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PSEUDO ALMOST PERIODIC SOLUTIONS FOR A
LASOTA-WAZEWSKA MODEL

SAMIRA RIHANI, AMOR KESSAB, FAROUK CHÉRIF

Abstract. In this work, we consider a new model describing the survival of

red blood cells in animals. Specifically, we study a class of Lasota-Wazewska
equation with pseudo almost periodic varying environment and mixed delays.

By using the Banach fixed point theorem and some inequality analysis, we find
sufficient conditions for the existence, uniqueness and stability of solutions.

We generalize some results known for one type of delay and for the Lasota-

Wazewska model with almost periodic and periodic coefficients. An example
illustrates the proposed model.

1. Introduction

In 1976 Wazewska and Lasota [26] proposed the delay logistic equation with one
constant concentrated delay

N ′(t) = −µN(t) + pe−rN(t−τ)

to describe the survival of red blood cells in an animal, where N(t) denotes the
number of red blood cells at time t, µ is the probability of death of a red blood cell
p and r are positive constants related to the production of red blood cells per unit
time and τ is the time required to produce a red blood cell. See also [16, 17].

Under some additional assumptions, Gopalsamy and Trofimchuk [13] obtained
that the Lasota-Wazewska model with one discrete delay

x′(t) = −α(t)x(t) + β(t)e−νx(t−τ)

has a globally attractive almost periodic solution. In [23], the existence the oscil-
lations and the global attractivity of the unique positive periodic solution of the
following equation

x′(t) = −α(t)x(t) + β(t)e−ax(t−nT )

were discussed. In particular, by applying Mawhin’s continuation theorem of co-
incidence degree [12] several sufficient conditions were given ensuring the existence
of the periodic solution. Here a > 0, α(·), β(·) are positive periodic functions of a
fixed period T and n is a positive integer. The authors investigated several results
regarding the oscillations and the global attractivity of existence of the periodic
solution. Besides, in the work [15] by Huang et al the following delay differential
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equation with multiple time-varying delays and almost periodic coefficients was
considered

x′(t) = −α(t)x(t) +
m∑
j=1

βj(t)e−γj(t)x(t−τj(t)).

The authors employed the contraction mapping principle to obtain a positive almost
periodic solution.

Recently, Zhou et al [32] studied the problem of positive almost periodic solutions
for the generalized Lasota-Wazewska model with infinite delays

x′(t) = −α(t)x(t) +
m∑
j=1

aj(t)e−ωj(t)
R 0
−∞Kj(s)x(t+s)ds.

Under proper assumptions, the authors obtained a unique positive almost periodic
solution of the above model which is exponential stable by using the method of a
fixed point theorem in cones. Hence, the stability analysis problem of the Lasota–
Wazewska model with time delay has been attracted a large amount of research
interest and many sufficient conditions have been proposed to guarantee the as-
ymptotic or exponential stability for the equation with various type of time delays:
one discrete or time-varying or distributed (see, for example, [16, 25, 24, 20, 19, 28]).
As far as we know, in most published papers, the analysis of the Lasota-Wazewska
model has been treated with only one kind of delays. Therefore, it is important
and challenging to get some useful results with both multiple time-varying delays
and distributed delays.

As we all know, many phenomena in nature have oscillatory character and their
mathematical models have led to the introduction of certain classes of functions to
describe them. Such a class form pseudo almost periodic functions which a natural
generalization of the concept of almost periodicity (in Bochner’s sense). These are
functions on the real numbers set that can be represented uniquely in the form
f = h+ ϕ, where h (the principal term) is an almost periodic function and ϕ (the
ergodic perturbation) a continuous function whose mean vanishes at infinity. For
more on the concepts of almost periodicity and/or pseudo almost periodicity and
related issues, we refer the reader to [10, 11, 18, 29, 30, 31].

The aim here is to study the existence, uniqueness and stability of a generalized
Lasota-Wazewska model with pseudo almost periodic coefficients and with mixed
delays. Roughly speaking, let us consider the following differential equation

x′(t) = −α(t)x(t) +
m∑
j=1

aj(t)e−ωj(t)
R t
−∞Kj(t−s)x(s)ds

+
n∑
i=1

bi(t)e−βi(t)x(t−τi)

(1.1)

where t ∈ R. The method consists to reduce the existence of the unique solution
for the Lasota-Wazewska model (1.1) to the search for the existence of the unique
fixed point of an appropriate operator on the Banach space PAP (R,R).

Hence, the main purpose of this paper is to study the existence and the dy-
namics of the generalized Lasota-Wazewska model with mixed delays and pseudo
almost periodic coefficients. However, to the author’s best knowledge, there are no
publications considering the pseudo almost periodic solutions for Lasota-Wazewska
model with mixed delays. Furthermore the model discussed in this paper is more
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general than the one in [15, 16, 19, 20, 24, 25, 28, 32], since most of them study the
Lasota-Wazewska model with almost periodic coefficients or one kind of delays.

