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EXISTENCE OF SOLUTIONS TO FRACTIONAL DIFFERENTIAL
EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS

AT RESONANCE IN HILBERT SPACES

HUA-CHENG ZHOU, FU-DONG GE, CHUN-HAI KOU

Abstract. This article is devoted to investigating the existence of solutions

to fractional multi-point boundary-value problems at resonance in a Hilbert

space. More precisely, the dimension of the kernel of the fractional differential
operator with the boundary conditions be any positive integer. We point

out that the problem is new even when the system under consideration is

reduced to a second-order ordinary differential system with resonant boundary
conditions. We show that the considered system admits at least a solution by

applying coincidence degree theory first introduced by Mawhin. An example
is presented to illustrate our results.

1. Introduction

In this article, we are concerned with the existence of solutions to the following
fractional multi-point boundary value problems(BVPs) at resonance

Dα
0+x(t) = f(t, x(t), Dα−1

0+ x(t)), 1 < α ≤ 2, t ∈ (0, 1),

I2−α
0+ x(t)|t=0 = θ, x(1) = Ax(ξ),

(1.1)

where Dα
0+ and Iα0+ are the Riemann-Liouville differentiation and integration, re-

spectively; θ is the zero vector in l2 := {x = (x1, x2, . . . , .) :
∑∞
i=1 |xi|2 < ∞};

A : l2 → l2 is a bounded linear operator satisfying 1 ≤ dim ker(I − Aξα−1) < ∞;
ξ ∈ (0, 1) is a fixed constant; f : [0, 1] × l2 × l2 → l2 is a Carathéodory function;
that is,

(i) for each (u, v) ∈ l2 × l2, t 7→ f(t, u, v) is measurable on [0, 1];
(ii) for a.e. t ∈ [0, 1], (u, v) 7→ f(t, u, v) is continuous on l2 × l2;

(iii) for every bounded set Ω ⊆ l2 × l2, the set {f(t, u, v) : (u, v) ∈ Ω} is a
relatively compact set in l2. Moreover, the function

ϕΩ(t) = sup{‖f(t, u, v)‖l2 : (u, v) ∈ Ω} ∈ L1[0, 1],

where ‖x‖l2 =
√∑∞

i=1 |xi|2 is the norm of x = (x1, x2, . . . , ·)> in l2.
System (1.1) is said to be at resonance in l2 if dim ker(I−Aξα−1) ≥ 1, otherwise,

it is said to be non-resonant. In the past three decades, the existence of solutions for
the fractional differential equations with the boundary value conditions have been
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given considerable attention by many mathematical researchers. The attempts on
dim ker(I − Aξα−1) = 0, non-resonance case, for fractional differential equations
are available in [1, 2, 10, 11, 17, 21, 22, 23], and the attempts on 1 ≤ dim ker(I −
Aξα−1) ≤ 2, resonance case, can be found in [3, 4, 8, 9, 13, 14, 18, 20]. However, to
the best of our knowledge, all results derived in these papers are for one equation
with dim kerL = 0 or 1 and for two equations with dim kerL = 2. Recently, the
authors in [16] investigated the following second differential system

u′′(t) = f(t, u(t), u′(t)), 0 < t < 1,

u′(0) = θ, u(1) = Au(η)
(1.2)

where f : [0, 1]×Rn ×Rn → Rn is a Carathéodory function and the square matrix
A satisfies certain condition. Moreover, fractional order α ∈ (1, 2] case was inves-
tigated in [7], where the results for second order ordinary differential equation in
[16] was generalized to fractional order case. However, these considered problems
were investigated in finite dimensional space. Therefore, it is more natural to ask
whether it exists a solution when such kind of boundary value problem considered
in a infinite dimensional space. Recently, in [24], the author discussed the existence
of solution for fractional boundary value problem with non-resonant conditions in
an arbitrary Banach space which, of course, can be in the infinite dimensional space.
However, it is still open for the equation in infinite dimensional space with reso-
nance conditions. It deservers to point out that the problem new even when α = 2
the system (1.1) becomes second order ordinary differential system with resonant
boundary conditions. In this paper, we investigate the existence of solution for frac-
tional differential equation in l2. There is remarkable difference that any bounded
closed set is compact in finite dimensional space, while bounded closed set may
be not compact in the infinite dimensional, for instance, {x ∈ l2 : ‖x‖ ≤ 1} ⊂ l2

is non-compact in l2. Therefore, compactness criterion of the infinite dimensional
space is more complicated, the problem we considered is in the infinite dimensional
setting.

To apply the coincidence degree theory of Mawhin [15], we suppose additionally
that A satisfies 1 ≤ dim ker(I −Aξα−1) <∞ and one of the following conditions

• ](A1)] Aξα−1 is idempotent, that is, A2ξ2α−2 = Aξα−1, or;
• ](A2)] A2ξ2α−2 = I, where I stands for the identity operator from l2 to l2.

The requirement 1 ≤ dim ker(I − Aξα−1) is to make the problem to be resonant
and the requirement dim ker(I −Aξα−1) <∞ is to make the kernel operator to be
a Fredholm operator which is a basic requirement in applying the Mawhin theorem.

It is also obvious that dim ker(I−Aξα−1) can take any integer n ∈ N for suitable
A, which can be regards as a generalization of the previous efforts [3, 4, 8, 9, 13,
14, 18, 20]. However, we point out that without the above assumptions (A1) or
(A2), it will be difficult to construct the projector Q as (3.1) below. Actually, the
assumptions (A1) or (A2) play a key role in the process of the proof. This is the
reason why we only choose the two special cases of A. Without such an assumption,
i.e., the general A satisfying dim ker(I − Aξα−1) < ∞, (1.1) may be a challenge
problem, which we will study in the future.

