Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 70, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ELLIPTIC SYSTEMS AT RESONANCE FOR JUMPING NON-LINEARITIES

HAKIM LAKHAL, BRAHIM KHODJA

$$
\begin{aligned}
& \text { AbStract. In this article, we study the existence of nontrivial solutions for } \\
& \text { the problem } \\
& \qquad \begin{array}{l}
-\Delta u=\alpha_{1} u^{+}-\beta_{1} u^{-}+f(x, u, v)+h_{1}(x) \quad \text { in } \Omega, \\
-\Delta v=\alpha_{2} v^{+}-\beta_{2} v^{-}+g(x, u, v)+h_{2}(x) \quad \text { in } \Omega, \\
u=v=0 \quad \text { on } \partial \Omega,
\end{array}
\end{aligned}
$$

where Ω is a bounded domain in \mathbb{R}^{N}, and $h_{1}, h_{2} \in L^{2}(\Omega)$. Here $\left[\alpha_{j}, \beta_{j}\right] \cap$ $\sigma(-\Delta)=\lambda$, where $\sigma(\cdot)$ is the spectrum. We use the Leray-Schauder degree theory.

1. Introduction and statement of results

This article is devoted to the study of nonlinear elliptic systems at resonance. The study of resonant problems started with the seminal work of Landesman and Lazer (1969/1970), who produced sufficient conditions (which in certain circumstances are also necessary) for the existence of solutions for some smooth semilinear Dirichlet problems. The corresponding scalar case considered in 6 has shown the existence of solutions to the problem $A u=\alpha u^{+}-\beta u^{-}+f(x, u)+h$, where A is a self-adjoint operator with compact resolvent in $L^{2}(\Omega), f(\cdot, \cdot)$ maps $\Omega \times \mathbb{R}$ into \mathbb{R}, such that $\lim _{s \rightarrow \infty} \frac{f(x, s)}{s}=0$ and $[\alpha, \beta] \cap \sigma(A)=\lambda,(\lambda$ a simple eigenvalue of $A)$. The study of nonlinear elliptic systems at resonance has been extensively studied during recent years (see [9, 10]). In this work we establish the existence of weak solutions of the problem

$$
\begin{array}{cc}
-\Delta u=\alpha_{1} u^{+}-\beta_{1} u^{-}+f(x, u, v)+h_{1}(x) & \text { in } \Omega, \\
-\Delta v=\alpha_{2} v^{+}-\beta_{2} v^{-}+g(x, u, v)+h_{2}(x) & \text { in } \Omega, \tag{1.1}\\
u=v=0 \quad \text { on } \partial \Omega
\end{array}
$$

Where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary $\partial \Omega$ and $h=\left(h_{1}, h_{2}\right)$ is an $\left(L^{2}(\Omega)\right)^{2}$ function. Let $\bar{\lambda}$ and $\underline{\lambda}$ be defined as follows

$$
\begin{aligned}
& \underline{\lambda}=\sup \left\{\lambda_{k}: \lambda_{k}<\lambda, k \in \mathbb{N}^{*}\right\}, \\
& \bar{\lambda}=\inf \left\{\lambda_{k}: \lambda_{k}>\lambda, k \in \mathbb{N}^{*}\right\} .
\end{aligned}
$$

[^0]For the rest of this article, we suppose that $\left.\alpha_{j}, \beta_{j} \in\right] \underline{\lambda}, \bar{\lambda}\left[=I_{\lambda}\right.$ satisfy

$$
\left[\alpha_{j}, \beta_{j}\right] \cap \sigma(A)=\lambda, j=1,2
$$

we denote by $\sigma(A)$ the spectrum of A. For $u \in D(A)$, we define the real function $C(.,$.$) on the square I_{\lambda} \times I_{\lambda}$ satisfying

$$
A u=\alpha u^{+}-\beta u^{-}+C(\alpha, \beta) \varphi, \int_{\Omega} u \varphi=1
$$

where φ is a normalized eigenfunction corresponding to λ,

$$
A u=\lambda u, \quad\|u\|_{L^{2}(\Omega)}=1
$$

The function $C(.,$.$) is continuous on I_{\lambda} \times I_{\lambda}$ and strictly decreasing with respect to each variable. Moreover, the curve

$$
\Sigma=\left\{(\alpha, \beta) \in I_{\lambda} \times I_{\lambda}, C(\alpha, \beta)=\{0\}\right\}
$$

is continuous, passing through the point (λ, λ) of $I_{\lambda} \times I_{\lambda}$. Let

$$
C^{+, j}=C\left(\alpha_{j}, \beta_{j}\right), \quad C^{-, j}=C\left(\beta_{j}, \alpha_{j}\right), j=1,2
$$

The main idea in [10] is to present a priori bounds for the solutions of (1.1) where $C^{+, j} \cdot C^{-, j} \neq 0, j=1,2$. Always in the system case, the interested reader may refer to [1, 2, 3] and [4]. In the present paper we study the case where $C^{+, j} \cdot C^{-, j}=$ $0,(j=1,2)$. Let

$$
N(\alpha, \beta)=\left\{u \in D(A), A u=\alpha u^{+}-\beta u^{-}\right\}
$$

then $N(\alpha, \beta)=\{0\}$ if and only if $C(\alpha, \beta) \cdot C(\beta, \alpha) \neq 0$ note that $N(\lambda, \lambda)=N_{\lambda}=$ $\operatorname{ker}(A-\lambda I)$. The equation of existence of solution for (1.1) when $N(\alpha, \beta)=\{0\}$ has been studied in [10]. The main idea of the paper is to prove the existence of solutions of semilinear elliptic system of the form (1.1) in the case where $N(\alpha, \beta) \neq\{0\}$. There are two cases:

- If $C(\beta, \alpha)=C(\alpha, \beta)=0$, we have (resonance),
- If $C(\alpha, \beta)=0 \neq C(\beta, \alpha)$, or $C(\beta, \alpha)=0 \neq C(\alpha, \beta)$, we have (semi resonance).
We assume that $f, g: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions satisfying the condition below:

$$
\begin{align*}
|f(x, s, t)| & \leq c_{1}(1+|s|+|t|) \\
|g(x, s, t)| & \leq c_{2}(1+|s|+|t|) \tag{1.2}
\end{align*}
$$

where c_{1}, c_{2} are real positive constants.

$$
\begin{gather*}
\lim _{s,|t| \rightarrow \infty} f(., t, s)=\gamma_{1}^{+}, \quad \lim _{-s,|t| \rightarrow \infty} f(., t, s)=\gamma_{1}^{-} \tag{1.3}\\
\gamma_{1}^{-}, \gamma_{1}^{+} \in L^{2}(\Omega), \quad \gamma_{1}^{-} \leq f(x, t, s) \leq \gamma_{1}^{+}
\end{gather*}
$$

and

$$
\begin{gather*}
\lim _{t,|s| \rightarrow \infty} g(., t, s)=\gamma_{2}^{+}, \quad \lim _{-t,|s| \rightarrow \infty} g(., t, s)=\gamma_{2}^{-} \tag{1.4}\\
\gamma_{2}^{-}, \gamma_{2}^{+} \in L^{2}(\Omega), \quad \gamma_{2}^{-} \leq g(x, t, s) \leq \gamma_{2}^{+}
\end{gather*}
$$