The remainder of this paper is organized as follows: In Section 2, we will intro-
duce some necessary notations, definitions and fundamental properties of the space
PAP (R,R+) which will be used in the paper. In Section 3, based on different
methods and analysis techniques and provides several sufficient conditions ensuring
the existence and uniqueness of the pseudo almost periodic solution for the con-
sidered system. Section 4 is devoted to the stability of the pseudo almost periodic
solution. In section 5, based on suitable Lyapunov function and Dini derivative, we
give some sufficient conditions to ensure that all solutions converge exponentially
to the positive pseudo almost periodic solution of the equation (1.1). At last, an
illustrative example is given.

2. Problem formulation and preliminaries

We introduce notations, definitions and theorems which are used throughout this
paper. Let BC(R,R) be the set of bounded continued functions from R to R. Note
that (BC(R,R), | · |∞) is a Banach space where | · |∞ denotes the sup norm

|f |∞ := sup
t∈R
|f(t)|.

Throughout this paper, given a bounded continuous function f defined on R, let f
and f be defined as

f(t) = sup
t∈R

f(t), f(t) = inf
t∈R

f(t),

(H1) The function α(·) is almost periodic and for all t ∈ R, α(t) ≥ 0.
(H2) For all 1 ≤ j ≤ m and 1 ≤ i ≤ n, the functions aj , bi, βi, ωj : R→ R+ are

pseudo almost periodic.

(H3) r =
Pn

i=1 biβi+
Pm

j=1 ajωj

α < 1.
(H4) For all 1 ≤ j ≤ m, the delay kernels Kj : [0,+∞) → R+ are continuous,

integrable and∫ ∞
0

Kj(u) = 1,
∫ ∞

0

Kj(u)eλudu < +∞,

where λ is a sufficiently non negative small constant. Note that

ρ = max
1≤j≤m

∫ ∞
0

Kj(u)eλudu.

Let µ = max1≤j≤m τj . Denote by BC(]−µ, 0],R+) the set of bounded continuous
functions from ] − µ, 0] to R+. Notice that we restrict our selves to R+-valued
functions since only non-negative solutions of (2.1) are biologically meaningful.
The initial condition associated with system (1.1) is of the form

x(s) = ϕ(s), ϕ ∈ BC(]− µ, 0],R+). (2.1)

Definition 2.1. A continuous function f : R → R is said to be almost periodic
(Bohr a.p.) if for each ε > 0, the set

T (f, ε) = {τ ∈ R, |f(t+ τ)− f(τ)| < ε for all t ∈ R}

is relatively dense in R. In other words, there exists lε > 0 such that every interval
of length lε contains at least one point of T (f, ε).
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The number τ above is called an ε-translation number of the function f and the
collection of all such functions will be a Banach space under the sup norm which we
denote AP (R,R). We refer the reader to [2] and [6] for the basic theory of almost
periodic functions and their applications. Define the class of functions PAP0(R,R)
as follows: {

f ∈ BC(R,R) : lim
T→+∞

1
2T

∫ T

−T
|f(t)|dt = 0

}
.

A function f ∈ BC(R,R) is called pseudo almost periodic if it can be expressed as

f = h+ ϕ,

where h ∈ AP (R,R) and ϕ ∈ PAP0(R,R). The collection of such functions will be
denoted by PAP (R,R).

The functions h and ϕ in above definition are respectively called the almost
periodic component and the ergodic perturbation of the pseudo almost periodic
function f . The decomposition given in definition above is unique.

Remark 2.2. Observe that (PAP (R,R), |·|∞) is a Banach space and AP (R,R) is a
proper subspace of PAP (R,R) since the function φ(t) = sin2 πt+sin2

√
5t+e−t

t cos2 t

is pseudo almost periodic function but not almost periodic [7].

3. Existence and uniqueness of pseudo almost periodic solution

As pointed out in the introduction, we shall give here sufficient conditions which
ensures existence and uniqueness of pseudo almost periodic solution of (2.1). In
order to prove this result, we will state the following lemmas.

Lemma 3.1. For all x(·) ∈ PAP (R,R+), then the function x(·+κ) ∈ PAP (R,R+)
for all κ ∈ R.

The proof of the above lemma can be done in same as in [29, 30, 31]

Lemma 3.2. If ϕ,ψ ∈ PAP (R,R+), then ϕ× ψ ∈ PAP (R,R+)

For a proof of the above lemma, see [29, 30, 31].

Lemma 3.3. For all x(·) ∈ PAP (R,R+) and all 1 ≤ j ≤ m, the function φj : t 7→
e−ωj(t)

R t
−∞Kj(t−s)x(s)ds belongs to PAP (R,R+).

Proof. First, by [4, theorem 1], the function

t 7→
∫ t

−∞
Kj(t− s)x(s)ds

is pseudo almost periodic for all 1 ≤ j ≤ m. So by lemma 3.2 the function

t 7→ ωj(t)
∫ t

−∞
Kj(t− s)x(s)ds

is also pseudo almost periodic for all 1 ≤ j ≤ m. Also for all x, y ∈ R+ one has

|e−x − e−y| ≤ |x− y|.
Now, using the fact that the function (x 7→ e−x) is Lipschitzian and Lemma 3.1 and
the composition theorem of pseudo-almost periodic functions [3], it is clear that the
function

φj : t 7→ e−ωj(t)
R t
−∞Kj(t−s)x(s)ds

belongs to PAP (R,R+) whenever x ∈ PAP (R,R+). �
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The same approach gives the following result.