In particular, when A = ξ1−αI, it is clear that A satisfies (A2) but with
dim ker(I − Aξα−1) = ∞, which leads to the kernel operator not to be Fredholm
operator. Thus, such operator is excluded. Unlike the case in Rn, the opera-
tor A is allowed to be identity operator ξα−1I. Let A = diag(ξ1−αIk, B) with
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dim ker(I − Bξα−1) = 0 and B satisfying (A1) or (A2), where Ik is the identity
matrix in Rk. It is seen that dim ker(I − Aξα−1) = k,

kerL = {(c1, c2, . . . , ck, 0, 0, . . . , )>tα−1 : ci ∈ R, i = 1, 2, . . . , k}
and dim kerL = k, where L is defined by (2.2) below. So under this boundary
condition, the system (1.1) is at resonance. The goal of this paper is to study the
existence of solutions for the fractional differential equations with boundary value
conditions at resonance in Hilbert space l2.

We proceed as follows: In Section 2, we give some necessary background and some
preparations for our consideration. The proof for the main results is presented in
Section 3 by applying the coincidence degree theory of Mawhin. In Section 4, an
example is given to illustrate the main result.

2. Preliminaries

In this section, we introduce some necessary definitions and lemmas which will
be used later. For more details, we refer the reader to [5, 12, 15] and the references
therein.

Definition 2.1 ([12]). The fractional integral of order α > 0 of a function x :
(0,∞)→ R is given by

Iα0+x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Remark 2.2. The notation Iα0+x(t)|t=0 means that the limit is taken at almost all
points of the right-sided neighborhood (0, ε)(ε > 0) of 0 as follows:

Iα0+x(t)|t=0 = lim
t→0+

Iα0+x(t).

Generally, Iα0+x(t)|t=0 is not necessarily to be zero. For instance, let α ∈ (0, 1),
x(t) = t−α. Then

Iα0+t−α|t=0 = lim
t→0+

1
Γ(α)

∫ t

0

(t− s)α−1s−αds = lim
t→0+

Γ(1− α) = Γ(1− α).

Definition 2.3 ([12]). The fractional derivative of order α > 0 of a function x :
(0,∞)→ R is given by

Dα
0+x(t) =

1
Γ(n− α)

( d
dt

)n ∫ t

0

x(s)
(t− s)α−n+1

ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,∞).

Lemma 2.4 ([12]). Assume that x ∈ C(0,+∞) ∩ Lloc(0,+∞) with a fractional
derivative of order α > 0 belonging to C(0,+∞) ∩ Lloc(0,+∞). Then

Iα0+Dα
0+x(t) = x(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

for some ci ∈ R, i = 1, . . . , n, where n = [α] + 1.

For any x(t) = (x1(t), x2(t), . . . )> ∈ l2, the fractional derivative of order α > 0
of x is defined by

Dα
0+x(t) = (Dα

0+x1(t), Dα
0+x2(t), . . . )> ∈ l2.
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The following definitions and the coincidence degree theory are fundamental in the
proof of our main result. We refer the reader to [5, 15].

Definition 2.5. Let X and Y be normed spaces. A linear operator L : dom(L) ⊂
X → Y is said to be a Fredholm operator of index zero provided that

(i) imL is a closed subset of Y , and
(ii) dim kerL = codim imL < +∞.

It follows from definition 2.5 that there exist continuous projectors P : X → X
and Q : Y → Y such that

imP = kerL, kerQ = imL, X = kerL⊕ kerP, Y = imL⊕ imQ

and the mapping L|domL∩kerP : domL∩ kerP → imL is invertible. We denote the
inverse of L|domL∩kerP by KP : imL → domL ∩ kerP . The generalized inverse
of L denoted by KP,Q : Y → domL ∩ kerP is defined by KP,Q = KP (I − Q).
Furthermore, for every isomorphism J : imQ → kerL, we can obtain that the
mapping KP,Q + JQ : Y → domL is also an isomorphism and for all x ∈ domL,
we know that

(KP,Q + JQ)−1x = (L+ J−1P )x. (2.1)

Definition 2.6. Let L be a Fredholm operator of index zero, let Ω ⊆ X be a
bounded subset and domL ∩ Ω 6= ∅. Then the operator N : Ω→ Y is called to be
L-compact in Ω if

(i) the mapping QN : Ω→ Y is continuous and QN(Ω) ⊆ Y is bounded, and
(ii) the mapping KP,QN : Ω→ X is completely continuous.

Assume that L is defined by Definition 2.6 and N : Ω → Y is L-compact. For
any x ∈ Ω, by (2.1), we shall see that

Lx = (KP,Q + JQ)−1x− J−1Px

= (KP,Q + JQ)−1
[
Ix−KP,QJ

−1Px− JQJ−1Px
]

= (KP,Q + JQ)−1(Ix− Px).

Then we can equivalently transform the existence problem of the equation Lx =
Nx, x ∈ Ω into a fixed point problem of the operator P + (KP,Q + JQ)N in Ω.

This can be guaranteed by the following lemma, which is also the main tool in
this paper.