Let $\theta_{1}=\left(\mu_{3}, \mu_{4}\right)$ and $\theta_{2}=\left(\mu_{1}, \mu_{2}\right)$ be defined as follows

$$
\begin{gather*}
-\Delta \mu_{j}=\alpha_{j} \mu_{j}^{+}-\beta_{j} \mu_{j}^{-}, \quad \int_{\Omega} \mu_{j} \varphi=-1 \\
\text { when } C\left(\beta_{j}, \alpha_{j}\right)=0, \quad(j=1,2), \tag{1.5}\\
-\Delta \mu_{j+2}=\alpha_{j} \mu_{j+2}^{+}-\beta_{j} \mu_{j+2}^{-}, \quad \int_{\Omega} \mu_{j+2} \varphi=1 \\
\text { when } C\left(\alpha_{j}, \beta_{j}\right)=0, \quad(j=1,2) .
\end{gather*}
$$

Our main theorem read as follows:
Theorem 1.1. Assume that (1.2, 1.3), 1.4 and 1.5 are fulfilled. For each $\left(h_{1}, h_{2}\right) \in\left(L^{2}(\Omega)\right)^{2}$. We define
$H_{i}\left(h_{j}\right)=\int_{\Omega} h_{j} \mu_{i} d x+\int_{\Omega} \gamma_{j}^{+} \mu_{i}^{+} d x-\int_{\Omega} \gamma_{j}^{-} \mu_{i}^{-} d x, \quad i \in\{1,2,3,4\}, j=1,2$.
(i) If $C^{+, j}=C^{-, j}=0$, 1.1) has at least one solution. For every $h_{j} \in L^{2}(\Omega)$ such that $H_{j}\left(h_{j}\right) \cdot H_{j+2}\left(h_{j}\right)>0, j=1,2$.
(ii) If $C^{+, j}=0 \neq C^{-, j}$ (resp $C^{-, j}=0 \neq C^{+, j}$), 1.1) has at least one solution. For every $h_{j} \in L^{2}(\Omega)$ such that $C^{-, j} H_{j+2}\left(h_{j}\right)<0\left(\right.$ resp $\left.C^{+, j} . H_{j}\left(h_{j}\right)<0\right)$, $j=1,2$.

In the case $\alpha_{j}=\beta_{j} \neq \lambda, j=1,2$ see [10] $\left(\operatorname{resp} \alpha_{j}=\beta_{j}=\lambda, j=1,2\right.$ see 9$)$, we obtain the result of solutions existence.

2. Preliminaries

Let us consider the space

$$
U=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)
$$

which is a Banach space endowed with the norm

$$
\|(u, v)\|_{U}^{2}=\|u\|_{H_{0}^{1}(\Omega)}^{2}+\|v\|_{H_{0}^{1}(\Omega)}^{2}
$$

and let us take $V=L^{2}(\Omega) \times L^{2}(\Omega)$. In the sequel, $\|\cdot\|_{L^{2}(\Omega)}$ and $\|\cdot\|_{H_{0}^{1}(\Omega)}$ will denote the usual norms on $L^{2}(\Omega)$ and $H_{0}^{1}(\Omega)$ respectively. Recalling that the operator A, given by

$$
\begin{gathered}
A u=-\Delta u \\
D(A)=\left\{u \in H_{0}^{1}(\Omega), \Delta u \in L^{2}(\Omega)\right\},
\end{gathered}
$$

defines an inverse compact on $L^{2}(\Omega)$ and his spectrum is formed by the sequence $\left(\lambda_{k}\right)_{k \in \mathbb{N}^{*}}$ such that $\left|\lambda_{k}\right| \rightarrow+\infty$ and λ_{1} the first eigenvalue is positive. Throughout this paper, we denote by λ a simple eigenvalue of A, φ is an eigenfunction associated to λ normalized in $L^{2}(\Omega)$, Pr designates the orthogonal projection of V on $\left(\varphi^{\perp}\right)^{2}$ (φ^{\perp} is the orthogonal of φ in $L^{2}(\Omega)$). We recall the following proposition proved by Gallouet and Kavian (see [5]).

Proposition 2.1. For all $\alpha, \beta \in] \underline{\lambda}, \bar{\lambda}[$, there exist a unique $C(\alpha, \beta) \in \mathbb{R}$, and a unique $u \in D(A)$, such that

$$
\begin{gathered}
-\Delta u=\alpha u^{+}-\beta u^{-}+C(\alpha, \beta) \varphi \\
\int_{\Omega} u \varphi=1
\end{gathered}
$$

The next result is given in a general framework.
Proposition 2.2. Let $Q(x, s): \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, measurable on $x \in \Omega$ and continuous on $s \in \mathbb{R}$, function verifying
(i) There exists $\alpha, \beta \in \mathbb{R}$ such that $\underline{\lambda}<\alpha \leq \frac{Q(x, s)-Q(x, t)}{s-t} \leq \beta<\bar{\lambda}$ for all $s, t \in \mathbb{R}$, a.e. in Ω,
(ii) $\lim _{|s| \rightarrow+\infty} \frac{Q(x, s)}{s}=l$ a.e. in Ω,
(iii) $Q(x, 0)=0$ a.e. in Ω. Then for all $s \in \mathbb{R}$ and all $Q_{0} \in \varphi^{\perp}$, there exists a unique $v \in D(A) \cap \varphi^{\perp}$ such that

$$
A v=\operatorname{Pr} Q(., v+s \varphi)+Q_{0}
$$

The proof of the above proposition can be found also in 5. For $t \in[0,1]$ and $(u, v) \in\left(L^{2}(\Omega)\right)^{2}$ we define

$$
\left.H(t, u, v)=\left(\begin{array}{ll}
A^{-1} & \\
& A^{-1}
\end{array}\right)\right)\binom{\alpha_{1} u^{+}-\beta_{1} u^{-}+t f(x, u, v)+(1-t)\left(\beta_{1}-\alpha_{1}\right) u^{-}}{\alpha_{2} v^{+}-\beta_{2} v^{-}+\operatorname{tg}(x, u, v)+(1-t)\left(\beta_{2}-\alpha_{2}\right) v^{-}}
$$

The following two problems are equivalent:

$$
\begin{gathered}
-\Delta u=\alpha_{1} u^{+}-\beta_{1} u^{-}+t f(x, u, v)+(1-t)\left(\beta_{1}-\alpha_{1}\right) u^{-}+h_{1}(x) \\
-\Delta v=\alpha_{2} v^{+}-\beta_{2} v^{-}+t g(x, u, v)+(1-t)\left(\beta_{2}-\alpha_{2}\right) v^{-}+h_{2}(x) \\
(u, v) \in(D(A))^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
(u, v)=H(t, u, v)+\left(A^{-1} h_{1}, A^{-1} h_{2}\right) \\
(u, v) \in(D(A))^{2}, h \in\left(L^{2}(\Omega)\right)^{2}
\end{gathered}
$$

$H(t, u, v):[0,1] \times V \rightarrow V$ is compact.