Lemma 3.4. For all x(·) ∈ PAP (R,R+), the function ψi : t 7→ e−ωj(t)x(t−τi)

belongs to PAP (R,R+) for all 1 ≤ i ≤ n.

Theorem 3.5. Suppose that (H1), (H2) satisfied. Define the nonlinear operator Γ
for each x ∈ PAP (R,R+) by

(Γx)(t) =
∫ t

−∞
e−

R t
s
α(ξ)dξ

[ n∑
i=1

bi(s)e−βi(s)x(s−τi)

+
m∑
j=1

aj(s)e−ωj(s)
R s
−∞Kj(s−σ)x(σ)dσ

]
ds

Then Γ maps PAP (R,R+) into itself.

Proof. First, let us check that Γ is well defined. Indeed, by Lemma 3.1, for all ϕ(·) ∈
PAP (R,R+) the function Th(x) = x(· − h) ∈ PAP (R,R+) since PAP (R,R+)
is a translation invariant closed subspace of BC(R,R+). Further, by the com-
position theorem of pseudo almost periodic functions (see for example [3]) ξ 7→
x(s+ ξ)e−x(ξ+s) is in PAP (R,R+). So, the function

χ(s) =
[ n∑
i=1

bi(s)e−βi(s)x(s−τi) +
m∑
j=1

aj(s)e−ωj(s)
R s
−∞Kj(t−σ)x(σ)dσ

]
ds

belongs to PAP (R,R+). Consequently we can write χ = χ1 + χ2, where χ1 ∈
AP (R,R+) and χ2 ∈ PAP0(R,R+). So, one can write

(Γχ)(t) : =
∫ t

−∞
e−

R t
s
α(ξ)dξχ(s)ds

=
∫ t

−∞
e−

R t
s
α(ξ)dξχ1(s)ds+

∫ t

−∞
e−

R t
s
α(ξ)dξχ2(s)ds

= (Γχ1)(t) + (Γχ2)(t)

Let us prove that t → (Γχ1)(t) :=
∫ t
−∞ e−

R t
s
α(ξ)dξχ1(s)ds is almost periodic. Let

us consider, in view of the almost periodicity of the functions α and χ1, a number
lε such that in any interval [δ, δ + lε] one finds a number h, such that

sup
ξ∈R
|α(ξ + h)− α(ξ)| < ε and sup

ξ∈R
|χ1(ξ + h)− χ1(ξ)| < ε.

(Γχ1)(t+ h)− (Γχ1)(t)

=
∫ t+h

−∞
e−

R t+h
s

α(ξ)dξχ1(s)ds−
∫ t

−∞
e−

R t
s
α(ξ)dξχ1(s)ds

=
∫ t+h

−∞
e−

R t
s−h

α(ξ+h)dξχ1(s)ds−
∫ t

−∞
e−

R t
s
α(ξ)dξχ1(s)ds

=
∫ t

−∞
e−

R t
u
α(ξ+h)dξχ1(u+ h)du−

∫ t

−∞
e−

R t
s
α(ξ)dξχ1(s)ds

=
∫ t

−∞
e−

R t
s
α(ξ+h)dξχ1(s+ h)ds−

∫ t

−∞
e−

R t
s
α(ξ)dξχ1(s+ h)ds
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+
∫ t

−∞
e−

R t
s
α(ξ)dξχ1(s+ h)ds−

∫ t

−∞
e−

R t
s
α(ξ)dξχ1(s)ds

So there exists θ ∈]0, 1[ such that

|(Γχ1)(t+ h)− (Γχ1)(t)|

≤ |χ1|∞
∫ t

−∞

∣∣e− R t
s
α(ξ+h)dξ − e−

R t
s
α(ξ)dξ

∣∣ds
+
∫ t

−∞
e−

R t
s
α(ξ)dξ|χ1(s+ h)− χ1(s)|ds

≤ |χ1|∞
∫ t

−∞

{
e−
[ R t

s
α(ξ+h)dξ+θ(

R t
s
α(ξ)dξ−

R t
s
α(ξ+h)dξ)

]
×
∣∣∣ ∫ t

s

α(ξ + h)dξ −
∫ t

s

α(ξ)dξ
∣∣∣ds}+ ε

∫ t

−∞
e−(t−s)αds

≤ |χ1|∞
∫ t

−∞

{
e−

R t
s
α(ξ+h)dξe−θ(

R t
s
α(ξ)dξ−

R t
s
α(ξ+h)dξ)

∣∣ ∫ t

s

|α(ξ + h)− α(ξ)
∣∣dξ|ds}

+ ε

∫ t

−∞
e−(t−s)αds

≤ |χ1|∞
∫ t

−∞

[
e−(t−s)α e−θε(t−s)ε(t− s)

]
ds+ ε

∫ t

−∞
e−(t−s)αds

≤ ε|χ1|∞
∫ t

−∞

[
εe−(t−s)α(t− s)

]
ds+ ε

∫ t

−∞
e−(t−s)αds

≤ ε|χ1|∞
α2

+ ε

∫ t

−∞
e−(t−s)αds

≤ ε|χ1|∞
α2

+
ε

α
=
( |χ1|∞

α2
+

1
α

)
ε.

