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UNIFORM DECAY OF SOLUTIONS FOR COUPLED
VISCOELASTIC WAVE EQUATIONS

JIANGHAO HAO, LI CAI

Abstract. In this article, we consider a system of two coupled viscoelastic

equations with Dirichlet boundary conditions. By using the perturbed energy

method, we obtain a general decay result which depends on the behavior of
the relaxation functions and source terms.

1. Introduction

In this article, we study the coupled system of quasi-linear viscoelastic equations

|ut|ρutt −∆u−∆utt +
∫ t

0

g1(t− s)∆u(s)ds+ f1(u, v) = 0, (x, t) ∈ Ω× (0,∞),

|vt|ρvtt −∆v −∆vtt +
∫ t

0

g2(t− s)∆v(s)ds+ f2(u, v) = 0, (x, t) ∈ Ω× (0,∞),

u = v = 0, (x, t) ∈ ∂Ω× (0,∞), (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω̄,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω̄,

where Ω is a bounded domain in Rn (n ≥ 1) with smooth boundary ∂Ω, ρ satisfies

0 < ρ ≤ 2
n− 2

, n ≥ 3,

ρ > 0, n = 1, 2.
(1.2)

The functions u0, u1, v0, v1 are given initial data. The functions g1, g2, f1, f2 will
be specified later.

The study of the asymptotic behavior of viscoelastic problems has attracted
lots of interest of researchers. The pioneer work of Dafermos [4] studied a one-
dimensional viscoelastic problem, established some existence and asymptotic sta-
bility results for smooth monotone decreasing relaxation functions. Muñoz Rivera
[18] considered equations for linear isotropic viscoelastic solids of integral type, and
established exponential decay and polynomial decay in a bounded domain and in

2010 Mathematics Subject Classification. 35L05, 35L20, 35L70, 93D15.
Key words and phrases. Coupled viscoelastic wave equations; relaxation functions;

uniform decay.
c©2016 Texas State University.

Submitted August 21, 2015. Published March 15, 2016.

1



2 J. HAO, L. CAI EJDE-2016/72

the whole space respectively. Messaoudi [12] considered a nonlinear viscoelastic
wave equation with source and damping terms

utt −∆u+
∫ t

0

g(t− s)∆u(s)ds+ ut|ut|m−1 = u|u|p−1. (1.3)

He established blow-up result for solutions with negative initial energy and m < p,
and gave a global existence result for arbitrary initial if m ≥ p. This work was later
improved by Messaoudi [13].

Liu [10] considered the equation with initial-boundary value conditions

utt −∆u+
∫ t

0

g(t− τ)∆u(τ)dτ + a(x)|ut|mut + b|u|ru = 0, (1.4)

he established exponential or polynomial decay result which depends on the rate
of the decay of the relaxation function g. Song et al [23] studied the problem (1.4)
with replacing a(x)|ut|mut by a(x)ut, they obtained general decay result.

Cavalcanti et al [3] discussed the wave equation

utt −∆u+
∫ t

0

g(t− τ)div[a(x)∇u(τ)]dτ + b(x)f(ut) = 0 (1.5)

on a compact Riemannian manifold (M,g) subject to a combination of locally
distributed viscoelastic and frictional dissipations. It is shown that the solutions
decay according to the law dictated by the decay rates corresponding to the slowest
damping.

Muñoz Rivera and Naso [19] studied a viscoelastic systems with nondissipative
kernels, and showed that if the kernel function decays exponentially to zero, then
the solution decays exponentially to zero. On the other hand, if the kernel function
decays polynomially as t−p, then the corresponding solution also decays polynomi-
ally to zero with the same rate of decay.

Wu [24] considered the equation

|ut|ρutt −∆u−∆utt +
∫ t

0

g(t− s)∆u(s)ds+ ut = |u|p−2u, (1.6)

he also improved some results to obtain the decay rate of the energy under the
suitable conditions.

Cavalcanti et al [2] discussed a quasilinear initial-boundary value problem of
equation

|ut|ρutt −∆u−∆utt +
∫ t

0

g(t− s)∆u(τ)dτ − γ∆ut = bu|u|p−2, (1.7)

with Dirichlet boundary condition, where ρ > 0, γ ≥ 0, p ≥ 2, b = 0. An expo-
nential decay result for γ > 0 and b = 0 has been obtained. For γ = 0 and b > 0,
Messaoudi and Tatar [16], [17] showed that there exists an appropriate set, called
stable set, such that if the initial data are in stable set, the solution continuous to
live there forever, and the solution approaches zero with an exponential or poly-
nomial rate depending on the decay rate of relaxation function. For other related
single wave equation, we refer the reader to [7, 14, 21].