3. A priori bounds for solutions of 1.1

Lemma 3.1. Under the assumptions of theorem 1.1, and assuming that $H_{j}\left(h_{j}\right)<$ 0 , and $H_{j+2}\left(h_{j}\right)<0$, with $\alpha_{j}<\beta_{j}, j=1,2$. There exist $R>0$ such that for all $t \in[0,1]$ and all $(u, v) \in U$,

$$
(u, v)-H(t, u, v)=0 \Longrightarrow\|(u, v)\|_{U}<R
$$

Proof. To prove this lemma we assume by contradiction, that for all $R>0$ there exists $(t, u, v) \in[0,1] \times U$ such that

$$
(u, v)-H(t, u, v)=0 \quad \text { and } \quad\|(u, v)\|_{U}>R
$$

In other words, we can find a sequence $\left(t_{n}, u_{n}, v_{n}\right) \in[0,1] \times U$ such that

$$
\begin{equation*}
\left(u_{n}, v_{n}\right)-H\left(t_{n}, u_{n}, v_{n}\right)=0 \quad \text { and } \quad b_{n}=\left\|\left(u_{n}, v_{n}\right)\right\|_{U}>n \tag{3.1}
\end{equation*}
$$

Taking

$$
w_{n}=\left(w_{n, 1}, w_{n, 2}\right)=\left(\frac{u_{n}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}}, \frac{v_{n}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}}\right)
$$

then it follows with this choice of w_{n} that

$$
w_{n}=\left(w_{n, 1}, w_{n, 2}\right) \in(D(A))^{2} \quad \text { and } \quad\left\|w_{n}\right\|_{U}=1
$$

Indeed, it is easy to see that $\left\|w_{n}\right\|_{U}=1$. Let us show that $w_{n} \in(D(A))^{2}$. We have

$$
\begin{align*}
& -\Delta w_{n, 1} \\
& =\frac{1}{b_{n}}\left[\alpha_{1} u_{n}^{+}-\beta_{1} u_{n}^{-}+t_{n} f\left(x, u_{n}, v_{n}\right)+\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) u_{n}^{-}+h_{1}(x)\right] \tag{3.2}\\
& -\Delta w_{n, 2} \\
& =\frac{1}{b_{n}}\left[\alpha_{2} v_{n}^{+}-\beta_{2} v_{n}^{-}+t_{n} g\left(x, u_{n}, v_{n}\right)+\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) v_{n}^{-}+h_{2}(x)\right] \tag{3.3}
\end{align*}
$$

From (1.2) and noticing that $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, we obtain the following estimate

$$
\begin{aligned}
\int_{\Omega}\left|f\left(x, u_{n}, v_{n}\right)\right|^{2} d x & \leq \int_{\Omega} c_{1}^{2}\left(1+\left|u_{n}\right|+\left|v_{n}\right|\right)^{2} d x \\
& \leq 2 c_{1}^{2} \int_{\Omega}\left(\left(1+\left|u_{n}\right|\right)^{2}+\left|v_{n}\right|^{2}\right) d x \leq c^{\prime}\left(1+\left\|u_{n}\right\|_{H_{0}^{1}}^{2}+\left\|v_{n}\right\|_{H_{0}^{1}}^{2}\right)
\end{aligned}
$$

where c^{\prime} is a positive constant. Therefore,

$$
\int_{\Omega} \frac{\left|f\left(x, u_{n}, v_{n}\right)\right|^{2}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}^{2}} d x \leq c^{\prime}\left(\frac{1}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}^{2}}+\frac{\left\|u_{n}\right\|^{2}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}^{2}}+\frac{\left\|v_{n}\right\|^{2}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}^{2}}\right)
$$

Then

$$
\int_{\Omega} \frac{\left|f\left(x, u_{n}, v_{n}\right)\right|^{2}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}^{2}} d x \leq c^{\prime}\left(\frac{1}{n^{2}}+1\right) \leq 2 c^{\prime}
$$

that is, $\frac{f\left(x, u_{n}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}}$ is bounded in $L^{2}(\Omega)$. Similarly, the function $\frac{g\left(x, u_{n}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}}$ is bounded in $L^{2}(\Omega)$. Moreover, by (3.1) we have

$$
\begin{aligned}
& \frac{\left\|h_{1}\right\|_{L^{2}(\Omega)}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \leq \frac{\left\|h_{1}\right\|_{L^{2}(\Omega)}}{n} \leq\left\|h_{1}\right\|_{L^{2}(\Omega)} \\
& \frac{\left\|h_{2}\right\|_{L^{2}(\Omega)}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \leq \frac{\left\|h_{2}\right\|_{L^{2}(\Omega)}}{n} \leq\left\|h_{2}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

then the right hand side of $\left(3.2\right.$ is bounded in $L^{2}(\Omega)$ for all n, thus

$$
\frac{1}{b_{n}}\left[\alpha_{1} u_{n}^{+}-\beta_{1} u_{n}^{-}+t_{n} f\left(x, u_{n}, v_{n}\right)+\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) u_{n}^{-}+h_{1}(x)\right] \in L^{2}(\Omega) .
$$

Similarly we have

$$
\frac{1}{b_{n}}\left[\alpha_{2} v_{n}^{+}-\beta_{2} v_{n}^{-}+t_{n} g\left(x, u_{n}, v_{n}\right)+\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) v_{n}^{-}+h_{2}(x)\right] \in L^{2}(\Omega)
$$

Since $\left(w_{n, 1}, w_{n, 2}\right) \in\left(H_{0}^{1}(\Omega)\right)^{2}$ and the embedding $\left(H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)\right)$ is compact, we can extract a subsequence $\left(t_{n}, w_{n, 1}, w_{n, 2}\right)$, still denoted by $\left(t_{n}, w_{n, 1}, w_{n, 2}\right)$, which converges in $[0,1] \times V$. Let $\left(t, w_{1}, w_{2}\right)$ be the limit of $\left(t_{n}, w_{n, 1}, w_{n, 2}\right)$ in $[0,1] \times V$. From the hypothesis 1.3 and 1.4 it follows that

$$
\begin{aligned}
\frac{f\left(x, u_{n}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} & =\frac{u_{n}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \frac{f\left(x, u_{n}, v_{n}\right)}{u_{n}} \\
& =w_{n, 1} \frac{f\left(x, w_{n, 1} \|\left(u_{n}, v_{n}, \|_{U}, v_{n}\right)\right.}{w_{n, 1}\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \underset{n \rightarrow \infty}{\rightarrow 0} \quad \text { a.e. in } \Omega \\
\frac{g\left(x, u_{n}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} & =\frac{v_{n}}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \frac{g\left(x, u_{n}, v_{n}\right)}{v_{n}} \\
& =w_{n, 2} \frac{g\left(x, u_{n}, w_{n, 2}\left\|\left(u_{n}, v_{n}\right)\right\|_{U}\right)}{w_{n, 2}\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \underset{n \rightarrow \infty}{\rightarrow 0} \quad \text { a.e. in } \Omega
\end{aligned}
$$

and since the sequences $w_{n, 1}, w_{n, 2}$ are bounded in $L^{2}(\Omega)$, we get

$$
\begin{aligned}
& \frac{f\left(x, u_{n}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \leq c_{1}\left(1+\left|w_{n, 1}\right|+\left|w_{n, 2}\right|\right) \leq c^{\prime} \quad \text { a.e. in } \Omega \\
& \frac{g\left(x, u_{n}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \leq c_{2}\left(1+\left|w_{n, 1}\right|+\left|w_{n, 2}\right|\right) \leq c^{\prime \prime} \quad \text { a.e. in } \Omega
\end{aligned}
$$