Consequently, the function (Γχ1) belongs to AP (R,R+). Now, let us show that
(Γχ2) belongs to PAP0(R,R+).

lim
T→+∞

1
2T

∫ T

−T

∣∣ ∫ t

−∞
e−

R t
s
α(ξ)dξχ2(s)ds

∣∣dt
≤ lim
T→+∞

1
2T

∫ T

−T

∫ t

−∞
e−

R t
s
α(ξ)dξ|χ2(s)|dsdt

≤ lim
T→+∞

1
2T

∫ T

−T

(∫ t

−∞
e−(t−s)α|χ2(s)|ds

)
dt

≤ I1 + I2

where

I1 = lim
T→+∞

1
2T

∫ T

−T

(∫ t

−T
e−(t−s)α|χ2(s)|ds

)
dt,

I2 = lim
T→+∞

1
2T

∫ T

−T

(∫ −T
−∞

e−(t−s)α|χ2(s)|ds
)
dt.
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Now, we shall prove that I1 = I2 = 0

1
2T

∫ T

−T

(∫ t

−T
|e−(t−s)αχ2(s)|ds

)
dt =

1
2T

∫ T

−T

(∫ t

−T
e−(t−s)α|χ2(s)|ds

)
dt

≤ 1
2T

∫ T

−T

(∫ +∞

0

e−αξ|χ2(t− ξ)|dξ
)
dt

=
∫ +∞

0

e−αξ
( 1

2T

∫ T

−T
|χ2(t− ξ)|dt

)
dξ

≤
∫ +∞

0

e−αξ
( 1

2T

∫ T−ξ

−T−ξ
|χ2(u)|du

)
dξ

≤
∫ +∞

0

e−αξ
( 1

2T

∫ T+ξ

−T−ξ
|χ2(u)|du

)
dξ

Since the function χ2(·) ∈ PAP0(R,R+), the function φT defined by

φT (ξ) =
T + ξ

T

1
2(T + ξ)

∫ T+ξ

−T−ξ
|χ2(u)|du

is bounded and satisfy limT→+∞ φT (ξ) = 0. Consequently, by the Lebesgue domi-
nated convergence theorem, we obtain

I1 = lim
T→+∞

1
2T

∫ T

−T

(∫ t

−T
|e−(t−s)αχ2(s)|ds

)
dt = 0.

On the other hand, notice that |χ2|∞ = supt∈R |χ2(t)| <∞, then

I2 = lim
T→+∞

1
2T

∫ T

−T

(∫ −T
−∞
|e−(t−s)αχ2(s)|ds

)
dt

= lim
T→+∞

1
2T

∫ T

−T

(∫ −T
−∞

e−(t−s)α|χ2(s)|ds
)
dt

≤ lim
T→+∞

supt∈R |χ2(t)|
2T

∫ T

−T

(∫ +∞

t+T

e−αξdξ
)
dt

= lim
T→+∞

supt∈R |χ2(t)|
2T

1
α
e−αT

∫ T

−T
e−α tdt

= lim
T→+∞

supt∈R |χ2(t)|
2T

1
α2
e−αT [−e−αT + eαT ]

≤ lim
T→+∞

supt∈R |χ2(t)|
2T

1
α2

[1− e−2αT ] = 0

Consequently, (Γχ2) belongs to PAP0(R,R+). �

Theorem 3.6. Suppose that (H1)–(H4) hold then the Lasota-Wazewska model with
mixed delays (1.1) possess a unique pseudo almost periodic solution in the region

B = {ψ ∈ PAP (R,R+), R1 ≤ |ψ| ≤ R2},

where

R2 =

∑n
i=1 bi +

∑m
j=1 aj

α
,
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R1 =

∑n
i=1 bie

−βiR2 +
∑m
j=1 aje

−ωjR2

α
.

Proof. First, let us prove that the operator Γ is a mapping from B to B. In fact,

|(Γx)(t)| =
∫ t

−∞
e−

R t
s
α(ξ)dξ

[ n∑
i=1

bi(s)e−βi(s)x(s−τi)

+
m∑
j=1

aj(s)e−ωj(s)
R s
−∞Kj(t−σ)x(σ)dσ

]
ds

≤
∫ t

−∞
e−

R t
s
α(ξ)dξ

( n∑
i=1

bi(s) +
m∑
j=1

aj(s)
)
ds

≤
∑n
i=1 bi +

∑m
j=1 aj

α

and

|(Γx)(t)| =
∫ t

−∞
e−

R t
s
α(ξ)dξ

[ n∑
i=1

bi(s)e−βi(s)x(s−τi)