Lemma 2.7 ([15]). Let Ω ⊂ X be bounded, L be a Fredholm mapping of index zero
and N be L-compact on Ω. Suppose that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ ((domL\ kerL) ∩ ∂Ω)× (0, 1);
(ii) Nx 6∈ imL for every x ∈ kerL ∩ ∂Ω;

(iii) deg(JQN |kerL∩∂Ω,Ω∩kerL, 0) 6= 0, with Q : Y → Y a continuous projector
such that kerQ = imL and J : imQ→ kerL is an isomorphism.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

In this paper, we use spaces X, Y introduced as

X =
{
x(t) ∈ l2 : x(t) = Iα−1

0+ u(t), u ∈ C([0, 1]; l2), t ∈ [0, 1]
}

with the norm ‖x‖X = max{‖x‖C([0,1];l2), ‖Dα−1
0+ x‖C([0,1];l2)} and Y = L1([0, 1]; l2)

with the norm ‖y‖L1([0,1];l2) =
∫ 1

0
‖y(s)‖l2ds, respectively, where ‖x‖C([0,1];l2) =

supt∈[0,1] ‖x(t)‖l2 .
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We have the following compactness criterion on subset F of X which is a slight
modification of [19, Lemma 2.2] (see also the Ascoli-Arzela theorem [6, Theorem
1.2.5, p. 15]).

Lemma 2.8. F ⊂ X is a sequentially compact set if and only if F (t) is a relatively
compact set and equicontinuous which are understood in the following sense:

(1) for any t ∈ [0, 1], F (t) := {x(t)|x ∈ F} is a relatively compact set in l2;
(2) for any given ε > 0, there exists a δ > 0 such that

‖x(t1)− x(t2)‖l2 < ε, ‖Dα−1
0+ x(t1)−Dα−1

0+ x(t2)‖l2 < ε,

for t1, t2 ∈ [0, 1], |t1 − t2| < δ, for all x ∈ F .

Now we define the linear operator L : domL ⊆ X→ Y by

Lx := Dα
0+x, (2.2)

where domL = {x ∈ X : Dα
0+x ∈ Y, x(0) = θ, x(1) = Ax(ξ)}. Define N : X → Y

by
Nx(t) := f(t, x(t), Dα−1

0+ x(t)), t ∈ [0, 1]. (2.3)
Then the problem can be equivalently rewritten as Lx = Nx.

The next lemma plays a vital role in estimating the boundedness of some sets.

Lemma 2.9. Let z1, z2 ≥ 0, γ1, γ2 ∈ [0, 1) and λi, µi ≥ 0, i = 1, 2, 3, and the
following two inequalities hold,

z1 ≤ λ1z
γ1
1 + λ2z2 + λ3,

z2 ≤ µ1z1 + µ2z
γ2
2 + µ3

(2.4)

Then z1, z2 is bounded if λ2µ1 < 1.

Proof. From (2.4), we have

z1 ≤
λ1z

γ1
1 + λ2µ2z

γ2
2 + λ2µ3 + λ3

1− λ2µ1
,

z2 ≤
λ1µ1z

γ1
1 + µ2z

γ2
2 + λ3µ1 + µ3

1− λ2µ1
.

(2.5)

Let z = max{z1, z2}, κ1 = max{λ1, λ1µ1} and κ2 = max{λ2µ2, µ2}. It follows from
(2.5) that

z ≤ κ1z
γ1 + κ2z

γ2 + λ2µ3 + λ3µ1 + λ3 + µ3

1− λ2µ1
.

This, together with γ1, γ2 ∈ [0, 1), yields that z is bounded. �

Lemma 2.10. The operator L, defined by (2.2), is a Fredholm operator of index
zero.

Proof. For any x ∈ domL, by Lemma 2.4 and x(0) = θ, we obtain

x(t) = Iα0+Lx(t) + ctα−1, c ∈ l2, t ∈ [0, 1], (2.6)

which, together with x(1) = Ax(ξ), yields

kerL = {x ∈ X : x(t) = ctα−1, t ∈ [0, 1], c ∈ ker(I −Aξα−1)}
w ker(I −Aξα−1)tα−1.

(2.7)

Now we claim that

imL = {y ∈ Y : h(y) ∈ im(I −Aξα−1)}, (2.8)
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where h : Y→ l2 is a continuous linear operator defined by

h(y) :=
A

Γ(α)

∫ ξ

0

(ξ − s)α−1y(s)ds− I

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds. (2.9)

Actually, for any y ∈ imL, there exists a function x ∈ domL such that y = Lx. It
follows from (2.6) that x(t) = Iα0+y(t)+ctα−1. From this equality and x(1) = Ax(ξ),
we obtain

A

Γ(α)

∫ ξ

0

(ξ − s)α−1y(s)ds− I

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds = (I −Aξα−1)c, c ∈ l2,

which means that h(y) ∈ im(I −Aξα−1).
On the other hand, for any y ∈ Y satisfying h(y) ∈ im(I − Aξα−1), there exists

a constant c∗ such that h(y) = (I − Aξα−1)c∗. Let x∗(t) = Iα0+y(t) + c∗tα−1. A
straightforward computation shows that x∗(0) = θ and x∗(1) = Ax∗(ξ). Hence,
x∗ ∈ domL and y(t) = Dα

0+x∗(t), which implies that y ∈ imL.
Next, put ρA = κ(I −Aξα−1), where

κ =

{
1, if (A1) holds, i.e., A2ξ2α−2 = Aξα−1;
1
2 , if (A2) holds, i.e., A2ξ2α−2 = I.