where $c^{\prime}, c^{\prime \prime}$ are real positive constants. Thanks to Lebesgue's convergence theorem, we deduce that

$$
\begin{aligned}
& \frac{f\left(x, u_{u}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \rightarrow 0 \quad \text { in } L^{2}(\Omega), n \rightarrow \infty \\
& \frac{g\left(x, u_{n}, v_{n}\right)}{\left\|\left(u_{n}, v_{n}\right)\right\|_{U}} \rightarrow 0 \quad \text { in } L^{2}(\Omega), n \rightarrow \infty
\end{aligned}
$$

and consequently

$$
\begin{gathered}
-\Delta w_{n, 1} \rightarrow\left[\alpha_{1} w_{1}^{+}-\beta_{1} w_{1}^{-}+(1-t)\left(\beta_{1}-\alpha_{1}\right) w_{1}^{-}\right] \\
-\Delta w_{n, 2} \rightarrow\left[\alpha_{2} w_{2}^{+}-\beta_{2} w_{2}^{-}+(1-t)\left(\beta_{2}-\alpha_{2}\right) w_{2}^{-}\right] \\
\left\|\left(w_{1, n}, w_{2, n}\right)\right\|_{U}=1
\end{gathered}
$$

Then

$$
\begin{aligned}
& -\Delta w_{1}=\alpha_{1} w_{1}^{+}-\beta_{1} w_{1}^{-}+(1-t)\left(\beta_{1}-\alpha_{1}\right) w_{1}^{-} \\
& -\Delta w_{2}=\alpha_{2} w_{2}^{+}-\beta_{2} w_{2}^{-}+(1-t)\left(\beta_{2}-\alpha_{2}\right) w_{2}^{-}
\end{aligned}
$$

Case I: $\int_{\Omega} w_{1} \varphi=\int_{\Omega} w_{2} \varphi=0$. Then projecting on φ^{\perp} we have

$$
\begin{aligned}
& -\Delta w_{1}=\operatorname{Pr}\left[\alpha_{1} w_{1}^{+}-\beta_{1} w_{1}^{-}+(1-t)\left(\beta_{1}-\alpha_{1}\right) w_{1}^{-}\right] \\
& -\Delta w_{2}=\operatorname{Pr}\left[\alpha_{2} w_{2}^{+}-\beta_{2} w_{2}^{-}+(1-t)\left(\beta_{2}-\alpha_{2}\right) w_{2}^{-}\right]
\end{aligned}
$$

Using proposition 2.2, $\left(s=0, Q_{0}=0\right)$ we see that $w_{1}=w_{2}=0$, this is contradiction with $\|w\|_{U}=1$. Hence $\int_{\Omega} w \varphi \neq 0$.

Case II: $\int_{\Omega} w_{1} \varphi \neq 0$. If $\int_{\Omega} w_{1} \varphi=\theta>0$, then $\mu=\frac{w_{1}}{\theta}$ verifies

$$
A \mu=\alpha_{1} \mu^{+}-\left(\beta_{1}+(1-t)\left(\alpha_{1}-\beta_{1}\right)\right) \mu^{-}, \quad \int_{\Omega} \mu \varphi=1
$$

from proposition 2.1, we deduce that

$$
C\left(\alpha_{1}, \beta_{1}+(1-t)\left(\alpha_{1}-\beta_{1}\right)\right)=0
$$

The function $C(\cdot, \cdot)$ is strictly decreasing with respect to each variable, with $\beta_{1}>\alpha_{1}$ and $t<1$, we have

$$
C\left(\alpha_{1}, \beta_{1}+(1-t)\left(\alpha_{1}-\beta_{1}\right)\right)>C\left(\alpha_{1}, \beta_{1}\right)=0
$$

which is a contradiction. If $\int_{\Omega} w_{1} \varphi=\theta<0, \mu=\frac{w_{1}}{\theta}$, we obtain a contradiction as a similar argument with the above step.

Case III: $\int_{\Omega} w_{2} \varphi \neq 0$. A similar argument can be made when $\int_{\Omega} w_{2} \varphi \neq 0$. Let us assume $t=1$ i.e $t_{n} \rightarrow 1$. Now, however, we have no contradiction since $\left(w_{1}, w_{2}\right) \in$ $N\left(\alpha_{j}, \beta_{j}\right)$ and

$$
\begin{array}{ll}
A w_{1}=\alpha_{1} w_{1}^{+}-\beta_{1} w_{1}^{-}, & \left(w_{1}, w_{2}\right) \in N\left(\alpha_{1}, \beta_{1}\right) \tag{3.4}\\
A w_{2}=\alpha_{2} w_{2}^{+}-\beta_{2} w_{2}^{-}, & \left(w_{1}, w_{2}\right) \in N\left(\alpha_{2}, \beta_{2}\right)
\end{array}
$$

we can write

$$
\begin{aligned}
& w_{j}=a_{j} \mu_{j+2} \text { if } a_{j}=\int_{\Omega} w_{j} \varphi d x>0, \quad j=1,2 \\
& w_{j}=a_{j} \mu_{j} \text { if }-a_{j}=\int_{\Omega} w_{j} \varphi d x<0, \quad j=1,2
\end{aligned}
$$

defining

$$
a_{n, j} \in \mathbb{R}, \quad z_{n, j} \in D(A), \quad a_{n, j}=-\int_{\Omega} w_{n, j} \varphi d x, z_{n, j}=w_{n, j}-a_{n, j} \mu_{j}
$$

in such a way that

$$
w_{n, j}=z_{n, j}+a_{n, j} \mu_{j}, \quad a_{n, j} \rightarrow a_{j}, \quad\left\|z_{n, j}\right\|_{D(A)} \rightarrow 0, \quad z_{n, j} \in \varphi^{\perp}
$$

if $a_{j} \neq 0$ we claim that

$$
\begin{equation*}
\exists M>0 \text { such that } \forall n \geq 1, \quad b_{n}\left\|z_{n, j}\right\|_{D(A)} \leq M, \quad j=1,2 \tag{3.5}
\end{equation*}
$$

When $\int_{\Omega} w_{1} \varphi d x<0$, if 3.5 is established, multiplying 3.2 on both sides by μ_{1} gives

$$
\begin{aligned}
b_{n} \int_{\Omega}-\Delta w_{n, 1} \mu_{1} d x= & b_{n} \int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1} d x+\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) w_{n, 1}^{-} \mu_{1} d x \\
& +\int_{\Omega} t_{n} f\left(x, b_{n} w_{n, 1}, v_{n}\right) \mu_{1} d x+h_{1}(x) \mu_{1} d x
\end{aligned}
$$

