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ELLIPTIC SYSTEMS AT RESONANCE FOR JUMPING
NON-LINEARITIES

HAKIM LAKHAL, BRAHIM KHODJA

ABSTRACT. In this article, we study the existence of nontrivial solutions for
the problem
—Au=ajut — Biu” + f(z,u,v) + hi(z) in Q,
—Av = agvt — Bov™ + g(z,u,v) + ha(z) in Q,
u=v=0 on 09,
where Q is a bounded domain in RY, and hi,he € L?(Q). Here [aj,5;] N

o(—A) = X, where o(-) is the spectrum. We use the Leray-Schauder degree
theory.

1. INTRODUCTION AND STATEMENT OF RESULTS

This article is devoted to the study of nonlinear elliptic systems at resonance.
The study of resonant problems started with the seminal work of Landesman and
Lazer (1969/1970), who produced sufficient conditions (which in certain circum-
stances are also necessary) for the existence of solutions for some smooth semilinear
Dirichlet problems. The corresponding scalar case considered in [6] has shown the
existence of solutions to the problem Au = au™ — Bu™ + f(x,u) + h, where A is a
self-adjoint operator with compact resolvent in L?(€2), f(-,-) maps Q x R into R,
such that lim,_, @ =0 and [o, 8] No(A) = A, (X a simple eigenvalue of A).
The study of nonlinear elliptic systems at resonance has been extensively studied
during recent years (see [0 [I0]). In this work we establish the existence of weak
solutions of the problem

—Au=out — pu” + f(z,u,v) + hy(z) in Q,
—Av = agv — Bov” + g(x,u,v) + ho(x) in Q, (1.1)
u=v=0 on 08,
Where Q is a bounded domain in RY (N > 2) with smooth boundary 9§ and
h = (hy,ho) is an (L%(£2))? function. Let A and A be defined as follows
A=sup{\p: A <\ k€ N}
A=inf{\; : A\ > A\ k € N}
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For the rest of this article, we suppose that «;, 3; €]\, A[= I satisfy
[Oéj,ﬂj] ﬂO’(A) = )\,j = 1,2

we denote by o(A) the spectrum of A. For u € D(A), we define the real function
C(.,.) on the square I x I satisfying

Au = au™t — fu” + C(a, B)p, / up =1,
Q

where ¢ is a normalized eigenfunction corresponding to A,
Au=du, |lullp2@) = 1.

The function C(.,.) is continuous on I x I and strictly decreasing with respect to
each variable. Moreover, the curve

2 ={(a, ) € I x I, C(a, §) = {0}

is continuous, passing through the point (A, A) of Iy x I. Let
Ot =C(ay,B;), C1=CBj,05),5=1,2.

The main idea in [I0] is to present a priori bounds for the solutions of where
CtJ.C=3 £0,j =1,2. Always in the system case, the interested reader may refer
to [1, 2, 3] and [4]. In the present paper we study the case where CTJ . C—J =
0,(j =1,2). Let

N(a, 8) = {u € D(A), Au = au® — Bu"},

then N(a, 8) = {0} if and only if C(a, ) - C(B, @) # 0 note that N(A,A) = Ny =
ker(A—AI). The equation of existence of solution for when N(«, 8) = {0} has
been studied in [I0]. The main idea of the paper is to prove the existence of solutions
of semilinear elliptic system of the form in the case where N(a, ) # {0}.
There are two cases:

o If C(B,a) = C(e, B) = 0, we have (resonance),

o If C(a,8) =0 # C(B,a), or C(B,a) =0 # C(e, 8), we have (semi reso-

nance).
We assume that f,g : @ x R x R — R are continuous functions satisfying the
condition below:
|f(@,s,8)] < er(1+ [s] + [t]),

lg(,s,8)| < ca(1 + [s| + [t]), (1.2)

where cq, co are real positive constants.

lim  f(.,t,s) = *yf, lim  f(.,t8) =,
stlmoo —sjtl—o00 (1.3)
o € LA(Q), v < flmts) <A

and

lim g¢(.,t,s)= 'y;', lim g(.,ts) =75,
t,|s|—o0 —t,]s|—o0 (1.4)

Y5 .ve € LX), vy <gla,t,s) <qf.



