1(R) +
∫ +∞

−∞
|x|u2(x)dx = ‖u‖2H1(R) + |u|2∗,

where |u|2∗ =
∫ +∞
−∞ |x|u

2(x)dx. By Rellich’s criterion [13], we have the following
result.

Lemma 2.1. X is compactly embedded in Lq(R) for all q ∈ [2,+∞).

Masaki [12] proved the following lemma in 2011.

Lemma 2.2. When b > 0, 3 ≤ p < 6, ψ0(x) ∈ X, problem (1.1) is globally
well-posed in the energy space X.

We consider the symmetric bilinear form

(u, v) 7→ B0(u, v) =
∫ +∞

−∞

∫ +∞

−∞
|x− y|u(x)v(y) dx dy,

and define the functional V : H1(R)→ R ∪ {+∞} as

V (u) = B0(u2, u2) =
∫ +∞

−∞

∫ +∞

−∞
|x− y|u2(x)u2(y) dx dy.

Lemma 2.3. Let {un} be a sequence in L2(R) such that un → u in L2(R) \ {0},
{vn} be a bounded sequence in L2(R) and supn∈N B0(u2

n, v
2
n) <∞. Then there exist

n0 ∈ N, C > 0 such that |un|∗ < C for n ≥ n0.
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Proof. From the assumptions and Egorov’s Theorem, that there exist n0 ∈ N, R,
δ > 0 and A ⊂ BR(0) such that |A| > 0 and u2

n(x) ≥ δ for all n ≥ n0. Since

|x− y| ≥ |y|
2
≥
√
|y| for all x ∈ BR(0) and y ∈ R \B2R(0),

we have

B0(un, vn) ≥
∫

R\B2R(0)

∫
A

|x− y||un(x)|2|vn(y)|2 dx dy

≥ δ|A|
2

∫
R\B2R(0)

|y||vn(y)|2dy

≥ δ|A|
2

(|vn|2∗ − 2R|vn|22).

Hence, we have |un|∗ < C for all n ≥ n0 because B0(un, vn) and |vn|22 are bounded.
�

Remark 2.4. (1) From Lemma 2.3, we obtain that if B0(un, vn)→ 0 and |vn|2 → 0
as n→∞, then |un|∗ → 0 as n→∞.

(2) From Lemma 2.1 and Lemma 2.3, it is easy to obtain that if un ⇀ u weakly
in X, then we have B0(u2

n, (un − u)u)→ 0 as n→∞.

Now, for problem (1.3), we consider the functionals I,N : X → R defined by

I(u) =
1
2

∫ +∞

−∞
|∂xu|2dx+

1
4

∫ +∞

−∞

∫ +∞

−∞
|x− y|u2(x)u2(y) dx dy − b

p

∫ +∞

−∞
|u|pdx

=
1
2

∫ +∞

−∞
|∂xu|2dx+

1
4
V (u)− b

p

∫ +∞

−∞
|u|pdx,

and

N(u) =
(∫ +∞

−∞
|u|2dx

)1/2

= |u|2.

From [6, 13], we obtain that the functionals I,N are well-defined on X.

Lemma 2.5. The functional I is of class C1 on X.

Proof. Let {un} be a sequence in X converging to some u ∈ X, we obtain that
{un} is bounded and

|V (un)− V (u)|

=
∫ +∞

−∞

∫ +∞

−∞
|x− y||un(x)|2|u2

n(y)− u2(y)| dx dy

+
∫ +∞

−∞

∫ +∞

−∞
|x− y||u2

n(x)− u2(x)||u(y)|2 dx dy

≤
∫ +∞

−∞

∫ +∞

−∞
(|x|+ |y|)|un(x)|2|un(y)− u(y)||un(y) + u(y)| dx dy

+
∫ +∞

−∞

∫ +∞

−∞
(|x|+ |y|)|un(x)− u(x)||un(x) + u(x)||u(y)|2 dx dy

≤ |un(x)|2∗|un − u|22|un + u|22 + |un|22|un − u|∗|un + u|∗
+ |un|22|un − u|∗|un + u|∗ + |u|2∗|un − u|2|un + u|2
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≤ C‖un − u‖2X ,

for some C > 0. So, we obtain that V (un) → V (u) as n → ∞. By a simple
calculation, we have

V ′(u)v = 4
∫ +∞

−∞

∫ +∞

−∞
|x− y|u(x)2u(y)v(y) dx dy, ∀v ∈ X.