+
m∑
j=1

aj(s)e−ωj(s)
R s
−∞Kj(t−σ)x(σ)dσ

]
ds

≥
∫ t

−∞
e−

R t
s
α(ξ)dξ

( n∑
i=1

bie
−βiR2 +

m∑
j=1

aje
−ωjR2

)
ds

≥
∑n
i=1 bie

−βiR2 +
∑m
j=1 aje

−ωjR2

α
,

which implies that the operator Γ is a mapping from B to B. To end the proof it
suffice to prove that Γ is a contraction mapping. Obviously, for u, v ∈ [0,+∞[

|e−u − e−v| < |u− v|

Let x, y ∈ B. Then

|(Γx)(t)− (Γy)(t)|

=
∣∣∣ ∫ t

−∞
e−

R t
s
α(ξ)dξ

[ n∑
i=1

bi(s)e−βi(s)x(s−τi)

+
m∑
j=1

aj(s)e−ωj(s)
R s
−∞Kj(s−σ)x(σ)dσ

]
ds

−
∫ t

−∞
e−

R t
s
α(ξ)dξ

[ n∑
i=1

bi(s)e−βi(s)y(s−τi)

−
m∑
j=1

aj(s)e−ωj(s)
R s
−∞Kj(s−σ)x(σ)dσ

]
ds
∣∣∣

≤ sup
t∈R

∫ t

−∞
e−

R t
s
α(ξ)dξ

[ n∑
i=1

|bi(s)|
∣∣e−βi(s)x(s−τi) − e−βi(s)y(s−τi)

∣∣
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+
m∑
j=1

|aj(s)|
∣∣e−ωj(s)

R s
−∞Kj(s−σ)x(σ)dσ − e−ωj(s)

R s
−∞Kj(s−σ)y(σ)dσ

∣∣]
≤ sup

t∈R

∫ t

−∞
e−(t−s)α

[ n∑
i=1

|bi(s)|‖βi(s)‖|x− y|∞

+
m∑
j=1

|aj(s)||ωj(s)||
∫ s

−∞
Kj(s− σ)(x(σ)− y(σ))dσ|

]
ds

≤ sup
t∈R

∫ t

−∞
e−(t−s)α

[ n∑
i=1

|bi(s)|‖βi(s)‖+
m∑
j=1

|aj(s)| |ωj(s)|
]
ds|x− y|∞

≤
[∑n

i=1 biβi +
∑m
j=1 ajωj

α

]
|x− y|∞

which implies that the mapping Γ is a contraction mapping of B. Consequently, Γ
possess a unique fixed point x∗ ∈ B that is Γ(x∗) = x∗ . Hence, x∗ is the unique
pseudo almost periodic solution of (1.1) in B. �

4. Global attractivity of the pseudo almost periodic solution

Let x∗(·) the pseudo almost periodic solution in Theorem 3.6 and x(·) be an
arbitrary solution of (1.1). So, one has

x∗′(t) = −α(t)x∗(t) +
m∑
j=1

aj(t)e−ωj(t)
R t
−∞Kj(t−s)x∗(s)ds

+
n∑
i=1

bi(t)e−βi(t)x
∗(t−τi)

(4.1)

and

x′(t) = −α(t)x(t) +
m∑
j=1

aj(t)e−ωj(t)
R t
−∞Kj(t−s)x(s)ds +

n∑
i=1

bi(t)e−βi(t)x(t−τi)

Let us set, z(·) = x(·)− x∗(·). Consequently, we obtain

z′(t) = −α(t)z(t) +
n∑
i=1

bi(t)[e−βi(t)x(t−τi) − e−βi(t)x
∗(t−τi)]

+
m∑
j=1

aj(t)
[
e−ωj(t)

R t
−∞Kj(t−s)x(s)ds − e−ωj(t)

R t
−∞Kj(t−s)x∗(s)ds] (4.2)

Clearly, the pseudo almost periodic solution x∗(·) of system (1.1) is global attrac-
tivity if and only if the equilibrium point O of system (4.2) is global attractive. So
let us study the global attractivity of the equilibrium point O for system (4.2).

Theorem 4.1. Suppose that assumptions (H1)–(H4) hold. Then the equilibrium
point O of the nonlinear system (4.2) is global attractive.

Proof. First, let us prove that the solution of system (4.2) are uniformly bounded.
In other words, there exists M > 0 such that for all t ≥ 0 one has |z(t)| ≤ M . By
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assumption (H3), 1− r > 0. So for any given continuous function θ(·), there exists
a large number M > 0, such that

|θ| < M and (1− r)M > 0.