Han and Wang [6] studied the initial-boundary value problem for a coupled
system of nonlinear viscoelastic equations

utt −∆u+
∫ t

0

g1(t− τ)∆u(τ)dτ + |ut|m−1ut = f1(u, v), (x, t) ∈ Ω× (0, T ),
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vtt −∆v +
∫ t

0

g2(t− τ)∆v(τ)dτ + |vt|m−1vt = f2(u, v), (x, t) ∈ Ω× (0, T ),

u = v = 0, (x, t) ∈ ∂Ω× (0, T ), (1.8)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω.

Existence of local and global solutions, uniqueness, and blow up in finite time were
obtained when f1, f2, g1, g2 and the initial values satisfy some conditions.

Messaoudi and Said-Houari [15] dealt with the problem (1.8) and proved a global
nonexistence of solutions for a large class of initial data for which the initial energy
takes positive values. Also, Said-Houari et al [22] discussed (1.8) and proved a
general decay result.

Liu [9] studied the coupled equations

utt −∆u+
∫ t

0

g(t− s)∆u(x, s)ds+ f1(u, v) = 0,

vtt −∆v +
∫ t

0

h(t− s)∆v(x, s)ds+ f2(u, v) = 0,
(1.9)

he proved that the decay rate of the solution energy is similar to that of relaxation
functions which is not necessarily of exponential or polynomial type. Others similar
problems were considered in [1, 20].

Motivated by the above researches, we consider the system (1.1). Liu [8] already
considered the system (1.1), and obtained the exponential or polynomial decay of
the solutions energy depending on the decay rate of the relaxation functions. In
[8], the relaxation functions gi(t) (i = 1, 2) satisfy g′i(t) ≤ −ξig

pi

i (t) for all t ≥ 0,
pi ∈ [1, 3/2) and some constants ξ1, ξ2. In this paper, the conditions have been
replaced by g′i(t) ≤ −ξi(t)gi(t) where ξi(t) are positive non-increasing functions.
This allow us to obtain a general decay rate than just exponential or polynomial
type. We use the perturbed energy method to obtain a general decay of solutions
energy. The rest of this article is organized as follows. Some preparation and main
result are given in Section 2. In Section 3, we give the proof of our main result.

2. Preliminaries and statement of main results

We denote the norm in Lρ(Ω) by ‖·‖ρ, 1 ≤ ρ <∞. The Dirichlet norm in H1
0 (Ω)

is ‖∇ · ‖2. C and Ci denote general constants, which may be different in different
estimates.

Throughout this paper, we use the following notation,

(φ ◦ ψ)(t) =
∫ t

0

φ(t− τ)‖ψ(t)− ψ(τ)‖22dτ.

To state our main result, we need the following assumptions.
(A1) gi : R+ → R+, i = 1, 2, are differentiable functions such that

gi(0) > 0, 1−
∫ +∞

0

gi(s)ds = li > 0,

and there exist non-increasing functions ξ1, ξ2 : R+ → R+ satisfying

g′i(t) ≤ −ξi(t)gi(t), t ≥ 0.
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(A2) There exists nonnegative function F (u, v) such that

f1(u, v) =
∂F (u, v)
∂u

, f2(u, v) =
∂F (u, v)
∂v

,

and there exist constants C, d > 0 such that

uf1(u, v) + vf2(u, v) ≥ CF (u, v),

|f1(u, v)| ≤ d(|u+ v|p−1 + |u|
p
2−1|v|

p
2 ),

|f2(u, v)| ≤ d(|u+ v|p−1 + |u|
p
2 |v|

p
2−1),

where p > 2 if n = 1, 2 and 2 < p ≤ 2(n−1)
n−2 if n ≥ 3.

By using the Galerkin method, as in [11], we can obtain the existence of a local
weak solution to (1.1). We omit the proof here.

Theorem 2.1. Assume that (A1), (A2) hold. For the initial data (u0, v0, u1, v1) ∈
(H1

0 (Ω))4, there exists at least one weak local solution (u, v) such that for some
T > 0,

u, v ∈ L∞(0, T ;H1
0 (Ω)), ut, vt ∈ L∞(0, T ;H1

0 (Ω)), utt, vtt ∈ L2(0, T ;H1
0 (Ω)).

