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QUASI-SPECTRAL DECOMPOSITION OF THE HEAT
POTENTIAL

TYNYSBEK SH. KAL’MENOV, GAUKHAR D. AREPOVA

Abstract. In this article, by multiplying of the unitary operator

(Pf)(x, t) = f(x, T − t), 0 ≤ t ≤ T,

the heat potential turns into a self-adjoint operator. From the spectral de-

composition of this completely continuous self-adjoint operator we obtain a
quasi-spectral decomposition of the heat potential operator.

1. Introduction

In the works of Gohberg and Krein [2], it is proven that for any linear completely-
continuous operator A, in a Hilbert space H, has a triangular representation A =
U(A∗A)1/2, where A∗ is an adjoint operator to A, and U a unitary operator. When
the operator A is a completely-continuous Volterra operator generated by a mixed
solution of the Cauchy problem for parabolic and hyperbolic equations proposes, it
is of great interest. In this article we give a new analogue of a triangular represen-
tation of multi-dimensional heat potential and its quasi-spectral expansion.

2. Main results

Let Ω ⊂ Rn be a finite domain with a smooth boundary ∂Ω ∈ C1, and D =
Ω × (0, T ). In the domain D we define the heat potential (see e.g. [1, 11]) by the
formula

u = ♦−1f ≡
∫ t

0

dτ

∫
Ω

εn(x− ξ, t− τ)f(ξ, τ)dξ (2.1)

where

εn(x, t) =
θ(t)

(2
√
πt)n

e−
|x|2
4t (2.2)

is the fundamental solution of the heat equation

♦εn(x, t) ≡ (
∂

∂t
−∆x)εn(x, t) = δ(x, t), (2.3)

εn(x, t)|t=0 = 0. (2.4)
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For f ∈ L2(Ω) it is easy to verify that

♦u = ♦♦−1f = ♦
∫ t

0

dτ

∫
Ω

εn(x− ξ, t− τ)f(ξ, τ)dξ = f(x, t), u|t=0 = 0. (2.5)

In the work by Kalmenov, Tokmagambetov [7] (see also [3, 4, 5, 6, 9]), it is shown
that the heat potential u = ♦−1f at any f ∈ L2(Ω) satisfies the following boundary
conditions

u(x, t)
2
−
∫ t

0

dτ

∫
∂Ω

(∂εn
∂nξ

(x− ξ, t− τ)u(ξ, τ)

− εn(x− ξ, τ − t) ∂u
∂nξ

(ξ, τ)
)
dξ = 0, x ∈ ∂Ω, t ∈ [0, T ].

(2.6)

Conversely, for any f ∈ L2(D), solution of (2.5) defines the heat potential by
formula (2.1). Here, ∂

∂nξ
is unit normal derivative at ∂Ω.

Note that the operator ♦−1 is completely-continuous on L2 for any f ∈ L2(Ω),
u = ♦−1f ∈ W 2,1

2 (D). The operator ♦−1 is a Volterra operator, i.e. it has no
nontrivial eigenvectors.

Let us define the operator P by

(Pf)(x, t) = f(x, T − t), 0 ≤ t ≤ T. (2.7)

It is clear that P is a bounded self-adjoint operator satisfying

P = P ∗, P 2 = I. (2.8)

Lemma 2.1. The operator P♦−1 is a completely-continuous self-adjoint operator.

Proof. Let us rewrite the operator P♦−1 in the form

P♦−1f = P
(∫ T

0

θ(t− τ)dτ
∫

Ω

εn(x− ξ, t− τ)f(ξ, τ)dξ
)

=
∫ T

0

θ(T − t− τ)dτ
∫

Ω

εn(x− ξ, T − t− τ)f(ξ, τ)dξ.

(2.9)

By using a direct computation for any f, g ∈ L2(D) it can be shown that

(P♦−1f, g)L2(D)

=
∫ T

0

dt

∫
Ω

(P♦−1f)(x, t)g(x, t)dx

=
∫ T

0

dt

∫
Ω

∫ T

0

θ(T − t− τ)
∫

Ω

εn(x− ξ, T − t− τ)f(ξ, τ)dξg(x, t)dx

=
∫ T

0

∫
Ω

f(ξ, t)dx
∫ T

0

θ(T − t− τ)
∫

Ω

εn(x− ξ, T − t− τ)g(x, t)dxdξ

=
∫ T

0

dτ

∫
Ω

f(ξ, τ)P
(∫ T

0

θ(τ − t)dt
∫

Ω

εn(x− ξ, τ − t)g(x, t)dx
)
dξ

= (f, P♦−1g)L2(D).