EJDE-2016/70 ELLIPTIC SYSTEMS AT RESONANCE 3

Let 61 = (us, pt4) and 0 = (u1, u2) be defined as follows

—Apj = ol = Bipy, /MM=—1
Q
when C(B;,a;) =0, (j =1,2),
(85, ;) ( ) (L5)
—Apjr2 = o = Bili o, /Qﬂj+2<P =1
when C(oj,6;) =0, (j =1,2).
Our main theorem read as follows:

Theorem 1.1. Assume that (1.2), (1.3), (1.4) and (1.5) are fulfilled. For each
(h1,h2) € (L*(Q))%. We define

H;(hj) :/thmdx—&—/ﬂfy;rujdx—/ﬂfy;u;dm, i€q{1,2,3,4}, j=1,2.

(i) IfCTHI =C~7 =0, has at least one solution. For every h; € L*(2)
such that Hj(hj).Hj+2(hj) >0,7=1,2.

(i) IfCT =04 C (resp C=7 =0# CTI), has at least one solution.
For every h; € L*(2) such that C™7 Hj o(h;) <0 (resp CTJ.H;(hj) <0),
j=1,2.

In the case a; = B; # A, j = 1,2 see [I0] (resp a; = B; = X, j = 1,2 see [9]), we
obtain the result of solutions existence.

2. PRELIMINARIES

Let us consider the space
U = Hy() x H (),
which is a Banach space endowed with the norm
s )2 = lellZ 0 + ol o
and let us take V = L?(Q) x L?(Q). In the sequel, |- || 12(q) and |- | 2 () Will denote
the usual norms on L2(Q2) and H}(Q) respectively. Recalling that the operator A,
given by
Au=—Au
D(A) = {u € Hy(Q),Au € L*(Q)},

defines an inverse compact on L?(Q) and his spectrum is formed by the sequence
(Ak)ken+ such that [Ag| — +oo and A; the first eigenvalue is positive. Throughout
this paper, we denote by A a simple eigenvalue of A, ¢ is an eigenfunction associated
to A normalized in L?(f2), Pr designates the orthogonal projection of V on ()2
(¢t is the orthogonal of ¢ in L2(2)). We recall the following proposition proved
by Gallouet and Kavian (see [3]).

Proposition 2.1. For all a, 3 €]\, A, there exist a unique C(a,3) € R, and a
unique u € D(A), such that

—Au = aut — Bu” + C(a, B,

/ug@:l.
Q
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The next result is given in a general framework.

Proposition 2.2. Let Q(z,s) : @ x R — R, measurable on x € Q and continuous
on s € R, function verifying

(i) There exists o, 8 € R such that A < a < w < B < X for all
s,t € R, a.e. in ,

(i) limyyyoo L2 =1 ace. in Q,

(iii) Q(z,0) =0 a.e. in Q. Then for all s € R and all Qy € ¢, there exists a
unique v € D(A) N o+ such that

Av=PrQ(.,v+ sp) + Qo.

The proof of the above proposition can be found also in [5]. For ¢ € [0,1] and
(u,v) € (L*(Q))? we define

(AT arut — BruT +tf(z,u,v) + (1 — 1) (81 — aq)u™
H{t v, v) = ( A1)> (aw — By~ + tg(,w,v) + (1 - 1)(2 — a2>v)

The following two problems are equivalent:
—Au = ayut — Bu +tf(r,u,v) + (1 —t)(B1 — ar)u™ + hi(z),
—Av = apv — Bov +tg(x,u,v) + (1 — 1) (B2 — az)v™ + ha(x),
(u,v) € (D(A))?,
and
(u,v) = H(t,u,v) + (A" hy, A" hy),
(u,v) € (D(A))?, h € (L*(Q))?,

H(t,u,v):[0,1] x V — V is compact.