We introduce the energy functional of system (1.1),

E(t) =
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

ρ+ 2
‖vt‖ρ+2

ρ+2 +
1
2
‖∇ut‖22 +

1
2
‖∇vt‖22

+
1
2

(g1 ◦ ∇u) +
1
2

(g2 ◦ ∇v) +
1
2

(
1−

∫ t

0

g1(s)ds
)
‖∇u‖22

+
1
2

(
1−

∫ t

0

g2(s)ds
)
‖∇v‖22 +

∫
Ω

F (u, v)dx.

(2.1)

It is easy to prove that

E′(t) =
1
2

(g′1 ◦∇u)(t) +
1
2

(g′2 ◦∇v)(t)− 1
2
g1(t)‖∇u(t)‖22−

1
2
g2(t)‖∇v‖22 ≤ 0. (2.2)

Then we have

‖∇ut‖22 + ‖∇vt‖22 + l1‖∇u‖22 + l2‖∇v‖22 ≤ 2E(0). (2.3)

Our main result reads as follows.

Theorem 2.2. Assume that (A1), (A2) hold. Let (u0, v0, u1, v1) ∈ (H1
0 (Ω))4 be

given, and (u, v) be the solution to (1.1). Then for any t1 > 0 there exist positive
constants C and α such that for all t ≥ t1,

E(t) ≤ Ce−α
R t

t1
ξ(τ)dτ

,

where ξ(t) = min {ξ1(t), ξ2(t)}.

3. Decay result

To prove the general decay result, we define the perturbed modified energy func-
tional

L(t) = ME(t) + εI(t) + J(t),
where M and ε are positive constants to be specified later and

I(t) =
1

ρ+ 1

∫
Ω

|ut|ρutudx+
1

ρ+ 1

∫
Ω

|vt|ρvtvdx+
∫

Ω

∇ut∇udx+
∫

Ω

∇vt∇vdx,
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J(t) = J1(t) + J2(t),

where

J1(t) =
∫

Ω

(
∆ut −

|ut|ρut
ρ+ 1

)∫ t

0

g1(t− τ) (u(t)− u(τ)) dτ dx,

J2(t) =
∫

Ω

(
∆vt −

|vt|ρvt
ρ+ 1

)∫ t

0

g2(t− τ)
(
v(t)− v(τ)

)
dτ dx.

Firstly, we have the following lemmas.

Lemma 3.1 ([5]). Under assumption (A1), if (u, v) is the solution of (1.1), then
the following hold for i = 1, 2:∫

Ω

(∫ t

0

gi(t− τ) (∇u(t)−∇u(τ)) dτ
)2

dx ≤ Ci(gi ◦ ∇u), (3.1)∫
Ω

(∫ t

0

−g
′

i(t− τ) (∇u(t)−∇u(τ)) dτ
)2

dx ≤ −Ci(g
′

i ◦ ∇u). (3.2)

Lemma 3.2. Let (A1), (A2) hold and (u, v) be the solution of (1.1). Then

I ′(t) ≤ − l1
2
‖∇u‖22 +

C1

4δ
(g1 ◦ ∇u) +

1
ρ+ 1

‖ut‖ρ+2
ρ+2

+ ‖∇ut‖22 −
l2
2
‖∇v‖22 +

C2

4δ
(g2 ◦ ∇v) +

1
ρ+ 1

‖vt‖ρ+2
ρ+2 + ‖∇vt‖22

− C
∫

Ω

F (u, v)dx,

(3.3)

in which δ = min{ l12 ,
l2
2 }.

Proof. Differentiating I(t) and using (1.1), we obtain

I ′(t) =
1

ρ+ 1
‖ut‖ρ+2

ρ+2 − ‖∇u‖22 +
∫

Ω

∇u(t)
∫ t

0

g1(t− τ)∇u(τ) dτ dx

+
1

ρ+ 1
‖vt‖ρ+2

ρ+2 − ‖∇v‖22 +
∫

Ω

∇v(t)
∫ t

0

g2(t− τ)∇v(τ) dτ dx

−
∫

Ω

(uf1 + vf2)dx+ ‖∇ut‖22 + ‖∇vt‖22.