(2.10)

For A2ξ2α−2 = Aξα−1, we have

ρ2
A = (I −Aξα−1)2 = I − 2Aξα−1 +A2ξ2α−2 = I −Aξα−1 = ρA,

(I − ρA)(ξ2α−1A− I) = Aξα−1(ξ2α−1A− I) = ξ3α−2A2 −Aξα−1

= (ξα − 1)Aξα−1 = (ξα − 1)(I − ρA).

(2.11)

For A2ξ2α−2 = I, we have

ρ2
A =

1
4

(I −Aξα−1)2 =
1
4

(I − 2Aξα−1 +A2ξ2α−2) =
1
2

(I −Aξα−1) = ρA,

(I − ρA)(ξ2α−1A− I)

=
1
2

(I +Aξα−1)(ξ2α−1A− I)

=
1
2

[ξ2α−1A− I + ξ3α−2A2 −Aξα−1] =
1
2

(ξα − 1)(I +Aξα−1)

= (ξα − 1)(I − ρA).

(2.12)

It follows from (2.11) and (2.12) that ρA satisfies the following properties

ρ2
A = ρA, (I − ρA)(ξ2α−1A− I) = (ξα − 1)(I − ρA). (2.13)

Furthermore, we note that if y = ctα−1, c ∈ l2, then

h(y) =
A

Γ(α)

∫ ξ

0

(ξ − s)α−1y(s)ds− I

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

=
(ξ2α−1A− I)c

Γ(α)Γ(2α)
.

(2.14)

Define the continuous linear mapping Q : Y→ Y by

Qy(t) :=
Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(y)tα−1, t ∈ [0, 1], y ∈ Y. (2.15)
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By the first identity in (2.13), we obtain (I − ρA)2 = (I − ρA), which together with
(2.13) implies

Q2y(t) =
Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(Qy(t))tα−1

=
Γ(α)Γ(2α)
ξα − 1

(I − ρA)
(ξ2α−1A− I)

Γ(α)Γ(2α)
Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(y)tα−1

=
Γ(α)Γ(2α)
ξα − 1

(I − ρA)2h(y)tα−1 = Qy(t);

that is, Q is a projection operator. The equality kerQ = imL follows from the
trivial fact that

y ∈ kerQ⇔ h(y) ∈ ker(I − ρA)⇔ h(y) ∈ im ρA

⇔ h(y) ∈ im(I −Aξα−1)⇔ y ∈ imL.

Therefore, we get Y = kerQ⊕ imQ = imL⊕ imQ.
Finally, we shall prove that imQ = kerL. Indeed, for any z ∈ imQ, let z = Qy,

y ∈ Y. By (2.13), we have

k(I −Aξα−1)z(t) = ρAz(t) = ρAQy(t) =
Γ(α)Γ(2α)
ξα − 1

ρA(I − ρA)g(y)tα−1 = θ,

which implies z ∈ kerL. Conversely, for each z ∈ kerL, there exists a constant
c∗ ∈ ker(I − Aξα−1) such that z = c∗tα−1 for t ∈ [0, 1]. By (2.13) and (2.14), we
derive

Qz(t) =
Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(c∗tα−1)tα−1 = c∗tα−1 = z(t), t ∈ [0, 1],

which implies that z ∈ imQ. Hence we know that imQ = kerL, i.e., the operator
L is a Fredholm operator of index zero. The proof is complete. �

Define the operator P : X→ X as follows

Px(t) =
1

Γ(α)
(I − ρA)Dα−1

0+ x(0)tα−1. (2.16)

Lemma 2.11. The mapping P : X→ X, defined by (2.16), is a continuous projector
such that

imP = kerL, X = kerL⊕ kerP

and the linear operator KP : imL→ domL ∩ kerP can be written as

KP y(t) = Iα0+y(t),

also
KP = (L|domL∩kerP )−1, ‖KP y‖X ≤ 1/Γ(α)‖y‖L1([0,1];l2).

Proof. By (2.16), one can see that P is a continuous operator. From the first
identity of (2.13), we have (I − ρA)2 = (I − ρA), which implies that the mapping
P is a projector. Moreover, if v ∈ imP , there exists a x ∈ X such that v = Px. By
the first identity of (2.13) again, we see that

1
Γ(α)

(I −Aξα−1)(I − ρA)Dα−1
0+ x(0) =

1
kΓ(α)

ρA(I − ρA)Dα−1
0+ x(0) = 0,
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which gives us v ∈ kerL. Conversely, if v ∈ kerL, then v(t) = c∗t
α−1 for some

c∗ ∈ ker(I −Aξα−1), and we deduce that

Pv(t) =
1

Γ(α)
(I−ρA)Dα−1

0+ v(0)tα−1 = (I−ρA)c∗tα−1 = c∗t
α−1 = v(t), t ∈ [0, 1],

which gives us v ∈ imP . Thus, we get that kerL = imP and consequently X =
kerL⊕ kerP .