For n large enough, $\int_{\Omega} w_{n, 1}^{-} \mu_{1} \leq 0$, because $w_{n, 1}^{-} \rightarrow a_{1} \mu_{1}^{-}$in $L^{2}, a_{1}>0$, hence

$$
\begin{align*}
& t_{n} \int_{\Omega} f\left(x, b_{n} w_{n, 1}, v_{n}\right) \mu_{1} d x+h_{1}(x) \mu_{1} d x \\
& \geq b_{n} \int_{\Omega}-\Delta w_{n, 1} \mu_{1} d x-b_{n} \int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1} d x \tag{3.6}
\end{align*}
$$

noticing that

$$
E_{n, 1}=\int_{\Omega}-\Delta w_{n, 1} \mu_{1} d x-\int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1} d x
$$

because $\left(A=A^{*}\right)$;

$$
E_{n, 1}=\int_{\Omega} w_{n, 1}\left(-\Delta \mu_{1}\right) d x-\int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1} d x
$$

then

$$
E_{n, 1}=\int_{\Omega} w_{n, 1}\left(\alpha_{1} \mu_{1}^{+}-\beta_{1} \mu_{1}^{-}\right) d x-\int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1} d x
$$

that is

$$
E_{n, 1}=\alpha_{1} \int_{\Omega}\left(w_{n, 1}^{+} \mu_{1}^{-}-w_{n, 1}^{-} \mu_{1}^{+}\right)-\beta_{1} \int_{\Omega}\left(w_{n, 1}^{+} \mu_{1}^{-}-w_{n, 1}^{-} \mu_{1}^{+}\right) d x
$$

hence

$$
\begin{equation*}
\left|E_{n, 1}\right| \leq\left|\beta_{1}-\alpha_{1}\right|\left(\int_{\Omega} w_{n, 1}^{+} \mu_{1}^{-}+\int_{\Omega} w_{n, 1}^{-} \mu_{1}^{+}\right) \tag{3.7}
\end{equation*}
$$

If $x \in \Omega$ is such that $\mu_{1}(x) \geq 0$ and $w_{n, 1}(x)=z_{n, 1}(x)+a_{n, 1} \mu_{1}(x) \leq 0$, then

$$
z_{n, 1}(x) \leq 0 \quad \text { and } \quad 0 \leq \mu_{1}(x)=\frac{w_{n, 1}(x)-z_{n, 1}(x)}{a_{n, 1}} \leq \frac{\left|z_{n, 1}(x)\right|}{a_{n, 1}}
$$

we obtain

$$
w_{n, 1}^{-}(x) \mu_{1}^{+}(x) \leq \frac{\left|z_{n, 1}(x)\right|^{2}}{a_{n, 1}} \quad \text { a.e. in } \Omega
$$

using the same arguments, one can see that

$$
w_{n, 1}^{+}(x) \mu_{1}^{-}(x) \leq \frac{\left|z_{n, 1}(x)\right|^{2}}{a_{n, 1}} \quad \text { a.e. in } \Omega
$$

From these inequalities and (3.7), we deduce

$$
\left|E_{n, 1}\right| \leq 2\left|\beta_{1}-\alpha_{1}\right| \frac{\left\|z_{n, 1}\right\|_{L^{2}(\Omega)}^{2}}{a_{n, 1}}
$$

hence, (3.5) implies that

$$
b_{n}\left|E_{n, 1}\right| \leq 2 M\left|\beta_{1}-\alpha_{1}\right| \frac{\left\|z_{n, 1}\right\|_{D(A)}}{a_{n, 1}}
$$

and $\lim _{n \rightarrow \infty} b_{n}\left|E_{n, 1}\right|=0$. Now coming back to formula (3.6),

$$
\begin{aligned}
J_{n, 1} & =t_{n} \int_{\Omega} f\left(x, b_{n} w_{n, 1}, v_{n}\right) \mu_{1} d x+h_{1}(x) \mu_{1} d x \\
& \geq b_{n} \int_{\Omega}-\Delta w_{n, 1} \mu_{1} d x-b_{n} \int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1} d x
\end{aligned}
$$

From the hypothesis 1.3 ,

$$
\gamma_{1}^{-} \leq f(x, s, t) \leq \gamma_{1}^{+}
$$

we have

$$
J_{n, 1}=t_{n} \int_{\Omega} f\left(x, u_{n}, v_{n}\right) \mu_{1} d x+h_{1}(x) \mu_{1} d x \leq t_{n} \int_{\Omega} \gamma_{1}^{+} \mu_{1}^{+}-\gamma_{1}^{-} \mu_{1}^{-} d x+h_{1}(x) \mu_{1} d x
$$

which gives

$$
b_{n} E_{n, 1} \leq t_{n} \int_{\Omega} \gamma_{1}^{+} \mu_{1}^{+}-\gamma_{1}^{-} \mu_{1}^{-} d x+h_{1}(x) \mu_{1} d x
$$

Passing to the limit we obtain

$$
0 \leq \int_{\Omega} \gamma_{1}^{+} \mu_{1}^{+}-\gamma_{1}^{-} \mu_{1}^{-} d x+h_{1}(x) \mu_{1} d x=H_{1}\left(h_{1}\right)
$$

which contradicts $H_{1}\left(h_{1}\right)<0$.
When $\int_{\Omega} w_{2} \varphi d x<0$, we multiply 3.3 on both sides by μ_{2},

$$
\begin{aligned}
& b_{n} \int_{\Omega}-\Delta w_{n, 2} \mu_{2} d x \\
& =b_{n} \int_{\Omega}\left(\alpha_{2} w_{n, 2}^{+}-\beta_{2} w_{n, 2}^{-}\right) \mu_{2} d x+\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) w_{n, 2}^{-} \mu_{2} d x \\
& \quad+\int_{\Omega} t_{n} g\left(x, u_{n}, b_{n} w_{n, 2}\right) \mu_{2} d x+h_{2}(x) \mu_{2} d x
\end{aligned}
$$

By the same arguments used in the precedent step with

$$
\gamma_{2}^{-} \leq g(x, s, t) \leq \gamma_{2}^{+}
$$

we have

$$
J_{n, 2}=t_{n} \int_{\Omega} g\left(x, u_{n}, v_{n}\right) \mu_{2} d x+h_{2}(x) \mu_{2} d x \leq t_{n} \int_{\Omega} \gamma_{2}^{+} \mu_{2}^{+}-\gamma_{2}^{-} \mu_{2}^{-} d x+h_{2}(x) \mu_{2} d x
$$

This gives a contradiction with $H_{2}\left(h_{2}\right)<0$.
When $\int_{\Omega} w_{1} \varphi d x>0$ defining

$$
a_{n, j} \in \mathbb{R}, \quad z_{n, j} \in D(A), \quad a_{n, j}=\int_{\Omega} w_{n, j} \varphi d x, \quad z_{n, j}=w_{n, j}-a_{n, j} \mu_{j+2}
$$

in such a way that

$$
w_{n, j}=z_{n, j}+a_{n, j} \mu_{j+2}, \quad a_{n, j} \rightarrow a_{j}, \quad\left\|z_{n, j}\right\|_{D(A)} \rightarrow 0, \quad z_{n, j} \in \varphi^{\perp}
$$

we multiply 3.2 on both sides by μ_{3},

$$
\begin{aligned}
b_{n} \int_{\Omega}-\Delta w_{n, 1} \mu_{3} d x= & b_{n} \int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{3} d x+\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) w_{n, 1}^{-} \mu_{3} d x \\
& +\int_{\Omega} t_{n} f\left(x, b_{n} u_{n}, w_{n, 2}\right) \mu_{3} d x+h_{2}(x) \mu_{3} d x
\end{aligned}
$$