Let κ a real number, κ < 1. We shall prove that for all t ≥ 0, |z(t)| ≤ κM . Suppose
the contrary, then there must be some t′ > 0, such that

|z(t′)| = κM

|z(t)| < κM, 0 ≤ t ≤ t′

In view of (H3), (H4) and the equation (1.1), we have

|z(t′)| ≤
{
|θ(0)|e−

R t′
0 α(u)du +

∫ t′

0

e−
R t′

s
α(u)du

( n∑
i=1

|bi(s)||βi||z|∞

+
m∑
j=1

|aj(s)||ωj ||z|∞
)
ds
}

≤ |θ(0)|e−αt
′
+ |z(s)|∞

∫ t′

0

e−(t′−s)α
( n∑
i=1

biβi +
m∑
j=1

ajωj

)
ds

≤ κM
∫ t′

0

e−(t′−s)α
( n∑
i=1

biβi +
m∑
j=1

ajωj

)
ds+ κMe−αt

′

≤ κM
{
e−αt

′
+

1
α

[ n∑
i=1

biβi +
m∑
j=1

ajωj

]
(1− e−αt

′
)
}

≤ κM
{
e−αt

′
+

1
α

[ n∑
i=1

biβi +
m∑
j=1

ajωj

]}
< κM,

which gives a contradiction. Consequently, for all t ≥ 0, |z(t)| ≤ κM . Let us take
κ→ 1, then for all t ≥ 0, |z(t)| ≤M . Thus, there is a constant β ≥ 0, such that

lim sup
t→+∞

|z(t)| = β.

It follows that

∀ε > 0,∃t2 < 0,∀t, (t ≥ t2 ⇒ |z(t)| ≤ (1 + ε)β).

ż(t) + α(t)z(t) =
n∑
i=1

bi(t)
[
e−βi(t)x(t−τi) − e−βi(t)x

∗(t−τi)
]

+
m∑
j=1

aj(t)
[
e−ωj(t)

R t
−∞Kj(t−s)x(s)ds − e−ωj(t)

R t
−∞Kj(t−s)x∗(s)ds]

≤
n∑
i=1

|βi(t)|bi|z(t− τi)|+
m∑
j=1

ajωj |z(t)|∞

≤
( n∑
i=1

βibi +
m∑
j=1

ajωj

)
|z(t)|∞



EJDE-2016/62 PSEUDO ALMOST PERIODIC SOLUTIONS 11

≤
( n∑
i=1

βibi +
m∑
j=1

ajωj

)
(1 + ε)β.

So, through integration, we obtain the inequality

|z(t)|

≤
{( n∑

i=1

βibi +
m∑
j=1

ajωj

)
(1 + ε)β

}∫ t

0

e−
R t

s
α(u)duds+ |θ(0)|e−

R t
0 α(u)du

≤
{( n∑

i=1

βibi +
m∑
j=1

ajωj

)
(1 + ε)β

}∫ t

0

e−α(t−s)ds+ |θ|∞e−αt

≤ |θ|∞e−αt +
(∑n

i=1 βibi +
∑m
j=1 ajωj

αi

)
(1 + ε)β(1− e−αt).

Hence,

|z(t)| ≤ max
1≤i≤n

[
|θ|∞e−αt +

(∑n
i=1 βibi +

∑m
j=1 ajωj

αi

)
(1 + ε)β(1− e−αt)

]
.

In particular, by passing to the limit superior we obtain

lim sup
t→+∞

|z(t)| ≤ [r(1 + ε)β]

In other words, β ≤ r(1 + ε)β Passing to limit when ε→ 0, we obtain

β(1− r) ≤ 0

By condition (H4), we obtain β = 0 which imply that

lim
t→+∞

|z(t)| = lim
t→+∞

|x(t)− x∗(t)| = 0

and consequently the proof complete. �

5. Exponential stability of the pseudo almost periodic solution

Next, we give some sufficient conditions to ensure that all solutions converge
exponentially to the positive pseudo almost periodic solution x∗ of the equation
(1.1).

Definition 5.1 ([14]). Let V : R→ R be a continuous function. Then

D+V (t)
dt

= lim sup
h→0+

V (t+ h)− V (t)
h

Remark 5.2. The upper-right Dini derivative of |V (t)| is

D+V |y(t)|
dt

= sign(V (t))
dV (t)
dt

where sign(·) is the signum function.

Theorem 5.3. Let

α− eλµ
n∑
i=1

biβi − ρ
m∑
j=1

ajωj > 0. (5.1)
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Suppose that all conditions of Theorem 3.6 are satisfied. Then (1.1) has exactly one
pseudo almost periodic solution x∗ in B. Moreover, x∗(·) is locally exponentially
stable, the domain of attraction of x∗(·) is the set

D(x∗) =
{
ϕ ∈ BC([−µ, 0],R), |ϕ− x∗|1 := sup

−µ≤s≤0
|ϕ(s)− x∗µ(s)| < 1

}
.

Namely, there exists a constant λ > 0 and M > 1 such that for any solution x(·)
of (1.1) in B with initial value ϕ ∈ D(x∗) and for all t > 0 we have

|x(t)− x∗(t)| ≤M sup
−µ≤s≤0

|ϕ(s)− x∗µ(s)|e−λt,

where x∗µ(s) = x∗(s) for all s ∈ [−µ, 0].

Proof. From Theorem 3.6, system (1.1) has exactly one pseudo almost periodic
solution x∗ · B. Let x(·) be an arbitrary solution of (1.1) with initial value ϕ. Let
y(·) = x(t)− x∗(t), then

y′(t) =
d(x(t)− x∗(t))

dt

= −α(t)(x(t)− x∗(t)) +
n∑
i=1

bi(t)
[
e−βi(t)x(t−τi) − e−βi(t)x

∗(t−τi)
]

+
m∑
j=1

aj(t)
[
e−ωj(t)

R t
−∞Kj(t−s)x(s)ds − e−ωj(t)

R t
−∞Kj(t−s)x∗(s)ds].