(3.4)

Using (3.1) and Young’s inequality, we can estimate the third term of (3.4) as
follows∫

Ω

∇u(t)
∫ t

0

g1(t− τ)∇u(τ) dτ dx

=
∫

Ω

∇u
∫ t

0

g1(t− τ) (∇u(τ)−∇u(t) +∇u(t)) dτ dx

= ‖∇u‖22
∫ t

0

g1(τ)dτ +
∫

Ω

∇u
∫ t

0

g(t− τ) (∇u(τ)−∇u(t)) dτ dx

≤ ‖∇u‖22
∫ t

0

g1(τ)dτ + δ‖∇u‖22 +
1
4δ

∫
Ω

(∫ t

0

g1(t− τ)|∇u(τ)−∇u(t)|dτ
)2

dx

≤ ‖∇u‖22
∫ t

0

g1(τ)dτ + δ‖∇u‖22 +
C1

4δ
(g1 ◦ ∇u).

(3.5)
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Similarly, we obtain∫
Ω

∇v(t)
∫ t

0

g2(t− τ)∇v(τ) dτ dx

≤ ‖∇v‖22
∫ t

0

g2(τ)dτ + δ‖∇v‖22 +
C2

4δ
(g2 ◦ ∇v).

(3.6)

From (3.4)–(3.6), we obtain

I ′(t) ≤ −
(

1−
∫ t

0

g1(τ)dτ − δ
)
‖∇u‖22 +

C1

4δ
(g1 ◦ ∇u) +

1
ρ+ 1

‖ut‖ρ+2
ρ+2

+ ‖∇ut‖22 −
(

1−
∫ t

0

g2(τ)dτ − δ
)
‖∇v‖22 +

C2

4δ
(g2 ◦ ∇v)

+
1

ρ+ 1
‖vt‖ρ+2

ρ+2 + ‖∇vt‖22 −
∫

Ω

(uf1 + vf2)dx.

(3.7)

We can choose δ = min{ l12 ,
l2
2 }. From (3.7) and (A1), (3.3) follows. �

Lemma 3.3. Under assumptions (A1), (A2), we have

J ′(t) ≤
(
δ + 2δ(1− l2)2 + 2Cδ

)
‖∇v‖22 +

(
δ + 2δ(1− l1)2 + 2Cδ

)
‖∇u‖22

+
(

3C2

4δ
+ 2δC2

)
(g2 ◦ ∇v) +

(
3C1

4δ
+ 2δC1

)
(g1 ◦ ∇u)

+
(
C2

4δ
+

C2

4δ(ρ+ 1)

)
(g′2 ◦ ∇v) +

(
C1

4δ
+

C1

4δ(ρ+ 1)

)
(g′1 ◦ ∇u)

−
(∫ t

0

g2(s)ds− δ − δ

ρ+ 1
(2E(0))ρ

)
‖∇vt‖22

−
(∫ t

0

g1(s)ds− δ − δ

ρ+ 1
(2E(0))ρ

)
‖∇ut‖22

− 1
ρ+ 1

(∫ t

0

g2(s)ds
)
‖vt‖ρ+2

ρ+2 −
1

ρ+ 1

(∫ t

0

g1(s)ds
)
‖ut‖ρ+2

ρ+2.

(3.8)

Proof. Differentiating J1(t) and using (1.1), we obtain

J ′1(t) =
∫

Ω

∇u(t)
(∫ t

0

g1(t− τ) (∇u(t)−∇u(τ)) dτ
)
dx

−
∫

Ω

(∫ t

0

g1(t− τ)∇u(τ)dτ
)(∫ t

0

g1(t− τ) (∇u(t)−∇u(τ)) dτ
)
dx

+
∫

Ω

f1(u, v)
∫ t

0

g1(t− τ) (u(t)− u(τ)) dτ dx−
(∫ t

0

g1(s)ds
)
‖∇ut‖22

−
∫

Ω

∇ut
∫ t

0

g′1(t− τ) (∇u(t)−∇u(τ)) dτ dx (3.9)

− 1
ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′1(t− τ) (u(t)− u(τ)) dτ dx

− 1
ρ+ 1

(∫ t

0

g1(s)ds
)
‖ut‖ρ+2

ρ+2.
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By using Young’s inequality and (3.1), we obtain that for some δ > 0,∫
Ω

∇u(t)
(∫ t

0

g1(t− τ) (∇u(t)−∇u(τ)) dτ
)
dx ≤ δ‖∇u‖22 +

C1

4δ
(g1 ◦ ∇u). (3.10)

For the second term of (3.9), employing Young’s inequality, (A1) and (3.1), we have
for some δ > 0,∫