(2.10)

On the other hand,

(P♦−1f, g)L2(D) = (f, (P♦−1)∗g)L2(D). (2.11)

Because of the arbitrariness of f, g ∈ L2(D) we obtain

(P♦−1)∗ = P♦−1.
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This completes the proof. �

According to the theory of regular extensions of the linear operator (Otelbaev [8]
and Vishik [10]) self-adjoint differential operators are generated only by boundary
conditions.

Lemma 2.2. For f ∈ L2(D) the function u = P♦−1f ∈ W 1,2
2 (D) ∩ W 1

2 (∂D)
satisfies the equation

♦Pu = f, (2.12)

the initial condition
u|t=T = 0, (2.13)

and the lateral boundary condition

− (Pu)(x, t)
2

+
∫ t

0

dτ

∫
∂Ω

(
∂εn
∂nξ

(x− ξ, τ − t)Pu(ξ, τ)dξ)

−
∫ t

0

dτ

∫
Ω

(εn(x− ξ, τ − t)P ∂u

∂nξ
(ξ, τ)dτ) = 0, x ∈ ∂Ω, t ∈ [0, T ].

(2.14)

Conversely, if u ∈ W 1,2
2 (D) ∩W 1

2 (∂D) satisfies (2.12), the initial condition (2.13)
and the lateral boundary condition (2.14), then u = P♦−1f .

Proof. In view of ♦Pu = f , where u ∈ W 1,2
2 (D) ∩ W 1

2 (∂D) satisfies the initial
condition (2.13) and the lateral boundary condition (2.14), it is easy to prove (see
[7]) that v = Pu = ♦−1f , where

v = ♦−1♦ϑ =
∫ t

0

dτ

∫
Ω

εn(x− ξ, τ − t)( ∂
∂τ
−∆ξ)ϑ(ξ, τ)dξ. (2.15)

It is easy to check as in [7] that

− ϑ(x, t)
2

+
∫ t

0

dτ

∫
∂Ω

(
∂εn
∂nξ

(x− ξ, t− τ)ϑ(ξ, τ)

− εn(x− ξ, τ − t) ∂u
∂nξ

(ξ, τ))dξ = 0, x ∈ ∂Ω, t ∈ [0, T ].
(2.16)

v
∣∣
t=0

= 0 (2.17)

By taking into account v = Pu we will rewrite (2.16)–(2.17) in the form

− (Pu)(x, t)
2

+
∫ t

0

dτ

∫
∂Ω

(
∂εn
∂nξ

(x− ξ, t− τ)(Pu)(ξ, τ)

− εn(x− ξ, τ − t)∂Pu
∂nξ

(ξ, τ))dξ = 0, x ∈ ∂Ω, t ∈ [0, T ].
(2.18)

u
∣∣
t=T

= 0 (2.19)

This completes the proof. �

Since the operator P♦−1 is completely-continuous and self-adjoint throughout
L2(Ω), then it has a complete orthonormal system of eigenvectors ek(x, t) associated
with real eigenvalues λk,

λk(P♦−1)ek = ek. (2.20)
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Then
P♦−1f =

∑
k

(P♦−1f, ek)0ek =
∑
k

(f, (P♦−1)ek)0ek

=
∑
k

(f,
ek
λk

)ek =
∑
k

1
λk

(f, ek)ek.
(2.21)

Applying the operator P to both sides of (2.21), we obtain

♦−1f =
∑
k

1
λk

(f, ek)Pek. (2.22)

The decomposition of ♦−1f through orthonormal system Pek is called a quasi-
spectral expansion of the heat potential ♦−1. This proves the following theorem.

Theorem 2.3. Let ek be a complete orthonormal system of eigenvectors of the
self-adjoint operator λk(P♦−1)ek = ek. Then, for any f ∈ L2(D), ♦−1f has quasi-
spectral expansion in the form

♦−1f =
∑
k

1
λk

(f, ek)Pek. (2.23)
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