By the same arguments used in the precedent step with $\gamma_{1}^{-} \leq f(x, s, t) \leq \gamma_{1}^{+}$, we have
$J_{n, 1}=t_{n} \int_{\Omega} f\left(x, u_{n}, v_{n}\right) \mu_{3} d x+h_{2}(x) \mu_{3} d x \leq t_{n} \int_{\Omega} \gamma_{1}^{+} \mu_{3}^{+}-\gamma_{1}^{-} \mu_{3}^{-} d x+h_{2}(x) \mu_{3} d x$,
gives a contradiction to $H_{3}\left(h_{2}\right)<0$.
When $\int_{\Omega} w_{2} \varphi d x>0$ Multiply (3.3) on both sides by μ_{4},

$$
\begin{aligned}
b_{n} \int_{\Omega}-\Delta w_{n, 2} \mu_{4} d x= & b_{n} \int_{\Omega}\left(\alpha_{2} w_{n, 2}^{+}-\beta_{2} w_{n, 2}^{-}\right) \mu_{4} d x+\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) w_{n, 2}^{-} \mu_{4} d x \\
& +\int_{\Omega} t_{n} g\left(x, u_{n}, b_{n} w_{n, 2}\right) \mu_{4} d x+h_{2}(x) \mu_{4} d x
\end{aligned}
$$

By the same arguments used in the precedent step, with $\gamma_{2}^{-} \leq g(x, s, t) \leq \gamma_{2}^{+}$, we have

$$
J_{n, 2}=t_{n} \int_{\Omega} f\left(x, u_{n}, v_{n}\right) \mu_{4} d x+h_{2}(x) \mu_{4} d x \leq t_{n} \int_{\Omega} \gamma_{2}^{+} \mu_{4}^{+}-\gamma_{2}^{-} \mu_{4}^{-} d x+h_{2}(x) \mu_{4} d x
$$ give a contradiction with $H_{4}\left(h_{2}\right)<0$.

Now, if (3.5) does not hold, there exists a subsequence denoted by $b_{n}\left\|z_{n}\right\|_{(D(A))^{2}}$, such that $\lim _{n \rightarrow \infty} b_{n}\left\|z_{n}\right\|_{(D(A))^{2}} \rightarrow \infty$. Let

$$
\begin{gathered}
c_{n}=\left\|z_{n}\right\|_{(D(A))^{2}} \\
y_{n}=\left(y_{n, 1}, y_{n, 2}\right)=\left(\frac{z_{n, 1}}{\left\|z_{n}\right\|_{(D(A))^{2}}}, \frac{z_{n, 2}}{\left\|z_{n}\right\|_{(D(A))^{2}}}\right)=\frac{z_{n}}{c_{n}}
\end{gathered}
$$

$y_{n} \in(D(A))^{2},\left\|y_{n}\right\|_{(D(A))^{2}}=1$. The inclusion $D(A) \hookrightarrow L^{2}(\Omega)$ being compact there is a subsequence (still denoted by) $y_{n}=\left(y_{n, 1}, y_{n, 2}\right)$ such that

$$
\begin{gather*}
\left(y_{n, 1}, y_{n, 2}\right) \rightarrow\left(y_{1}, y_{2}\right) \text { in } V, \quad A\left(y_{n}\right) \rightarrow A(y) \text { in } V \text { weak } y \in\left(\varphi^{\perp}\right)^{2}, \\
y_{n}(x) \rightarrow y(x) \quad \text { a.e. in } \Omega . \tag{3.8}
\end{gather*}
$$

There exists $\left(k_{1}, k_{2}\right) \in V$, such that

$$
\left|y_{n, 1}(x)\right| \leq k_{1}(x) \text { a.e, } \quad\left|y_{n, 2}(x)\right| \leq k_{2}(x) \text { a.e. }
$$

On the other hand $w_{n, j}=z_{n, j}+a_{n, j} \mu_{j}, j=1,2$ satisfies

$$
\begin{gathered}
-\Delta w_{n, 1}=\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}+t_{n} \frac{f\left(., b_{n} w_{n, 1}, v_{n}\right)}{b_{n}}+\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) w_{n, 1}^{-}+\frac{h_{1}}{b_{n}} \\
-\Delta w_{n, 2}= \\
\alpha_{2} w_{n, 2}^{+}-\beta_{2} w_{n, 2}^{-}+t_{n} \frac{g\left(., u_{n}, b_{n} w_{n, 2}\right)}{b_{n}} \\
\\
+\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) w_{n, 2}^{-}+\frac{h_{2}}{b_{n}}
\end{gathered}
$$

Multiplying the first equation by μ_{1} / c_{n}, and the second equation by μ_{2} / c_{n}, we have

$$
\begin{aligned}
& \frac{1}{c_{n}} \int_{\Omega}-\Delta w_{n, 1} \mu_{1}= \frac{1}{c_{n}} \int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1}+t_{n} \int_{\Omega}\left(\frac{f\left(., b_{n} w_{n, 1}, v_{n}\right)}{b_{n} c_{n}}\right) \mu_{1} \\
&+\frac{1}{c_{n}} \int_{\Omega}\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) w_{n, 1}^{-} \mu_{1}+\int_{\Omega} \frac{h_{1}}{b_{n} c_{n}} \mu_{1} \\
& \frac{1}{c_{n}} \int_{\Omega}-\Delta w_{n, 2} \mu_{2}= \frac{1}{c_{n}} \int_{\Omega}\left(\alpha_{2} w_{n, 2}^{+}-\beta_{2} w_{n, 2}^{-}\right) \mu_{2}+t_{n} \int_{\Omega} \frac{g\left(., u_{n}, b_{n} w_{n, 2}\right)}{b_{n} c_{n}} \mu_{2} \\
& \frac{1}{c_{n}} \int_{\Omega}\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) w_{n, 2}^{-} \mu_{2}+\int_{\Omega} \frac{h_{2}}{b_{n} c_{n}} \mu_{2}
\end{aligned}
$$

$A=A^{*}$ gives

$$
\begin{aligned}
\frac{1}{c_{n}} \int_{\Omega} w_{n, 1}\left(-\Delta \mu_{1}\right)= & \frac{1}{c_{n}} \int_{\Omega}\left(\alpha_{1} w_{n, 1}^{+}-\beta_{1} w_{n, 1}^{-}\right) \mu_{1}+t_{n} \int_{\Omega}\left(\frac{f\left(., b_{n} w_{n, 1}, v_{n}\right)}{b_{n} c_{n}}\right) \mu_{1} \\
& +\frac{1}{c_{n}} \int_{\Omega}\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) w_{n, 1}^{-} \mu_{1}+\int_{\Omega} \frac{h_{1}}{b_{n} c_{n}} \mu_{1} \\
\frac{1}{c_{n}} \int_{\Omega} w_{n, 2}\left(-\Delta \mu_{2}\right)= & \frac{1}{c_{n}} \int_{\Omega}\left(\alpha_{2} w_{n, 2}^{+}-\beta_{2} w_{n, 2}^{-}\right) \mu_{2}+t_{n} \int_{\Omega} \frac{g\left(., u_{n}, b_{n} w_{n, 2}\right)}{b_{n} c_{n}} \mu_{2} \\
& +\frac{1}{c_{n}} \int_{\Omega}\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) w_{n, 2}^{-} \mu_{2}+\int_{\Omega} \frac{h_{2}}{b_{n} c_{n}} \mu_{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{1}{c_{n}} E_{n, 1}-t_{n} \int_{\Omega}\left(\frac{f\left(., b_{n} w_{n, 1}, v_{n}\right)}{b_{n} c_{n}}\right) \mu_{1}=\frac{1}{c_{n}} \int_{\Omega}\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right) w_{n, 1}^{-} \mu_{1}+\int_{\Omega} \frac{h_{1}}{b_{n} c_{n}} \mu_{1} \\
& \frac{1}{c_{n}} E_{n, 2}-t_{n} \int_{\Omega} \frac{g\left(., u_{n}, b_{n} w_{n, 2}\right)}{b_{n} c_{n}} \mu_{2}=\frac{1}{c_{n}} \int_{\Omega}\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right) w_{n, 2}^{-} \mu_{2}+\int_{\Omega} \frac{h_{2}}{b_{n} c_{n}} \mu_{2}
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
& \frac{\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right)}{c_{n}} \int_{\Omega} w_{n, 1}^{-} \mu_{1}=\frac{1}{c_{n}} E_{n, 1}-t_{n} \int_{\Omega}\left(\frac{f\left(., b_{n} w_{n, 1}, v_{n}\right)}{b_{n} c_{n}}\right) \mu_{1}-\int_{\Omega} \frac{h_{1}}{b_{n} c_{n}} \mu_{1} \\
& \frac{\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right)}{c_{n}} \int_{\Omega} w_{n, 2}^{-} \mu_{2}=\frac{1}{c_{n}} E_{n, 2}-t_{n} \int_{\Omega} \frac{g\left(., u_{n}, b_{n} w_{n, 2}\right)}{b_{n} c_{n}} \mu_{2}-\int_{\Omega} \frac{h_{2}}{b_{n} c_{n}} \mu_{2}
\end{aligned}
$$