Ω

(∫ t

0

g1(t− τ)∇u(τ)dτ
)(∫ t

0

g1(t− τ) (∇u(t)−∇u(τ)) dτ
)
dx

≤ δ
∫

Ω

(∫ t

0

g1(t− τ) (∇u(τ)−∇u(t)) dτ +
∫ t

0

g1(t− τ)|∇u(t)|dτ
)2

dx

+
1
4δ

∫
Ω

(∫ t

0

g1(t− τ) (∇u(t)−∇u(τ)) dτ
)2

dx

≤ (2δ +
1
4δ

)
∫

Ω

(∫ t

0

g1(t− τ)|∇u(t)−∇u(τ)|dτ
)2

dx

+ 2δ
∫

Ω

(∫ t

0

g1(t− τ)dτ
)2

|∇u(t)|2dx

≤ (2δ +
1
4δ

)C1(g1 ◦ ∇u) + 2δ(1− l1)2‖∇u‖22.

(3.11)

Thanks to Young’s inequality, Sobolev embedding theorem and (3.1), for some δ > 0
we have ∫

Ω

f1(u, v)
∫ t

0

g1(t− τ) (u(t)− u(τ)) dτ dx

≤ δ
∫

Ω

f2
1 (u, v)dx+

1
4δ

∫
Ω

(∫ t

0

g(t− τ) (u(t)− u(τ)) dτ
)2

dx

≤ δ
∫

Ω

f2
1 (u, v)dx+

C1

4δ
(g1 ◦ u)

≤ δ
∫

Ω

f2
1 (u, v)dx+

C1

4δ
(g1 ◦ ∇u).

Using (A2) and the Sobolev embedding theorem and (2.3), we have∫
Ω

f2
1 (u, v)dx ≤ C

(∫
Ω

|u+ v|2(p−1)dx+
∫

Ω

|u|p−2|v|pdx
)

≤ C
(
‖u‖2(p−1)

2(p−1) + ‖v‖2(p−1)
2(p−1) + ‖u‖2(p−2)

n(p−2) + ‖v‖2pnp
n−1

)
≤ C

( (
‖∇u‖22

)p−2 ‖∇u‖22 +
(
‖∇v‖22

)p−2 ‖∇v‖22
)

+ C
( (
‖∇u‖22

)p−3 ‖∇u‖22 +
(
‖∇v‖22

)p−1 ‖∇v‖22
)

≤ C
((2E(0)

l1

)p−2

‖∇u‖22 +
(2E(0)

l2

)p−2

‖∇v‖22
)

+ C
((2E(0)

l1

)p−3

‖∇u‖22 +
(2E(0)

l2

)p−1

‖∇v‖22
)

≤ C
(
‖∇u‖22 + ‖∇v‖22

)
.



8 J. HAO, L. CAI EJDE-2016/72

Then we obtain ∫
Ω

f1(u, v)
∫ t

0

g1(t− τ) (u(t)− u(τ)) dτ dx

≤ Cδ
(
‖∇u‖22 + ‖∇v‖22

)
+
C1

4δ
(g1 ◦ ∇u).

(3.12)

The fifth term of (3.9) yields

∫
Ω

∇ut
∫ t

0

g′1 (∇u(t)−∇u(τ)) dτ dx ≤ δ‖∇ut‖22 +
C1

4δ
(g′1 ◦ ∇u). (3.13)

We estimate the sixth term of (3.9) by using Young’s inequality, Sobolev embedding
theorem and (2.3) as follows

1
ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′1(t− τ) (u(t)− u(τ)) dτ dx

≤ δ

ρ+ 1
‖ut‖2(ρ+1)

2(ρ+1) +
C1

4δ(ρ+ 1)
(g′1 ◦ ∇u)

≤ δ

ρ+ 1
(2E(0))ρ ‖∇ut‖22 +

C1

4δ(ρ+ 1)
(g′1 ◦ ∇u).

(3.14)

Inserting (3.10)–(3.14) into (3.9), we obtain

J ′1(t) ≤
(
δ + 2δ(1− l1)2 + Cδ

)
‖∇u‖22 + Cδ‖∇v‖22

+
(3C1

4δ
+ 2δC1

)
(g1 ◦ ∇u) +

(C1

4δ
+

C1

4δ(ρ+ 1)

)
(g′1 ◦ ∇u)

−
(∫ t

0

g1(s)ds− δ − δ

ρ+ 1
(2E(0))ρ

)
‖∇ut‖22

− 1
ρ+ 1

(∫ t

0

g1(s)ds
)
‖ut‖ρ+2

ρ+2.