3. A PRIORI BOUNDS FOR SOLUTIONS OF (|L.1))

Lemma 3.1. Under the assumptions of theorem and assuming that H;(h;) <
0, and Hji2(hj) < 0, with oj < 5,5 = 1,2. There exist R > 0 such that for all
t €10,1] and all (u,v) € U,

(u,v) — H(t,u,v) =0 = ||(u,v)||v < R.

Proof. To prove this lemma we assume by contradiction, that for all R > 0 there
exists (¢, u,v) € [0,1] x U such that

(u,v) — H(t,u,v) =0 and ||(u,v)||lv > R,

In other words, we can find a sequence (ty,, up, vy,) € [0,1] x U such that

(Un,vn) — H(tp,un,v,) =0 and b, = ||(un,vs)||v > n. (3.1)
Taking
Unp, Un
Wy = (Wn,1,Wn,2) = P )
(- 2) = ([t Tam o)

then it follows with this choice of w,, that

Wy, = (Wn,1,Wn2) € (D(A))2 and |wy,|ly = 1.
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Indeed, it is easy to see that ||w,||; = 1. Let us show that w, € (D(A))2. We have
— Awn,l
1 n _ _ (3.2)
= b*[alun = By, + tn f (@, un, vn) + (1 = t0)(61 — ar)u, + ha(z)],
— Awn,g
1 n _ _ (3.3)
= F[QQvn - ﬂ?vn =+ tng(xvunavn) + (1 - tn)(ﬁQ - 052)1)71 + hQ(m)}

From (1.2]) and noticing that (a+b)? < 2(a?+b?), we obtain the following estimate
[ 18w o < [ G0 funl + o) de
Q Q

<26 [ (o) < O+ iy + ol

where ¢’ is a positive constant. Therefore,

|f(x7unvvng|2dm < Cl( 1 . Hun”2 . ||vn||2 2)
Q ||(“mvn)||U H(umvn)”U ||(“mvn)||U ”(umvn)HU

Then )
|f (@, tp, vn)|
o l(un, vl

that is, £Z:%a) s hounded in L2(9). Similarly, the function 2&:%2%2) s hounded

> [(un,vn)llu [[(wn,vn)llu

in L2(Q). Moreover, by (3.1)) we have
[h1llL2() < lh1llL2 ()

1
/ /.
do < (=5 +1) <205

< < Ih1]lL2 (),
(e, o)l “
P2l L2(0) P2l L2 ()

< < | h2llz2 ),
[t vn) [ )

then the right hand side of (3.2) is bounded in L2(Q) for all n, thus
1
F[aluz - by, + tnf(xaunavn) + (1 - tn)(ﬂl - al)u:z + hl(l‘)] € Lz(Q)
Similarly we have

1
F[QZU: - ﬂQU; + tng(xa unavn) + (1 - tn)(ﬂZ - 042)1}7? + hZ(z)] € Lz(Q)
Since (wp,1,wn2) € (H3(2))? and the embedding (HJ(2) — L?(2)) is compact,
we can extract a subsequence (t,, Wy 1, Wn,2), still denoted by (¢, Wy, 1, Wy, 2), which
converges in [0,1] x V. Let (¢,wy,ws) be the limit of (¢, wn,1,wns,2) in [0,1] x V.
From the hypothesis (1.3)) and (1.4) it follows that

f(x, Uy, vn) Uy, fz,up,vy)
[l (wns vo)llw B ([ (tns vl Un
= wy, 1f(x’w"’lH(umvn’)HU’vn) — 0 a.e. in €,
’ W, 1] (U, vn) |0 n—oo
(2, U, Vn) Up, g(z, U, vy)
[l (wns va)llU B ([ (tns vl Un

g(xvunvwn72||(unavn)||U) =0 a.e. in Q
.€. y

! w"ﬂ”(“na“n)”U n—00

)
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and since the sequences wy, 1, wy 2 are bounded in L*(Q), we get

Sz, un,vn)
[, vn)[lr
(T, Uns vn)