From (1.3), 1.2 we can write

$$
\left(\beta_{j}-\alpha_{j}\right) \lim _{n \rightarrow \infty} \frac{\left(1-t_{n}\right)}{c_{n}} \int_{\Omega} w_{n, j}^{-} \mu_{j}=0, \quad j=1,2
$$

such that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} w_{n, j}^{-} \mu_{J}=-a_{j} \int_{\Omega}\left|\mu_{j}^{-}\right|^{2} d x \neq 0
$$

If μ_{j} satisfies 1.5 and $\alpha_{j} \notin \sigma(A)$, then $\mu_{j}^{-} \neq 0$. For this index $j, \beta_{j}-\alpha_{j} \neq 0$, we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left(1-t_{n}\right)}{c_{n}}=0 \tag{3.9}
\end{equation*}
$$

From (1.5), (3.3), (3.4) and

$$
w_{n, j}=z_{n, j}+a_{n, j} \mu_{j}=y_{n, j} c_{n}+a_{n, j} \mu_{j}, j=1,2
$$

we obtain

$$
\begin{aligned}
-\Delta\left(y_{n, 1} c_{n}+a_{n, 1} \mu_{1}\right)= & \alpha_{1}\left(y_{n, 1} c_{n}+a_{n, 1} \mu_{1}\right)^{+}-\beta_{1}\left(y_{n, 1} c_{n}+a_{n, 1} \mu_{1}\right)^{-} \\
& +t_{n} \frac{f\left(., b_{n} w_{n, 1}, v_{n}\right)}{b_{n}}+\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right)\left(w_{1, n}\right)^{-}+\frac{h_{1}}{b_{n}}, \\
-\Delta\left(y_{n, 2} c_{n}+a_{n, 2} \mu_{2}\right)= & \alpha_{2}\left(y_{n, 2} c_{n}+a_{n, 2} \mu_{2}\right)^{+}-\beta_{2}\left(y_{n, 2} c_{n}+a_{n, 2} \mu_{2}\right)^{-} \\
& +t_{n} \frac{g\left(., u_{n}, b_{n} w_{n, 2}\right)}{b_{n}}+\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right)\left(w_{2, n}\right)^{-}+\frac{h_{2}}{b_{n}} .
\end{aligned}
$$

From system (1.5) we deduce

$$
\begin{align*}
-\Delta y_{n, 1}= & \alpha_{1}\left(\left(y_{n, 1}+\frac{a_{n, 1}}{c_{n}} \mu_{1}\right)^{+}-\frac{a_{n, 1}}{c_{n}} \mu_{1}^{+}\right)-\beta_{1}\left(\left(y_{n, 1}+\frac{a_{n, 1}}{c_{n}} \mu_{1}\right)^{-}-\frac{a_{n, 1}}{c_{n}} \mu_{1}^{-}\right) \\
& +t_{n} \frac{f\left(., b_{n} w_{n 1}, v_{n}\right)}{c_{n} b_{n}}+\frac{\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right)}{c_{n}}\left(w_{1, n}\right)^{-}+\frac{h_{1}}{c_{n} b_{n}}, \\
-\Delta y_{n, 2}= & \alpha_{2}\left(\left(y_{n, 2}+\frac{a_{n, 2}}{c_{n}} \mu_{2}\right)^{+}-\frac{a_{n, 2}}{c_{n}} \mu_{2}^{+}\right)-\beta_{2}\left(\left(y_{n, 2}+\frac{a_{n, 2}}{c_{n}} \mu_{2}\right)^{-}-\frac{a_{n, 2}}{c_{n}} \mu_{2}^{-}\right) \\
& +t_{n} \frac{g\left(., u_{n}, b_{n} w_{n 2}\right)}{c_{n} b_{n}}+\frac{\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right)}{c_{n}}\left(w_{2, n}\right)^{-}+\frac{h_{2}}{c_{n} b_{n}} \tag{3.10}
\end{align*}
$$

when $n \rightarrow \infty, c_{n} b_{n} \rightarrow \infty$ and the last three terms of the two equations above converge to zero in $L^{2}(\Omega)$. The following inequalities hold

$$
\begin{align*}
& \left|\left(y_{n, j}+\frac{a_{n, j}}{c_{n}} \mu_{j}\right)^{+}-\frac{a_{n, j}}{c_{n}} \mu_{j}^{+}\right| \leq\left|y_{n, j}\right| \leq k_{j} \quad \text { a.e. } \tag{3.11}\\
& \left|\left(y_{n, j}+\frac{a_{n, j}}{c_{n}} \mu_{j}\right)^{-}-\frac{a_{n, j}}{c_{n}} \mu_{j}^{-}\right| \leq\left|y_{n, j}\right| \leq k_{j} \quad \text { a.e. }
\end{align*}
$$

Extracting a subsequence, we may assume that the last three terms of each equation of 3.10 approach zero a.e in Ω, and there exists $\left(k_{1}^{\prime}, k_{2}^{\prime}\right) \in L^{2}(\Omega) \times L^{2}(\Omega)$ such that

$$
\begin{aligned}
& \left|t_{n} \frac{f\left(x, b_{n} w_{n, 1}, v_{n}\right)}{c_{n} b_{n}}+\frac{\left(1-t_{n}\right)\left(\beta_{1}-\alpha_{1}\right)}{c_{n}}\left(w_{1, n}\right)^{-}+\frac{h_{1}(x)}{c_{n} b_{n}}\right| \leq k_{1}^{\prime} \quad \text { a.e. in } \Omega \\
& \left|t_{n} \frac{g\left(x, u_{n}, b_{n} w_{n, 2}\right)}{c_{n} b_{n}}+\frac{\left(1-t_{n}\right)\left(\beta_{2}-\alpha_{2}\right)}{c_{n}}\left(w_{2, n}\right)^{-}+\frac{h_{2}(x)}{c_{n} b_{n}}\right| \leq k_{2}^{\prime} \quad \text { a.e. in } \Omega
\end{aligned}
$$