When un → u in X, we can argue as before and obtain

|V ′(un)v − V ′(u)v|

= 4
∫ +∞

−∞

∫ +∞

−∞
|x− y|(u2

n(x)un(y)− u2(x)u(y))v(y) dx dy

≤ 4[
∫ +∞

−∞

∫ +∞

−∞
(|x|+ |y|)(un(x)− u(x))(un(x) + u(x))|un(y)||v(y)| dx dy

+
∫ +∞

−∞

∫ +∞

−∞
(|x|+ |y|)(un(y)− u(y))|u(x)|2|v(y)| dx dy]

≤ 4(|un − u|∗|un + u|∗|un|22|v|2 + |un − u|2|u|2∗|v|2)

≤ 4C‖un − u‖X‖v‖X , ∀v ∈ X.

In conclusion, we obtain that V (u) is C1 on X. Since 3 ≤ p < 6, by Lemma 2.1,
we obtain that |u|pp is C1 on X. Hence, the functional I is of class C1 on X.

On the other hand, it is easy to obtain that N(u) is C1 on X by Lemma 2.1. �

Inspired by the papers [3, 8], we look for the solution of the problem (1.3) with a
priori prescribed L2-norm. The natural way is to consider the constrained critical
points of the functional I on the set

BM = {u ∈ X : |u|2 = M}.

So by a solution of (1.3) we mean a couple (λM , uM ) ∈ R × X, where λM is the
Lagrange multiplier associated with the critical point uM on BM . From a physical
point of view, the most interesting case is the existence of solutions for (1.3) with
minimal energy (ground state solutions), that is the minimizers of

IM = inf
u∈BM

I(u). (2.1)

Functionals I, N are translation invariant, i.e., for every z ∈ R,

I(u(·+ z)) = I(u), N(u(·+ z)) = N(u).

Therefore, the concentration compactness principle [10, 11] is the natural framework
for the study of the existence of a minimizer, and for the analysis of the minimizing
sequence of (2.1). It is known that, in this kind of problems, the main difficulty
is the lack of compactness of the minimizing sequences {un} in BM ; indeed, two
possible bad scenarios are possible: (1) (Vanishing)

un ⇀ 0; (2.2)

(2) (Dichotomy)
un ⇀ ū 6= 0 and 0 < |ū|2 < M. (2.3)

By the concentration compactness principle, we obtain the strict inequalities

IM < IM ′ + I√M2−M ′2 for all M,M ′, and 0 < M ′ < M,
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as necessary and sufficient conditions for the precompactness of the minimizing
sequences {un} in the problem (2.1). Now, we state our main theorems in this
paper.

Theorem 2.6. Let b > 0, 3 < p < 6. Then the minimizing sequences for (2.1) is
precompact in X up to translations with prescribed large L2-norm. In particular,
there exists a couple (λM , uM ) ∈ R×X solution of (1.3), i.e., problem (1.1) has a
ground state solitary wave solution.

Theorem 2.7. Let b > 0, 3 < p < 6. Then the set

SM = {eiθu, θ ∈ [0, 2π), |u|2 = M, I(u) = IM},
is orbitally stable, i.e., the ground state solitary wave solution of (1.1) is orbitally
stable.

The definition of orbital stability is recalled in Definition 3.3 below.

3. Existence and orbital stability

In this case, our aim is to discuss the applicability of concentration compactness
principle to the minimizing problem (2.1) for proving the existence of ground state
solutions of (1.3). The next result is the Gagliardo-Nirenberg inequality in one-
dimensional space, see [4, p. 9].

Lemma 3.1. For all u ∈ H1(R), we have

|u|q ≤ C|u|(1−δ)2 |∂xu|δ2, (3.1)

where 2 ≤ q <∞, δ = 1
2 −

1
q , the constant C only depends on q and δ.

By Lemma 3.1, we obtain that for every M > 0, the functional I is bounded
from below on BM . Indeed, from (3.1) and positive property of V (u), we have

I(u) ≥ 1
2

∫ +∞

−∞
|∂xu|2dx−

b

p

∫ +∞

−∞
|u|pdx

≥ 1
2
|∂xu|22 −

b

p
CM

p(1− δ)
2

|∂xu|pδ2 .

Since 3 < p < 6, we have pδ = p
2 − 1 < 2. Hence, we have

I(u) ≥ 1
2

∫ +∞

−∞
|∂xu|2dx+ o(1),

which concludes the proof. Moreover, we also obtain that I is coercive on BM .
Notice that if we set uθ(x) = θ(1−

α
2 )u( x

θα ), θ > 0, α is a real number, we have∫ +∞

−∞
|uθ|2dx = |uθ|22 = θ2|u|22,∫ +∞

−∞
|∂xuθ|2dx = θ(2−2α)

∫ +∞

−∞
|∂xu|2dx,∫ +∞

−∞

∫ +∞

−∞
|x− y||uθ(x)|2|uθ(y)|2 dx dy

= θ(4+α)

∫ +∞

−∞

∫ +∞

−∞
|x− y||u(x)|2|u(y)|2 dx dy,

(3.2)
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−∞
|uθ|pdx = θ(1−

α
2 )p+α

∫ +∞

−∞
|u|pdx.