(5.2)

Define a continuous function g by setting

gρ(ξ) = −(α− ξ) + eλµ
n∑
i=1

biβi + ρ

m∑
j=1

ajωj , ξ ∈ [0, 1]

By (H5) one has gρ(0) < 0 which implies that we can choose a positive constant
λ ∈]0, 1] such that

gρ(λ) = −(α− λ) + eλµ
n∑
i=1

biβi + ρ

m∑
j=1

ajωj < 0

We consider the Lyapunov functional V : R→ BC(R,R+)

V (t)t = y(t)eλt = |x(t)− x∗(t)|eλt

Let us calculate the upper right Dini derivative D+V of V along the solution of the
equation (5.2) with the initial value ϕ̃ = ϕ− x∗µ . Then for all t > t0,

D+V (t) ≤ −α(t)|y(t)|eλt + λ|y(t)|eλt +
n∑
i=1

bi(t)|e−βi(t)x(t−τi) − e−βi(t)x
∗(t−τi)|eλt

+
m∑
j=1

aj(t)
∣∣e−ωj(t)

R t
−∞Kj(t−s)x(s)ds − e−ωj(t)

R t
−∞Kj(t−s)x∗(s)ds∣∣eλt

≤ (−α(t) + λ)|z(t)|eλt +
n∑
i=1

bi(t)|e−βi(t)x(t−τi) − e−βi(t)x
∗(t−τi)|eλt

+
m∑
j=1

aj(t)
∣∣e−ωj(t)

R t
−∞Kj(t−s)x(s)ds − e−ωj(t)

R t
−∞Kj(t−s)x∗(s)ds∣∣eλt
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Set
|ϕ− x∗|1 = sup

−µ≤s≤0
|ϕ(s)− x∗µ(s)| > 0.

Since |ϕ− x∗|1 < 1, one can choose a positive constant M > 1 such that

M |ϕ− x∗|1 < 1,

consequently,
(M |ϕ− x∗|1)2 < M |ϕ− x∗|1

It follows from the definition of the Lyapunov function that for all t ∈ [−µ, 0],

V (t) = |y(t)|eλt < M |ϕ− x∗|1.

Let us prove that for all t > 0

V (t) = |y(t)|eλt < M |ϕ− x∗|1.

We shall give a proof by contradiction. Suppose the contrary. There exists t′ > 0
such that

V (t′) = M |ϕ− x∗|1
V (t) < M |ϕ− x∗|1, −∞ < t < t′

Consequently, one can write

0 ≤ D+(V (t′)−M |ϕ− x∗|1) = D+(V (t′))

≤ (−α(t′) + λ)|y(t′)|eλt
′
+

n∑
i=1

bi(t′)|e−βi(t
′)x(t′−τi) − e−βi(t

′)x∗(t′−τi)|eλt
′

+
m∑
j=1

aj(t′)
∣∣e−ωj(t′)

R t′
−∞Kj(t′−s)x(s)ds − e−ωj(t′)

R t′
−∞Kj(t′−s)x∗(s)ds∣∣eλt′

≤ (−α(t′) + λ)|y(t′)|eλt
′
+ eλτi

n∑
i=1

biβi|y(t′ − τi)|eλ(t′−τi)

+
m∑
j=1

ajωj |
∫ 0

−∞
Kj(s)|y(t′ + s)|eλ(s+t′)e−λsds|

≤ (−α+ λ)V (t′) + eλµ
n∑
i=1

biβiV (t′ − τi)

+
m∑
j=1

ajωj |
∫ 0

−∞
Kj(s)|V (t′ + s)|e−λsds|

≤ (−α+ λ)V (t′) +Meλτi

n∑
i=1

biβi +Mρ

m∑
j=1

ajωj

=
(

(−α+ λ) + eλµ
n∑
i=1

biβi + ρ

m∑
j=1

ajωj

)
M |ϕ− x∗|1

Thus, we obtain

(−α+ λ) + eλµ
n∑
i=1

biβi + ρ

m∑
j=1

ajωj > 0
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which contradicts (H5) that for all t > 0,

V (t) = |y(t)|eλt < M |ϕ− x∗|1.
and consequently for all t > 0 we have

|x(t)− x∗(t)| ≤M sup
−µ≤s≤0

|ϕ(s)− x∗(s)|e−λt.

�

6. Discussions and applications

The most universal methods to periodic Lasota-Wazewska models with or with-
out impulsives are Mawhin’s continuous theorem [12].

Until now, most articles investigated Lasota-Wazewska model with the almost
periodically varying coefficients and constant delay by using some well known fixed
point theorems. There are rarely articles considering Lasota-Wazewska model with
varying delays. Nevertheless, the use of a time-dependent delay has some con-
straints, in particular, for Lasota-Wazewska model since the mapping constructed
in the proof may be not self-mapping. The main difficulty, is that if f(·) is pseudo
almost periodic functions then the function g(·−f(·)) may be not an pseudo almost
periodic.