H(unvvn)”U

c1(1+ Jwpa| + Jwne|) < ae. in Q,

< o1+ Jwpa| + |wne]) <’ ae inQ,

where ¢/, ¢’ are real positive constants. Thanks to Lebesgue’s convergence theorem,
we deduce that

— 0 in L*(Q),n — oo,
— 0 in L*(Q),n — oo,

and consequently

—Awy 1 — [orw] — frwy + (1 —1)(B1 — n)wy ],
—Awyp — [aawy — fowy + (1 —1)(B2 — a2)wy ],

H(wl,mwln)HU =1

Then
—Aw; = aqwy — frwy + (1= 1)(B — ar)wy,
—Awz = azwy — fawy + (1 —1)(F2 — az)w; .
Case I: [, w1 = [, wz2p =0. Then projecting on o+ we have

—Aw; = Prlaqw] — Brw] + (1 =) (B — a1)wi],
—Awy = Prlagw] — Bowy + (1 —)(B2 — az)wy |.

Using proposition (s =0,Q = 0) we see that w; = we = 0, this is contradiction
with [lw|ly = 1. Hence [, we # 0.

Case IL: [, wip #0. If [wip =6 >0, then p = %+ verifies

Ap=op® = (b1 + (1 —t)(ar = B))u ™, / pe =1,
Q
from proposition we deduce that

Clar, B+ (1= t)(ar — B1)) =

The function C(-, -) is strictly decreasing with respect to each variable, with 51 > ay
and t < 1, we have

Clar, 1+ (1 = t) (a1 — B1)) > Clar, B1) =0,

which is a contradiction. If fQ wip =6 <0, p= -, we obtain a contradiction as
a similar argument with the above step.
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Case III: [, wap # 0. A similar argument can be made when [, wap # 0. Let us
assume ¢t = 1 i.e t,, — 1. Now, however, we have no contradiction since (wy,ws) €
N(aj, /BJ) and

Awy = aqwy — frwy, (w1, w2) € N(ag, Br),

A (3.4)
Aws = apwy — fowy, (w1, wz2) € N(az, f2),
we can write
Wi = Qjj42 if a; = / wjgod:z: > 0, ] = 1,2,
Q
wj = ajp; if —a; = / wipdr <0, j=1,2,
Q
defining
anj €ER, 2,5 € D(A), an;= —/ Wy G PdT, 2, j = Wn j — An jllj,
Q
in such a way that
Wnj = Znj + anjtty,  ng = g, |znglpay =0, znj € ¢,
if a; # 0 we claim that
M > 0 such that Vn > 1,  by|lznjllpay <M, j=1,2. (3.5)

When fQ wipdr < 0, if (3.5]) is established, multiplying (3.2) on both sides by
w1 gives

bn/ —Awy, 1 prdr = by, / (arw;ty — Brwy, prde + (1 —t,) (61 — on)w,, y pada,
Q Q

+/ tnf (2, bnwy 1, vp) pprde + by () prde .
Q

For n large enough, [, w, 41 <0, because w, ; — ayj; in L? a; > 0, hence

tn/ f(z, bpwn 1, vn)pde + by (2) prde
@ (3.6)

> bn/ —Awy, 1 pdx — by, / (alwf{’l — ﬂlw;’l)uldx,
Q Q

noticing that

E,q1= —Awy, 1pndr — / (Oélw:,_,l - ﬂlw;,l):uldxa
Q Q

because (A = A*);

Ena :/wn,l(—Aul)dfC—/(ale—ﬂlw;l)mdm,
Q Q
then
Bus = [ woslast = Bt — [ (ol - G md,
Q Q

that is

E,1=m /Q(w;h/if - w'r:,llj’f) - /Q(wrtllif - w;@,“;r)dx»
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hence
Bual < 18— anl( [ wlas + [ wiant). (37)
Q Q
If € Q is such that pq(z) > 0 and wy, 1(x) = 2p,1(2) + app1(z) <0, then