Lemma 3.2. If b > 0, 3 < p < 6, then there exists M1 > 0, such that

IM ′ < 0, for all M ′ ∈ (M1,+∞),
IM < IM ′ + I√M2−M ′2 ,

for all M > M1 and 0 < M ′ < M .

Proof. By (3.2), we have

I(uθ) =
θ(2−2α)

2

∫ +∞

−∞
|∂xu|2dx+

θ(4+α)

4

∫ +∞

−∞

∫ +∞

−∞
|x− y||u(x)|2|u(y)|2 dx dy

− b

p
θ(1−

α
2 )p+α

∫ +∞

−∞
|u|pdx

= θ2[I(u) +
θ(−2α) − 1

2

∫ +∞

−∞
|∂xu|2dx

+
θ(2+α) − 1

4

∫ +∞

−∞

∫ +∞

−∞
|x− y||u(x)|2|u(y)|2 dx dy

− b

p
(θ(1−

α
2 )p+α−2 − 1)

∫ +∞

−∞
|u|pdx]

= θ2(I(u) + g(θ, u)),

where

g(θ, u) =
θ(−2α) − 1

2

∫ +∞

−∞
|∂xu|2dx

+
θ(2+α) − 1

4

∫ +∞

−∞

∫ +∞

−∞
|x− y||u(x)|2|u(y)|2 dx dy

− b

p
(θ(1−

α
2 )p+α−2 − 1)

∫ +∞

−∞
|u|pdx.

Let α = −2/3, we have

I(uθ) =
1
2
θ

10
3

∫ +∞

−∞
|∂xu|2dx+

1
4
θ

10
3

∫ +∞

−∞

∫ +∞

−∞
|x− y||u(x)|2|u(y)|2 dx dy

− b

p
θ(

4
3p−

2
3 )

∫ +∞

−∞
|u|pdx, ∀uθ ∈ X.

Hence, we obtain that I(uθ) < 0 for a sufficiently large θ which proves the first case
because 4

3p−
2
3 >

10
3 for 3 < p < 6.

Claim: IθM ′ < θ2IM ′ for θ sufficiently large. Indeed, let {un} be a minimizing
sequence in BM ′ with IM ′ < 0. Since IM ′(un) < 0, we have

0 < C1 <

∫ +∞

−∞
|∂xun|2dx < C2, 0 < C3 <

∫ +∞

−∞
|un|pdx < C4.

When α = −2/3, we have

g(θ, un) =
(θ

4
3 − 1)

2

∫ +∞

−∞
|∂xun|2dx
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+
(θ

4
3 − 1)

4

∫ +∞

−∞

∫ +∞

−∞
|x− y||un(x)|2|un(y)|2 dx dy

− b

p
(θ(

4
3p−

8
3 ) − 1)

∫ +∞

−∞
|un|pdx,

with 4
3p−

8
3 >

4
3 , as 3 < p < 6. With a simple computation we obtain that

d

dθ
g(θ, un)|θ=1 < 0 and

d2

dθ2
g(θ, un) < 0, for all θ > 1.

In conclusion, we obtain that g(θ, un) < 0 for all θ > 1 and IθM ′ < θ2I(un) = θ2IM ′ .
From the claim, we obtain that for M ′ sufficiently large,

IM = I M
M′M

′ <
M2

M ′2
IM ′

=
(M2 −M ′2 +M ′2)

M ′2
IM ′

= IM ′ +
(M2 −M ′2)

M ′2
I M′√

M2−M′2

√
M2−M ′2

< IM ′ + I√M2−M ′2 .

Hence, we complete the proof. �

Proof of Theorem 2.6. Since the functional I is bounded below and coercive on BM ,
we obtain that the minimizing sequence {un} is bounded in H1(R2). By Lemma
3.2, we obtain that IM < 0 on BM for sufficiently large M . Hence, we have that

sup
x∈R

∫
B2(x)

|un|2dx > 0 textand un ⇀ u 6= 0 in H1(R2).

and the vanishing case does not hold. On the other hand, by Lemma 3.2, IM <
IM ′ + I√M2−M ′2 for all M ′ > M1 and 0 < M ′ < M , and the dichotomy case does
not hold. Hence, from concentration compactness principle, we obtain that

there exists xn ∈ R such that ũn = un(y − xn) ∈ X, n ∈ N, (3.3)

is precompact in H1(R) and converges strongly to some function u ∈ H1(R)\{0}.
We may also assume that ũn → u pointwise almost everywhere in R.
Claim 1: |ũn|∗ is bounded in n. Indeed, since {ũn} is a minimizing sequence for
IM on BM , by the version of Ekeland Variational principle in [p.122]w1, we obtain
that there exists λ ∈ R such that

I ′(ũn)− λN ′(ũn)→ 0, I(ũn)− λN(ũn)→ IM − λM2 as n→∞. (3.4)