From 3.10, 3.11), and the above inequality, we have

$$
\begin{align*}
& \left|-\Delta y_{n, 1}(x)\right| \leq 2 \max \left(\left|\alpha_{1}\right|,\left|\beta_{1}\right|\right) k_{1}(x)+k_{1}^{\prime}(x) \\
& \left|-\Delta y_{n, 2}(x)\right| \leq 2 \max \left(\left|\alpha_{2}\right|,\left|\beta_{2}\right|\right) k_{2}(x)+k_{2}^{\prime}(x) . \tag{3.12}
\end{align*}
$$

Let $\rho(x)$ be defined a.e in Ω as follows

$$
\rho(x)= \begin{cases}\alpha_{j} & \text { if } \mu_{j}(x)>0 \text { or if } \mu_{j}(x)=0 \text { and } y_{j} \geq 0 \\ \beta_{j} & \text { if } \mu_{j}(x)<0 \text { or if } \mu_{j}(x)=0 \text { and } y_{j}<0\end{cases}
$$

from 3.10 and the fact that $c_{n} \rightarrow 0$ one can see that

$$
\begin{array}{ll}
-\Delta y_{n, 1}(x) \rightarrow \rho(x) y_{1}(x) & \text { a.e. in } \Omega \\
-\Delta y_{n, 2}(x) \rightarrow \rho(x) y_{2}(x) & \text { a.e. in } \Omega
\end{array}
$$

From 3.12 and Lebesgue's convergence theorem we conclude that

$$
-\Delta y_{n, 1} \xrightarrow{L^{2}(\Omega)} \rho y_{1}, \quad-\Delta y_{n, 2} \xrightarrow{L^{2}(\Omega)} \rho y_{2} .
$$

Then

$$
-\Delta y_{n} \xrightarrow{\left(L^{2}(A)\right)^{2}} \rho y, \quad y_{n} \xrightarrow{\left(L^{2}(A)\right)^{2}} y .
$$

The operator A being closed, we have

$$
-\Delta y=\rho y, \quad y \in \varphi^{\perp}, \quad\|y\|_{(D(A))^{2}}=1
$$

Since ρ satisfies: $\bar{\lambda}<\alpha_{j} \leq \rho \leq \beta_{j}<\underline{\lambda}$ by [5, Proposition 2.2], we conclude that $y=0$. This contradicts $\|y\|_{(D(\Omega))^{2}}=1$ and hence 3.5) is established.

Using a similar argument to that given above, we obtain the following results:

- When $\alpha_{j}=\beta_{j}=\lambda$ for $j=1,2$, We assume that 1.3 and 1.4 are fulfilled. Let $\left(\theta_{1}, \theta_{2}\right) \in N_{\lambda} \times N_{\mu}$. Then the problem 1.1) has at least one weak solution if and only if

$$
\int_{\Omega} \gamma_{i}^{+} \theta_{i}^{+}(x) d x-\int_{\Omega} \gamma_{i}^{-} \theta_{i}^{-}(x)(x) d x+\int_{\Omega} h_{i}(x) \theta_{i}(x) d x \geq 0, \quad i \in 1,2
$$

- A similar argument can be made when $\alpha_{j}>\beta_{j}$ and $H_{j}\left(h_{j}\right), H_{j+2}\left(h_{j}\right)>0$, $j=1,2$.
Now, we give the proof of our main result.
Proof of Theorem 1.1. Let

$$
B(0, R)=\left\{(u, v) \in U,\|(u, v)\|_{U}<R\right\}
$$

By invariance of the topological degree, for $t \in[0,1], \operatorname{deg}(H(t, \cdot, \cdot), B(0, R), 0)$ is constant. In particular if $t=0$, we have

$$
H(0, u, v)=\left(\begin{array}{cc}
-\Delta^{-1} & \\
& -\Delta^{-1}
\end{array}\right)\binom{\alpha_{1} u^{+}-\alpha_{1} u^{-}}{\alpha_{2} v^{+}-\alpha_{2} v^{-}}
$$

on the other hand, for $t=0$ the linear problem

$$
\begin{gathered}
-\Delta u=\alpha_{1} u+h_{1} \text { in } \Omega \\
-\Delta v=\alpha_{2} v+h_{2} \text { in } \Omega \\
u=v=0 \text { on } \partial \Omega
\end{gathered}
$$

possesses a unique solution $(u, v) \in U$.
By the homotopy invariance property, we have

$$
\begin{aligned}
& \operatorname{deg}\left(I-H(0, \cdot, \cdot), B(0, R),(-\Delta)^{-1} h\right) \\
& =\operatorname{deg}\left(I-H(1, \cdot, \cdot), B(0, R),(-\Delta)^{-1} h\right)= \pm 1
\end{aligned}
$$

this completes the proof.

References

[1] A. Fattah, T. Gallouët, H. Lakehal; An Existence proof for the stationary compressible stokes problem, Ann. Fac. Sci. de Toulouse Math. 6, 4 (2014), 847-875.
[2] D. G. de Figueiredo; Semilinear elliptic systems. Lectures at the international school on nonlinear differential equations, Trieste-Italy, October (2006).
[3] D. G. de Figueiredo, B. Ruf; Elliptic systems with nonlinearities of arbitrary growth, Mediterr, J. Math, 1 (2004), 417-431.
[4] D. G. de Figueiredo, J. Yang; A priori bounds for positive solutions of a non-variational elliptic systems, Commun. Partial. Differ. Equations. 26 (2001), 2305-2321.
[5] Th. Gallouet, O. Kavian; Résultats d'existence et de non-existence pour certains problèmes demi-linèares à l'infini, Ann. Fac. Sci. de Toulouse Math. 5, 3 (1981), 201-246.
[6] Th. Gallouet, O. Kavian; Resonace for jumping non-linearities, Journal of Partial Differential Equations. 7, 3 (1982), 325-342.
[7] J. Kazdan, F. Waxusn; Remarks on some quasilinear elliptic equations, Comm. Pure. Appl. Math 28 (1975), 567-597.
[8] O. Kavian; Introduction à la théorie des points critiques et Applications aux Problémes Elliptiques, Springer Verlag, Math. et Appl, Vol 13, 1993.
[9] H. Lakehal, B. Khodja, W. Gharbi; Existence results of nontrivial solutions for a semi linear elliptic system at resonance, Journal of Advanced Research in Dynamical and Control Systems Vol. 5, Issue. 3, 2013, pp. 1-12.
[10] A. Moussaoui, B. Khodja; Existence results for a class of semilinear elliptic systems, Journal of Partial Differential Equations, 22 (2009), 111-126.

Hakim Lakhal
Université de Skikda, B.P. 26 route d'El-Hadaiek, 21000, Algérie
E-mail address: H.lakhal@univ-skikda.dz
Brahim Khodja (corresponding author)
Badji Mokhtar University P.O. 12 Annaba, Algeria
E-mail address: brahim.khodja@univ-annaba.org

[^0]: 2010 Mathematics Subject Classification. 35Q30, 65N12, 65N30, 76M25.
 Key words and phrases. Topological degree; elliptic systems; homotopy.
 (C) 2016 Texas State University.

 Submitted July 26, 2015. Published March 15, 2016.