Zna(x) <0 and 0 < pi(x) = Wn.1(2) = 2n.1(2) < ‘Zn’l(x)‘,

Gn,1 Qn,1
we obtain )
wy, (z)uf () < [zna @) a.e. in £,
’ an,1
using the same arguments, one can see that
2
wi @y @) < P00 e,
’ Qn,1
From these inequalities and (3.7)), we deduce
||Zn,1||2L2(Q)
|Enal <281 — | ————;
an,1

hence, (3.5) implies that

bn|En 1| < 2M|5 —a1lw

an, 1

and lim,, o0 by |Ep 1] = 0. Now coming back to formula (3.6]),

Jp1 = tn/ f(z, bpwn 1, 0n)pade + hy(x)prde
Q

> bn/ —Awy 1 ppde — bn/(alw;l — ﬁlw;71)u1dx.
Q Q

From the hypothesis (1.3]),
’Yf S f(l’,S,t) S 7?7

we have
Jn1 =tn /Q (@, upn, vp)prde + hy(x)prde < t, /Q Y pE =y py de + by (z)pa de,
which gives

bnEiny < tn/QWerf — 1 py dx + hy(2)pde.

Passing to the limit we obtain
0< / Wi =1 ke + h(2)pade = Hy(ha),
Q

which contradicts Hy(h1) < 0.
When fQ wopdzr < 0, we multiply (3.3) on both sides by us,

bn/ —Awy, opiodx

Q

= by, / (aqw o = Bowy ) pad + (1 — 1) (B2 — ag)wy, Hpadz
Q

+ / tng(l‘, Unp, bnwn,Z)ManT + hz(lﬂ),ugdﬂ? .
Q
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By the same arguments used in the precedent step with

vy < gz, s,t) <y,

we have
no = tn/ 9(, U, Un ) p2dx + ho(z)podz < tn/ V3 13 — Vg py dx + ho () ppda .
Q Q

This gives a contradiction with Ha(ha) < 0.
When [, wigdz > 0 defining

anj ER, 2,5 € D(A), an;= / Wy jPdT,  Zp,j = Wy j — Gn jflj+2,
Q
in such a way that

_ 1
Wi = 2nj + Gnjljt2,  Anj = @, ||znjllpa) =0, zn; € 97,

we multiply (3.2) on both sides by us,

bn/ 7A’Ll}n71‘ugdl‘ = bn / (alw;’;l — ﬂlw;’l)ugd:c -+ (1 — tn)(ﬁl — al)w;_rlugd:c
Q Q

+ / to f (2, by, Wp 2) pade + ho(z)psde .
Q

By the same arguments used in the precedent step with v; < f(z,s,t) < 7, we
have

1 = tn/ f (@, vn)psde + ho(z)pgdr < tn/ Vs — 1 ps dx + ho(x)psde,
Q Q

gives a contradiction to Hz(hs) < 0.
When [, wapdz > 0 Multiply (3.3) on both sides by s,

bn/ —Awy, opadx = by, / (ozgw;i:2 — ﬁgw;Q)/de + (1 —tn) (B2 — ag)w;,2u4dx
Q Q

+ / tng (T, up, bnwn,Q)lMde + ho(z)pade, .
Q

By the same arguments used in the precedent step, with v, < g(z,s,t) < 72+, we
have

Jno = tn/ F(@, up, vy padz + ho(z)pade < tn/ V3 g — s g dw 4 ho(x)pada,
Q Q

give a contradiction with Hy(hg) < 0.
Now, if (3.5]) does not hold, there exists a subsequence denoted by by ||z, ||(p(a))2,
such that limy, e bnl|2nl/(D(a))2 — 00. Let

Cn = ||Zn||(D(A))27
Yn = (Yn.1,Yn,2) ( .l .2 ) -
n — Un,1,Yn,2) = 3 =
' ”ZnH(D(A))2 ||ZnH(D(A))2 Cn

Yn € (D(A))?, |lynll(p(ayz = 1. The inclusion D(A) — L?(Q) being compact there
is a subsequence (still denoted by) yn = (Yn,1,¥n,2) such that

(Yn15Yn2) — (y1,92) in V,  A(yn) — A(y) in V weak y € (p1)?,

yn(z) = y(z) ae. in Q. (3.8)
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There exists (k1, k) € V , such that
Yn1 ()] < k1(z) ae,  |yn2(z)| < kao(2) ace.