Hence, we have

B0(ũ2
n, ũ

2
n) = V (ũn) = V (un) = o(1) + λ‖un‖2L2(R) + b‖un‖pLp(R) − ‖un‖

2
H1(R)

as n → ∞, and the right-hand side of this equality remains bounded in n. So, we
obtain that B0(ũ2

n, ũ
2
n) is bounded in n. By Lemma 2.3 and Remark 2.4, we have

|ũn|∗ is bounded in n. Hence, by the definition of the norm ‖ũn‖X , we obtain that
‖ũn‖X <∞.
Claim 2: ‖ũn − u‖X → 0 as n→∞. Indeed, by (3.4), we have

I ′(ũn)(ũn − u)− λN ′(ũn)(ũn − u)→ 0 as n→∞.
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By a simple calculation, we obtain that

‖ũn‖2H1(R) − ‖u‖
2
H1(R) + V (ũn)(ũn − u)− b

∫ +∞

−∞
|ũn|p−2ũn(ũn − u)dx

− λ
∫ +∞

−∞
|ũn|(ũn − u)dx = o(1).

Since ‖ũn‖X is bounded in X, we obtain that ũn ⇀ u weakly in X. By Lemma
2.1, we obtain that ũn → u strongly in Ls(R) for s ∈ [2,∞). Hence, we have

V ′(ũn)(ũn− u) = B0(ũ2
n, ũn(ũn− u)) = B0(ũ2

n, (ũn− u)2) +B0(ũ2
n, u(ũn− u))→ 0

as n → ∞. By Lemma 2.3, we obtain that |ũn − u|∗ → 0 as n → ∞. Hence, we
obtain that ‖ũn − u‖X → 0 as n→∞.

From Claim 2, we obtain that the minimizing sequence {ũn} of (2.1) is precom-
pact in X with prescribed large L2-norm. So there exists a couple (λM , uM ) ∈ R×X
solution of (1.3), and (1.1) has a ground state solitary wave solution. Let

SM = {eiθu(x), θ ∈ [0, 2π), |u|2 = M, I(u) = IM}.
�

Definition 3.3 (c3). We say SM is orbitally stable if for every ε > 0, there exists
δ(ε) > 0 such that if ψ0 ∈ X satisfies infv∈SM ‖v − ψ0‖X < δ(ε), then we have

sup
t>0

inf
v∈SM

‖ψ(t, x)− v(x)‖X < ε,

where ψ(t, ·) is the solution of (1.1) with initial datum ψ0.

Proof of Theorem 2.7. By [Theorem 1.5]m1, we obtain the solution of (1.1) con-
serves |ψ|2L2(R) and the energy

E(t, ψ) =
1
2
|∂xψ|22 +

1
4

∫ +∞

−∞

∫ +∞

−∞
|x− y||ψ(t, x)|2|ψ(t, y)|2 dx dy

− b

p

∫ +∞

−∞
|ψ(t, x)|pdx,

i.e., ∫ +∞

−∞
|ψ(t, x)|2dx =

∫ +∞

−∞
|ψ0(x)|2dx,

and
1
2
|∂xψ|22 +

1
4

∫ +∞

−∞

∫ +∞

−∞
|x− y||ψ(t, x)|2|ψ(t, y)|2 dx dy − b

p

∫ +∞

−∞
|ψ|pdx

=
1
2
|∂xψ0|22 +

1
4

∫ +∞

−∞

∫ +∞

−∞
|x− y||ψ0(x)|2|ψ0(y)|2 dx dy − b

p

∫ +∞

−∞
|ψ0|pdx.

Suppose by contradiction that there exists a M such that SM is not orbitally stable.
Hence, there exist a subsequence {ψn(0, x)} and {tn} ∈ R such that

inf
v∈SM

‖ψn(0, x)− v(x)‖X → 0, inf
v∈SM

‖ψn(tn, x)− v(x)‖X ≥ ε as n→∞.

Then, we obtain that there exists uM ∈ X minimizer of IM and θ ∈ [0, 2π] such
that v = eiθuM ,

|ψn(0, x)|2 → |v|2 = M, I(ψn(0, x))→ I(v) = IM as n→∞.
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Actually, we can assume that ψn(0, x) ∈ BM (there exists αn = M
|ψn(0,x)|2 → 1 so

that αnψn(0, x) ∈ BM and I(αnψn(0, x))→ IM , i.e., we can replace ψn(0, x) with
αnψn(0, x)). So, we have {ψn(0, x)} is a minimizing sequence for IM and

I(ψn(tn, x)) = I(ψn(0, x)),

and {ψn(tn, x)} is a minimizing sequence for IM . Since we obtain that every mini-
mizing sequence has a subsequence converging in X−norm to a minimum on BM ,
and it is a contradiction. �
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