Moreover, let y ∈ imL. There exists x ∈ domL such that y = Lx, and we obtain

KP y(t) = x(t) + ctα−1

where c ∈ l2 satisfies c = ξα−1Ac. It is easy to see that KP y ∈ domL and
KP y ∈ kerP . Therefore, KP is well defined. Further, for y ∈ imL, we have

L(KP y(t)) = Dα
0+(KP y(t)) = y(t)

and for x ∈ domL ∩ kerP , we obtain that

KP (Lx(t)) = x(t) + c1t
α−1 + c2t

α−1,

for some c1, c2 ∈ l2. In view of x ∈ domL ∩ kerP , we know that c1 = c2 = θ.
Therefore, (KPL)x(t) = x(t). This shows that KP = (L|domL∩kerP )−1. Finally, by
the definition of KP , we derive

‖Dα−1
0+ KP y‖C([0,1];l2) =

∥∥∫ ·
0

y(s)ds
∥∥
C([0,1];l2)

≤ ‖y‖L1([0,1];l2) (2.17)

and

‖KP y‖C([0,1];l2) =
∥∥ 1

Γ(α)

∫ ·
0

(· − s)α−1y(s)ds
∥∥
C([0,1];l2)

≤ 1
Γ(α)

‖y‖L1([0,1];l2).

(2.18)
It follows from (2.17) and (2.18) that

‖KP y‖X = max{‖Dα−1
0+ KP y‖C([0,1];l2), ‖KP y‖C([0,1];l2)}

≤ max
{
‖y‖L1([0,1];l2),

1
Γ(α)

‖y‖L1([0,1];l2)

}
=

1
Γ(α)

‖y‖L1([0,1];l2).

(2.19)

This completes of the proof. �

Lemma 2.12. Let f be a Carathéodory function. Then N , defined by (2.3)), is
L-compact.

Proof. Let Ω be a bounded subset in X. By hypothesis (iii) on the function f , there
exists a function ϕΩ(t) ∈ L1[0, 1] such that for all x ∈ Ω,

‖f(t, x(t), Dα−1
0+ x(t))‖l2 ≤ ϕΩ(t), a.e. t ∈ [0, 1], (2.20)

which, along with (2.9) implies

‖h(Nx(t))‖l2 =
∥∥ A

Γ(α)

∫ ξ

0

(ξ − s)α−1f(s, x(s), Dα−1
0+ x(s))ds

− I

Γ(α)

∫ 1

0

(1− s)α−1f(s, x(s), Dα−1
0+ x(s))ds

∥∥
l2

≤ ‖A‖+ 1
Γ(α)

‖ϕΩ‖L1[0,1].

(2.21)
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Thus, from (2.15) and (2.21) it follows that

‖QNx‖L1([0,1];l2) =
∥∥Γ(α)Γ(2α)

ξα − 1
(I − ρA)h(Nx)

∥∥
l2

∫ 1

0

sα−1ds

≤ Γ(2α)(‖A‖+ 1)‖I − ρA‖
|1− ξα|

‖ϕΩ‖L1[0,1] <∞.
(2.22)

This shows that QN(Ω) ⊆ Y is bounded. The continuity of QN follows from the
hypothesis on f and the Lebesgue dominated convergence theorem.

Next, we shall show that KP,QN is completely continuous. First, for any x ∈ Ω,
we have

KP,QNx(t) = KP (I −Q)Nx(t) = KPNx(t)−KPQNx(t)

= Iα0+Nx(t)− Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(Nx(t))Iα0+t
α−1.

(2.23)

and

Dα−1
0+ KP,QNx(t) = I1

0+Nx(t)− Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(Nx(t))I1
0+t

α−1. (2.24)

By the hypothesis on f and the Lebesgue dominated convergence theorem, it is
easy to see that KP,QN is continuous. Since f is a Carathéodory function, for
every bounded set Ω0 ⊆ l2 × l2, the set {f(t, u, v) : (u, v) ∈ Ω0} is relatively
compact set in l2. Therefore, for almost all t ∈ [0, 1], {KP,QNx(t) : x ∈ Ω} and
{Dα−1

0+ KP,QNx(t) : x ∈ Ω} are relatively compact in l2.
From (2.21), (2.23) and (2.24), we derive that

‖KP,QNx‖C([0,1];l2)

=
∥∥Iα0+Nx(t)− Γ(α)Γ(2α)

ξα − 1
(I − ρA)h(Nx(t))Iα0+t

α−1
∥∥
C([0,1];l2)

≤ 1
Γ(α)

‖ϕΩ‖L1(0,1) +
Γ(2α)‖I − ρA‖
|ξα − 1|

‖h(Nx(t))‖l2

≤ 1
Γ(α)

‖ϕΩ‖L1(0,1) +
Γ(2α)‖I − ρA‖(‖A‖+ 1)

Γ(α)|ξα − 1|
‖ϕΩ‖L1(0,1) <∞,

and

‖Dα−1
0+ KP,QNx‖C([0,1];l2)

=
∥∥I1

0+Nx(t)− Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(Nx(t))I1
0+t

α−1
∥∥
C([0,1];l2)

≤ ‖ϕΩ‖L1(0,1) +
Γ(2α)‖I − ρA‖
|ξα − 1|

‖h(Nx(t))‖l2

≤ ‖ϕΩ‖L1(0,1) +
Γ(2α)‖I − ρA‖(‖A‖+ 1)

Γ(α)|ξα − 1|
‖ϕΩ‖L1(0,1) <∞,

which shows that KP,QNΩ is uniformly bounded in X. Noting that

bp − ap ≤ (b− a)p for any b ≥ a > 0, 0 < p ≤ 1. (2.25)

for any t1, t2 ∈ [0, 1] with t1 < t2, we shall see that

‖KP,QNx(t2)−KP,QNx(t1)‖l2
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=
1

Γ(α)

∥∥∥∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]Nx(s)ds+
∫ t2

t1

(t2 − s)α−1Nx(s)ds

− Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(Nx(t))[Iα0+t
α−1
2 − Iα0+t

α−1
1 ]