On the other hand wy, ; = zn,; + an jit;, 7 = 1,2 satisfies

~,bnwn ; Un, — h
Tlsbutbnson) 1 4,8, — gy + 21,

( Unp,, bnwn,Z)
bn
ha
by,
Multiplying the first equation by p1 /¢y, and the second equation by ua/c,, we have

1 1 - f ~7bnwn,lyvn
*/ —Awn,1M1 = 7/(04171};{,1 —5110”,1)#1 +tn/<¥)ul
Cn JQ Cn JQ Q

—Awy, 1 = alw ﬁlwn 1+t
_Awn 2 = a2wn 2 ﬁQU)n 2 + t

+(1 =) (B2 — ag)w,, o +

bnen

1 hy
- 1 - tn - " 7 )
w0t - anugn + [
1 1 — -aunvbnwn,
07/ —Awp aptp = 7/(04211):{72 —ﬁ2wn,2)uz+tn/ —g( 2),u2
n JQO Q

b'l’L Cn

ho
*/ (1—=1t,)(B2 — az)w n2ﬂ2+/bncnﬂ2~
* gives

f(-a bnwn 1, Un)
— n1(—A n, tn | (o
/w 1(=Ap) /(Oélw — Brw,, 1) + /Q( Jh1

bncn
+ /(1 tn) (B Jw,, +/ I
— —1n —Qap)w — 41,
o Jo 1 1)Wh, 1M1 o bncn/h

! 1 5 Un, bpwy
L PR REE Y SRR § ST
Cn JQ Cp, Q

bncn

1 _ h
o [t B~ anuam+ [ e,
Cn, Q ’ O bncn
Then
1 f(,bnwn 1,Un / / hl
—Epq —t, [ () — [ (A —t,) (B —
o 1 /Q( bocn )(B1 — 1) n1/~L1 o bncn
1 oy Upyy bWy, h
;fm_%/ﬁ????z */14 oy + [ 2
Cp, Q bncn Q bn n

or equivalently,

—in - ]- b n,l n h
(L= )P = ) / Wy 1 = —FEnn *tn/(f( Dot P / -
Cn Q Cn, Q bncCn Q ncn

1—t - 1 ,bn
( n) (B2 — az) / W opts = — s — L‘n/ 9(s Un, bpwn 2) / ha
Cn Q ’ Cn Q b nCn Q bncn
From (1.3)), (1.2) we can write

1-—1¢, _ .
(8; — ;) lim d=tn) / w, sy =0, j=12,
Cn Q ’

n—oo
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such that
lim w;’j,qu—aj/ |uj_\2da:7é0.
Q Q

n—oo

If p; satisfies (L.5) and a; ¢ o(A), then p; # 0. For this index j, 8; — ay; # 0, we
find that
1—-1,
fim (L)

n— o0 Cn

=0. (3.9)
From ,(3.3),(3.4) and

Wp,j = Zn,j + Qn,jlbj = Yn,jCn + an,jﬂjaj =12
we obtain

—AYn16n + an1p1) = a1(Yn16n + an1p1) T — B1(Yn16n + anapin)”

bn

—A(Yn,2Cn + an2pt2) = a2(Yn.2Cn + an2p2)T — Bo(Yn26n + anopiz)”