(3.15)

In the same way, we conclude that

J ′2(t) ≤
(
δ + 2δ(1− l2)2 + Cδ

)
‖∇v‖22 + Cδ‖∇u‖22

+
(3C2

4δ
+ 2δC2

)
(g2 ◦ ∇v) +

(C2

4δ
+

C2

4δ(ρ+ 1)

)
(g′2 ◦ ∇v)

−
(∫ t

0

g2(s)ds− δ − δ

ρ+ 1
(2E(0))ρ

)
‖∇vt‖22

− 1
ρ+ 1

(∫ t

0

g2(s)ds
)
‖vt‖ρ+2

ρ+2.

(3.16)

Combining the estimates (3.15) and (3.16), we can obtain (3.8). �
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Proof of Theorem 2.1. It is not difficult to find positive constants a1, a2 such that
a1E(t) ≤ L(t) ≤ a2E(t). Differentiating L(t), we have

L′(t) ≤ − 1
ρ+ 1

(∫ t

0

g1(s)ds− ε
)
‖ut‖ρ+2

ρ+2

−
(∫ t

0

g1(s)ds− δ − δ

ρ+ 1
(2E(0))ρ − ε

)
‖∇ut‖22

− 1
ρ+ 1

(∫ t

0

g2(s)ds− ε
)
‖vt‖ρ+2

ρ+2

−
(∫ t

0

g2(s)ds− δ − δ

ρ+ 1
(2E(0))ρ − ε

)
‖∇vt‖22

+
(3C1

4δ
+ 2δC1 +

C1ε

4δ

)
(g1 ◦ ∇u)

+
(3C2

4δ
+ 2δC2 +

C2ε

4δ

)
(g2 ◦ ∇v)

−
((M

2
g1(t) +

l1
2
ε
)
− δ − 2δ(1− l1)2 − 2Cδ

)
‖∇u‖22

−
((M

2
g2(t) +

l2
2
ε
)
− δ − 2δ(1− l2)2 − 2Cδ

)
‖∇v‖22

− Cε
∫

Ω

F (u, v)dx.

(3.17)

For any t0 > 0 we can pick ε, δ > 0 small enough, M so large such that for t > t0
there exist constants η1, η2, η3, η4 > 0, and

L′(t) ≤ −η1(‖ut‖ρ+2
ρ+2 + ‖vt‖ρ+2

ρ+2)− η2(‖∇ut‖22 + ‖∇vt‖22)

+ η3 ((g1 ◦ ∇u) + (g2 ◦ ∇v))− η4(‖∇u‖22 + ‖∇v‖22)− εC
∫

Ω

F (u, v)dx.

(3.18)
Then, we can choose t1 > t0 such that η, C > 0 and (3.18) takes the form

L′(t) ≤ −ηE(t) + C ((g1 ◦ ∇u) + (g2 ◦ ∇v)) , t ≥ t1. (3.19)

Multiplying (3.19) by ξ(t), by using (A1) we have

ξ(t)L′(t)

≤ C
∫

Ω

∫ t

0

ξ1(t− τ)g1(t− τ)|∇u(t)−∇u(τ)|2 dτ dx

+ C

∫
Ω

∫ t

0

ξ2(t− τ)g2(t− τ)|∇v(t)−∇v(τ)|2 dτ dx− ηξ(t)E(t)

≤ −C
∫

Ω

∫ t

0

g′1(t− τ)|∇u(t)−∇u(τ)|2 dτ dx

− C
∫

Ω

∫ t

0

g′2(t− τ)|∇v(t)−∇v(τ)|2 dτ dx− ηξ(t)E(t)

≤ −CE′(t)− ηξ(t)E(t).

(3.20)

where ξ(t) = min {ξ1(t), ξ2(t)}. Thanks to (A1), we obtain

d

dt
(ξ(t)L(t) + CE(t)) ≤ −ηξ(t)E(t), t ≥ t1. (3.21)
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By defining the functional

F (t) := ξ(t)L(t) + CE(t) ∼ E(t), (3.22)

we have
F ′(t) ≤ −αξ(t)F (t). (3.23)

Then integrating over (t1, t), we have

F (t) ≤ F (t1)e−α
R t

t1
ξ(τ)dτ

.

By using (3.22) again, the decay result follows. �
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