∥∥∥
l2

≤ 1
Γ(α)

∫ t1

0

(t2 − t1)α−1ϕΩ(s)ds+
1

Γ(α)

∫ t2

t1

ϕΩ(s)ds

+
Γ2(α)‖I − ρA‖(‖A‖+ 1)

|ξα − 1|
‖ϕΩ‖L1(0,1)|t2α−1

2 − t2α−1
1 | → 0 as t2 → t1

and

‖Dα−1
0+ KP,QNx(t2)−Dα−1

0+ KP,QNx(t1)‖l2

=
∥∥∫ t2

t1

Nx(s)ds
∥∥
l2

+
∥∥Γ(α)Γ(2α)

ξα − 1
(I − ρA)h(Nx(t))

∫ t2

t1

sα−1ds
∥∥
l2

≤
∫ t2

t1

ϕΩ(s)ds+
Γ(2α)‖I − ρA‖(‖A‖+ 1)

|ξα − 1|
‖ϕΩ‖L1(0,1)|tα2 − tα1 | → 0 as t2 → t1.

Then KP,QNΩ is equicontinuous in X. By Lemma 2.8, KP,QNΩ ⊆ X is relatively
compact. Thus we can conclude that the operator N is L-compact in Ω. The proof
is complete. �

3. Main results

Theorem 3.1. Let f be a Carathéodory function and the following conditions hold:
(H1) There exist five nonnegative functions a1, a2, b1, b2, c ∈ L1[0, 1] and con-

stants γ1, γ2 ∈ [0, 1) such that for all t ∈ [0, 1], u, v ∈ l2,

‖f(t, u, v)‖l2 ≤ a1(t)‖u‖l2 + b1(t)‖v‖l2 + a2(t)‖u‖γ1l2 + b2(t)‖v‖γ2l2 + c(t).

(H2) There exists a constant A1 > 0 such that for x ∈ domL, if ‖Dα−1
0+ x(t)‖l2 >

A1 for all t ∈ [0, 1], then

A

Γ(α)

∫ ξ

0

(ξ − s)α−1f(s, x(s), Dα−1
0+ x(s))ds

− I

Γ(α)

∫ 1

0

(1− s)α−1f(s, x(s), Dα−1
0+ x(s))ds /∈ im(I −Aξα−1).

(H3) There exists a constant A2 > 0 such that for any e = {(ei)} ∈ l2 satisfying
e = ξα−1Ae and ‖e‖l2 > A2, either

〈e,QNe〉l2 ≤ 0 or 〈e,QNe〉l2 ≥ 0,

where 〈·, ·〉l2 is the inner product in l2.
Then (1.1) has at least one solution in space X provided that

Γ(α) > max
{

(‖I − ρA‖+ 1)‖a1‖L1(0,1), (‖I − ρA‖+ 1)‖b1‖L1(0,1)

}
,

(‖I − ρA‖+ 1)2‖a1‖L1(0,1)‖b1‖L1(0,1)

(Γ(α)− (‖I − ρA‖+ 1)‖a1‖L1(0,1))(Γ(α)− (‖I − ρA‖+ 1)‖b1‖L1(0,1))
< 1.

(3.1)

Proof. We shall construct an open bounded subset Ω in X satisfying all assumption
of Lemma 2.7. Let

Ω1 =
{
x ∈ domL\ kerL : Lx = λNx for some λ ∈ [0, 1]}. (3.2)
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For any x ∈ Ω1, x /∈ kerL, we have λ 6= 0. Since Nx ∈ imL = kerQ, by (2.8), we
have h(Nx) ∈ im(I −Aξα−1), where

h(Nx) =
A

Γ(α)

∫ ξ

0

(ξ − s)α−1f(s, x(s), Dα−1
0+ x(s))ds

− I

Γ(α)

∫ 1

0

(1− s)α−1f(s, x(s), Dα−1
0+ x(s))ds.

(3.3)

From (H2) there exists t0 ∈ [0, 1] such that |Dα−1
0+ x(t0)|l2 ≤ A1. Then from the

equality Dα−1
0+ x(0) = Dα−1

0+ x(t0)−
∫ t

0
Dα

0+x(s)ds, we deduce that

‖Dα−1
0+ x(0)‖l2 ≤ A1 + ‖Dα

0+x‖L1(0,1;l2) = A1 + ‖Lx‖1 ≤ A1 + ‖Nx‖L1(0,1;l2),

which implies

‖Px‖X = ‖ 1
Γ(α)

(I − ρA)Dα−1
0+ x(0)tα−1‖X ≤

‖I − ρA‖
Γ(α)

(A1 + ‖Nx‖L1(0,1;l2)). (3.4)

Further, for x ∈ Ω1, since imP = kerL,X = kerL ⊕ kerP , we have (I − P )x ∈
domL ∩ kerP and LPx = θ. Then

‖(I − P )x‖X = ‖KPL(I − P )x‖X ≤ ‖KPLx‖X

≤ 1
Γ(α)

‖Lx‖L1(0,1;l2) ≤
1

Γ(α)
‖Nx‖L1(0,1;l2).

(3.5)

From (3.4) and (3.5), we conclude that

‖x‖X = ‖Px+ (I − P )x‖X ≤ ‖Px‖X + ‖(I − P )x‖X

≤ ‖I − ρA‖
Γ(α)

A1 +
‖I − ρA‖+ 1

Γ(α)
‖Nx‖L1(0,1;l2).