+tn +(1_tn)(ﬂ1_a1)(w1,n)_+7

-y Un, bpwn, _ h
+ tnw + (1 — tn)(62 — OéQ)(U)Q’n) —+ be .
From system (1.5 we deduce
An, an, Qn, G, —
—Ayn1 = a1((yn1 + cil,ul)Jr T 1#?) = B1((yna + p 1#1) - ?1#1 )
o bpwp, vy 1-—1t, -« _ h
+tnf( 1 ) + ( )(61 1)(w1,n) + 1 7
Cnbn Cn cnbn
An,2 An,2 An,2 — an2 _
—Ayn = 22((Yn2 + —=p2)* — 13) = B2((yn,2 + p2)” — = py)
Cn Cn n Cp,
. b 1-—t — h
Tt It buwna) | (=) (B2 —02) () o) B2
cnby Cn Cnbn
(3.10)

when n — 00,¢,b, — oo and the last three terms of the two equations above
converge to zero in L?(2). The following inequalities hold

Gn,j

o
(g + 1) " = 0] | < lyn gl S By e
n n (3.11)

nj ~_  Qnj _
|(Yn,j + Cw i)~ — ?T”Nj | <lynjl < kj ae.
n

n

Extracting a subsequence, we may assume that the last three terms of each equation
of (3.10) approach zero a.e in €, and there exists (k},k5) € L?(Q2) x L*(Q) such
that

bpwy, y Un 1—t, — - h 1
‘tnf(x’ ul]) 1,0 ) + ( )(ﬁl al)(wl,n> + l(bx)| < kll a.e. in 97
Cnbn Cp, CnOn
by, 1—t — _h .
‘t"g(x’u:’b X)) 4 ( n)C(ﬂZ az) (wan)™ + cQ(bx)| <k ae inQ.

From (3.10)), (3.11), and the above inequality, we have
| = Ay (@)] < 2max(|aal, [Bu])ki(2) + K (2),
| = Ayn ()| < 2max(|azl, [B2])k2(z) + Ky ().

8

(3.12)



12 H. LAKEHA, B. KHODJA EJDE-2016/70

Let p(z) be defined a.e in Q as follows
aj if pi(x) >0 orif pj(x) =0 and y; > 0,
ple) = {ﬁj if pj(xz) <0orif pj(x) =0 and y; <O,
from and the fact that ¢, — 0 one can see that
—Ayna(z) = p(r)yr(z) ae in €,
—Ayn2(z) — p(x)y2(x) ae in Q.
From and Lebesgue’s convergence theorem we conclude that

L*(Q) L*(Q)
—Ayn1 = py1, —Dyn2 — py2.

Then
(L?(4))? (L2(A))?
—Ayn =" py, yn =Y
The operator A being closed, we have
“Ay=py, yev, |yl =1
Since p satisfies: A < a; < p < B < A by [5l Proposition 2.2], we conclude that
y = 0. This contradicts ||y||(p(a))> = 1 and hence (3.5) is established. O

Using a similar argument to that given above, we obtain the following results:

e When a; = 8; = X for j = 1,2, We assume that (1.3) and (1.4]) are
fulfilled. Let (61,602) € Ny x N,. Then the problem (1.1)) has at least one
weak solution if and only if

o (z)dx — 70 (z)(x)dx i(x)0;(x)dx )
[t @is = [ 270r @ @i+ [ h@p@dr=0, et

e A similar argument can be made when «; > 3; and H;(h;), Hj12(hj) > 0,
j=1,2.
Now, we give the proof of our main result.
Proof of Theorem (1.1). Let
B(0,R) = {(u,v) € U,||(u,v)||u < R}

By invariance of the topological degree, for ¢t € [0,1], deg(H(t,-, ), B(0, R),0) is
constant. In particular if ¢ = 0, we have

—A-1 out —aqu”
H(0,u,v) = < —A—1> (algv+ - aév‘) ’

on the other hand, for ¢ = 0 the linear problem
—Au = aju+ hy in Q,
—Av = agv + hy in Q,
u=v =0 on 0f).

possesses a unique solution (u,v) € U.
By the homotopy invariance property, we have

deg(‘[ - H(Ov “ ')7 B(Ov R)7 (_A)_lh)
= deg(I - H(la " ')a B(Oa R)7 (_A)ilh) = :l:la
this completes the proof. [
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