Now, let us compare our results with previous works. When we let

aj(·) = 0 and τj = τj(t) for all 1 ≤ j ≤ m,
the model (1.1) is the one investigated in [15] and recently by Wang et al [25].
Also, when for all 1 ≤ i ≤ n, bi(·) = 0 system (1.1) can be reduced to the model of
the recent paper by [32]. Stamov [24] also analyzed the existence and uniqueness
of almost periodic solution for impulsive Lasota-Wazewska model with only one
constant delay. Hence, our results can be see as a generalization and improvement
of [15, 25, 32] since in the cited papers the authors considered the periodic case and
the almost periodic case. Further, to our best knowledge, there are no publications
considering the pseudo almost periodic solutions for Lasota-Wazewska model. No-
tice that the pseudo almost periodicity is without importance in the proof of the
above theorems; in particular Theorems 4.1 and 5.3. because of the difference in
the methods discussed, the results in this paper and those in the above references
are different. In this paper, the delays τj , 1 ≤ j ≤ m are constant functions.

The main advantages of the present work include:
(i) it deals with pseudo almost periodic functions which contains strictly the

set of almost periodic functions;
(ii) it considers both infinite delays [32] and multiple time-varying delays [15].

Let us remark that our analysis is still applied without difficulty to the space
of pseudo almost automorphic functions. Consequently, one can establish easily
the analogue of the main results of this paper (Theorems 3.5 and 3.6). Notice
that pseudo almost automorphic functions [21, 27] arise particularly in the study
of the long-term behavior of solutions of evolution equations. These are functions
on the real numbers set that can be represented uniquely in the form f = h + ϕ,
where h (the principal term) is an almost automorphic function and ϕ is the ergodic
perturbation.

It should be mentioned that, several discrete Lasota-Wazewska models have been
studied by many authors, see [5, 22].
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In order to illustrate some feature of our main results, we will apply them to
some special systems and demonstrate the efficiencies of our criteria.

Example. Let us consider the following Lasota-Wazewska model with pseudo al-
most periodic coefficients and mixed delays

x′(t) = −α(t)x(t) +
3∑
j=1

aj(t)e−ωj(t)
R t
−∞Kj(t−s)x(s)ds +

3∑
i=1

bi(t)e−βi(t)x(t−τi)

(6.1)
where α(t) = 8 + cos2

√
5t+ cos2 t,a1(t)

a2(t)
a3(t)

 =

 1 + 0.25 cos2
√

2t+ 0.25 cos2 πt+ 0.5
1+t2

0.5 + 0.25 cos2
√

3t+ 0.25 cos2 πt+ 1
1+t2

0.5 + 0.25 cos2
√

5t+ 0.25 cos2
√

2t+ e−t
2 cos2 t

 ,

ω1(t)
ω2(t)
ω3(t)

 =

 0.125 cos2
√

2t+ 0.125 cos2 πt+ 0.25
1+t2

0.125 cos2
√

2t+ 0.125 cos2 πt+ 0.25
1+t2

0.125 cos2
√

2t+ 0.125 cos2
√

2t+ 0.25e−t
2 cos2 t

 ,

b1(t)
b2(t)
b3(t)

 =

1 + 0.25 cos2
√

5t+ 0.25 cos2 πt+ 0.5e−t
2 cos2 t

1 + 0.25 cos2
√

5t+ 0.25 cos2 πt+ 0.5e−t
2 cos2 t

1 + 0.25 cos2
√

5t+ 0.25 cos2 t+ 0.5e−t
2 cos2 t

 ,

β1(t)
β2(t)
β3(t)

 =

 0.125 cos2
√

2t+ 0.125 cos2 πt+ 0.25
1+t2

0.125 cos2
√

2t+ 0.125 cos2 πt+ 0.25
1+t2

0.125 cos2
√

2t+ 0.125 cos2
√

2t+ 0.25e−t
2 cos2 t

 ,

τ1 = 1, τ2 = 1, τ3 = 1 and Kj(t) = e−t. Then

r =

∑n
i=1 biβi +

∑m
j=1 ajωj

α
=

3
4
.

Therefore, all conditions of the previous results are satisfied, then Lasta-Wazewska
model with a mixed delays (6.1) has a unique pseudo almost periodic solution in
the region

B =
{
x ∈ PAP (R,R+), R1 < |x| < R2

}
.

where

R2 =

∑n
i=1 bi +

∑m
j=1 aj

α
=

12
8

=
3
2

and

R1 =

∑n
i=1 bie

−βiR2 +
∑m
j=1 aje

−ωjR2

α

=
a1e
−ω1R2 + a2e

−ω2R2 + a3e
−ω3R2 + b1e

−β1R2 + b2e
−β1R2 + b3e

−β3R2

α

≤ e−
1
2

3
2 + 0.5e−

1
2

3
2 + 0.5e−

1
2

3
2 + e−

1
2

3
2 + e−

1
2

3
2 + e−

1
2

3
2

10

= 5
e−

1
2

3
2

10
=
e−

3
4

2
.
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