(3.6)

Moreover, by the definition of N and (H1), one has

‖Nx‖L1(0,1;l2)

=
∫ 1

0

‖f(s, x(s), Dα−1
0+ x(s))‖l2dt

≤ ‖a1‖L1(0,1)‖x‖C([0,1];l2) + ‖b1‖L1(0,1)‖Dα−1
0+ x‖C([0,1];l2)

+ ‖a2‖L1(0,1)‖x‖γ1C([0,1];l2) + ‖b2‖L1(0,1)‖Dα−1
0+ x‖γ2C([0,1];l2) + ‖c‖L1(0,1).

(3.7)

Thus,

‖x‖X ≤
‖I − ρA‖

Γ(α)
A1 +

‖I − ρA‖+ 1
Γ(α)

(
‖a1‖L1(0,1)‖x‖C([0,1];l2)

+ ‖b1‖L1(0,1)‖Dα−1
0+ x‖C([0,1];l2)

)
+
‖I − ρA‖+ 1

Γ(α)

×
(
‖a2‖L1(0,1)‖x‖γ1C([0,1];l2) + ‖b2‖L1(0,1)‖Dα−1

0+ x‖γ2C([0,1];l2)

+ ‖c‖L1(0,1)

)
.

(3.8)

It follows from (3.1), (3.8), ‖x‖C([0,1];l2) ≤ ‖x‖X, ‖Dα−1
0+ x‖C([0,1];l2) ≤ ‖x‖X and

Lemma 2.9 that there exists M > 0 such that

max{‖x‖C([0,1];l2), ‖Dα−1
0+ x‖C([0,1];l2)} ≤M,

that is to say Ω1 is bounded.
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Let

Ω2 = {x ∈ kerL : Nx ∈ imL}. (3.9)

For any x ∈ Ω2, it follows from x ∈ kerL that x = etα−1 for some e ∈ ker(I −
Aξα−1) ⊂ l2, and it follows from Nx ∈ imL that h(Nx) ∈ im(I − Aξα−1), where
h(Nx) is defined by (3.3). By hypothesis (H2), we arrive at ‖Dα−1

0+ x(t0)‖l∞ =
‖e‖l2Γ(α) ≤ A1. Thus we obtain

‖x‖ ≤ ‖e‖l∞Γ(α) ≤ A1.

That is, Ω2 is bounded in X. If the first part of (H3) holds, denote

Ω3 = {x ∈ kerL : −λx+ (1− λ)QNx = θ, λ ∈ [0, 1]},

then for any x ∈ Ω3, we know that

x = etα−1 with e ∈ ker(I −Aξα−1) and λx = (1− λ)QNx.

If λ = 0, we have Nx ∈ kerQ = imL, then x ∈ Ω2, by the argument above, we get
that ‖x‖ ≤ A1. Moreover, if λ ∈ (0, 1] and if ‖e‖l2 > A2, by (H3), we deduce that

0 < λ‖e‖2l2 = λ〈e, e〉l2 = (1− λ)〈e,QNe〉l2 ≤ 0,

which is a contradiction. Then ‖x‖X = ‖etα−1‖X ≤ max{‖e‖l2 ,Γ(α)‖e‖l2}. That is
to say, Ω3 is bounded. If the other part of (H3) holds, we take

Ω3 = {x ∈ kerL : λx+ (1− λ)QNx = θ, λ ∈ [0, 1]}.

By using the same arguments as above, we can conclude that Ω3 is also bounded.
Next, we show that all conditions of Lemma 2.7 are satisfied. Assume that Ω is

a bounded open subset of X such that ∪3
i=1Ωi ⊆ Ω. It follows from Lemmas 2.10

and 2.12 that L is a Fredholm operator of index zero and N is L-compact on Ω.
By the definition of Ω and the argument above, to complete the theorem, we only
need to prove that condition (iii) of Lemma 2.7 is satisfied. For this purpose, let

H(x, λ) = ±λx+ (1− λ)QNx, (3.10)

where we let the isomorphism the J : imQ→ kerL be the identical operator. Since
Ω3 ⊆ Ω, H(x, λ) 6= 0 for (x, λ) ∈ kerL ∩ ∂Ω× [0, 1], then by homotopy property of
degree, we obtain

deg (JQN |kerL∩∂Ω,Ω ∩ kerL, 0) = deg (H (·, 0) ,Ω ∩ kerL, 0)

= deg (H (·, 1) ,Ω ∩ kerL, 0)

= deg (±Id,Ω ∩ kerL, 0) = ±1 6= 0.

Thus (H3) of Lemma 2.7 is fulfilled and Theorem 3.1 is proved. �

4. Example

In this section, we shall present an example to illustrate our main result in l2 with
dim kerL = 2k, which surely generalize the previous results [3, 4, 8, 9, 13, 14, 18, 20],
where the dimension of dim kerL is only 1 or 2.
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Consider the following system with dim kerL = 2k, k = 1, 2, 3, . . . in l2.

D
3/2
0+


x1(t)
x2(t)
x3(t)
x4(t)

...



=
1
10



{
1, if ‖D1/2

0+ x(t)‖l2 < 1
D

1/2
0+ x1(t) + [D1/2

0+ x1(t)]−1 − 1, if ‖D1/2
0+ x(t)‖l2 ≥ 1(

x2(t) +D
1/2
0+ x3(t)

)
/2(

x3(t) +D
1/2
0+ x3(t)

)
/22(

x4(t) +D
1/2
0+ x4(t)

)
/23

...


xi(0) = 0, i = 1, 2, . . .

x(1) = Ax(1/9).

(4.1)

Let α = 3/2, ξ = 1/9. For all t ∈ [0, 1], let u = (x1, x2, x3, . . . ), v = (y1, y2, y3, . . . ) ∈
l2 and f = (f1, f2, . . . )T with

f1(t, u, v) =

{
1/10, if ‖v‖l2 < 1,
(y1 + y−1

1 − 1)/10, if ‖v‖l2 ≥ 1,

f2(t, u, v) = (x2 + y3)/20 and fi(t, u, v) = 1
5
xi+yi

2i , i = 3, 4, . . . . Moreover,

A =



B1 0 0 0 0 0 . . .
0 B2 0 0 0 0 . . .
...

. . .
...

0 0 0 Bk 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
...

. . .


with Bi =

3 0 0
0 −3 6
0 0 3

 , (4.2)

i = 1, 2, . . . , k, k ∈ N. Obviously, we see that B2
i = 9I3 and dim ker(I3−ξα−1Bi) =

dim ker(I3 − Bi/3) = 2, i = 1, 2, . . . , where I3 is the 3 × 3 identity matrix. Then
A2ξ2α−2 = I, dim ker(I − Aξα−1) = 2k, k ∈ N and the problem (4.1), with A and
f defined above, has one solution if and only if problem (1.1) admits one solution.

Checking (H1) of Theorem 3.1: For some r ∈ R, Ω = {(u, v) ∈ l2 × l2 : ‖u‖l2 ≤
r, ‖v‖l2 ≤ r}, let ϕΩ(t) = 1

10 [(r+ 1/r+ 1)2 + 4r2

3 ]1/2 ∈ L1[0, 1]. Since ‖A‖l2 ≤ 9
√
k,

letting

a1(t) = b1(t) =
1

5
√

3
, a2(t) = b2(t) = 0, c(t) =

r + 1/r + 1
10

. (4.3)

condition (H1) is satisfied.
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Checking (H2) of Theorem 3.1: From the definition of f it follows that f1 >

1/10 > 0 when ‖D1/2
0+ x(t)‖l2 > 1. This,

(B1ξ
α − I)

f1

f2

f3

 =

−8/9 0 0
0 −10/9 2/9
0 0 −8/9

f1

f2

f3

 =

−8f1
9
∗
∗


and im(I − Aξα−1) = {(0, 0, τ3, 0, 0, τ6, . . . , 0, 0, τ3i, . . . ) : τ3i ∈ R, i = 1, 2, . . . }
implies that condition (H2) is satisfied.

Checking (H3) of Theorem 3.1: Since dim ker(I −Aξα−1) = dim ker(I −A/3) =
2k, k ∈ N, for any e ∈ l2 satisfying e = Ae, e can be expressed as e = e1 + e2 +
· · ·+ ek, with

ei = σi1ε3i−2 + σi2(ε3i−1 + ε3i), σij ∈ R, i = 1, 2, . . . , k, j = 1, 2,

where εj =
(
0, 0, . . . 0, 1j−th, 0, 0, . . .

)
∈ l2 is a vector with all elements equaling to

0 except the j-th equaling to 1, j = 1, 2, . . . . In addition, for any y ∈ Y, by (2.15)
and ρA = 1

2 (I −A/3), we have

Qy(t) =
Γ(α)Γ(2α)
ξα − 1

(I − ρA)h(y)tα−1 =
−27
√
π

52
(I +A/3)h(y)tα−1, (4.4)

where

h(y) =
A

Γ(α)

∫ ξ

0

(ξ − s)α−1y(s)ds− I

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds. (4.5)

By (2.3), let d = t1/2 +
√
π

2 , we have

N(et1/2) =
1
10



(
1, dσ12

2 , dσ12
22 , dσ21

23 , dσ22
24 , dσ22

25 , . . . ,

dσi1
23i−3 ,

dσi2
23i−2 ,

dσi2
23i−1 , . . .

)>
,

if |σ11| < 1, 2 ≤ i ≤ k;(
σ11 + 1

σ11
− 1, dσ12

2 , dσ12
22 , dσ21

23 , dσ22
24 , dσ22

25 , . . . ,

dσi1
23i−3 ,

dσi2
23i−2 ,

dσi2
23i−1 , . . .

)>
,

if |σ11| ≥ 1, 2 ≤ i ≤ k.

(4.6)

Suppose that |σ11| > 1, σ12 6= 0, and let A2 = 1, d̃ = −27π−208
√
π

648 < 0. From (4.4)
and (4.6) it follows that

Q(Net1/2) =
−27
√
π

520
(I +A/3)h(Net1/2)t1/2

=
−27
√
πt1/2

520

( −64
27
√
π

(σ11 +
1
σ11
− 1),

d̃σ12

22
,
d̃σ12

22
,
d̃σ21

23
,
d̃σ22

25
,
d̃σ22

25
,

. . . ,
d̃σi1
23i−3

,
d̃σi2
23i−1

,
d̃σi2
23i−1

, . . .
)T

and

〈e,QNet1/2〉 =
−27
√
πt1/2

520

[ −64
27
√
π

((σ11 − 1/2)2 + 3/4)

+ d̃
(2σ2

12

22
+
σ2

21

23
+

2σ2
22

25
+ · · ·+ σ2

i1

23i−3
+

2σ2
i2

23i−1
+ . . .

)]
> 0.
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Therefore, (4.1) admits at least one solution.
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