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MULTIPLE SOLUTIONS FOR p-LAPLACIAN PROBLEMS
INVOLVING GENERAL SUBCRITICAL GROWTH IN BOUNDED

DOMAINS

NGUYEN THANH CHUNG, PHAM HONG MINH, TRAN HONG NGA

Abstract. Using variational methods, we study the existence of multiple so-
lutions for a class of p-Laplacian problems with concave-convex nonlinearities

in bounded domains. Our result improves those in [8, 9] stated only for sub-
critical growth.

1. Introduction

In this article, we are interested in the existence of solutions for p-Laplacian
problems of the form

−∆pu = g(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain, g : Ω×R→ R is a continuous
function satisfying subcritical growth condition.

Problem (1.1) has been studied extensively for many years. Since Ambrosetti
and Rabinowitz proposed the mountain pass theorem in 1973 (see [1]), critical point
theory has become one of the main tools for finding solutions to elliptic equations
and systems of variational type. To apply this theorem, the authors introduced one
of very important conditions (Ambrosetti and Rabinowitz type condition) on the
nonlinear term g as follows:

(AR) For some θ > p, and R > 0, we have

0 < θG(x, t) ≤ g(x, t)t, ∀|t| ≥ R, a.e. x ∈ Ω,

where G(x, t) =
∫ t

0
g(x, s) ds. This condition ensures that the energy functional

associated to the problem satisfies the Palais-Smale condition ((PS) condition for
short). Clearly, if the condition (AR) is satisfied then there exist two positive
constants d1, d2 such that

G(x, t) ≥ d1|t|µ − d2, ∀(x, t) ∈ Ω× R.
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This means that g is p-superlinear at infinity in the sense that

lim
|t|→+∞

G(x, t)
|t|p

= +∞.

In recent years, there have been many authors considering problem (1.1) without
the (AR) type condition, we refer to some interesting papers on this topic [3, 6,
7, 10, 11, 12, 14, 15] and the references cited there. Miyagaki et al [12], studied
problem (1.1) in the semilinear case p = 2 by proposing the following non-global
condition on the superlinear term g(x, t): There exists t0 > 0 such that

g(x, t)
t

is increasing for t ≥ t0 and decreasing for t ≤ −t0, ∀x ∈ Ω.

Using the mountain pass theorem with the (PS) condition in [1], the authors ob-
tained the existence of a non-trivial weak solution. This result was extended to the
p-Laplace operator −∆pu by Li et al [10]. It should be noticed that in [10, 12], the
authors need the following subcritical growth condition

(A0’) |g(x, t)| ≤ C(1+|t|r−1) for all t ∈ R, a.e. x ∈ Ω, r ∈ [1, p∗), where p∗ = Np
N−p

if 1 < p < N and p∗ = +∞ if p ≥ N .
Recently Lan et al [8, 9] studied problem (1.1) by introducing a general type

of subcritical growth condition, where r = p∗. Using mountain pass theorem [1],
they obtained the existence of at least one nontrivial weak solution of (1.1) without
(AR) condition. In this article, we consider (1.1) when g(x, u) = λ|u|q−2u+f(x, u),
i.e.

−∆pu = λ|u|q−2u+ f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.2)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain, 1 < q < p, λ is a positive
parameter, f : Ω×R→ R is a continuous function satisfying the following general
subcritical growth condition

(A0) lim|t|→+∞ f(x, t)/|t|p∗−1 = 0 uniformly a.e. x ∈ Ω.
In particular, as in [8, 9], we do not use the (AR) condition for the nonlinear term
f , see condition (A4) as well as some examples and comments in the papers [8, 9].
Using the mountain pass theorem [1] combined with Ekeland variational principle
[5], we will obtain the existence of at least two nontrivial weak solutions for problem
(1.1). Our result introduced here is a natural extension from the previous ones
for elliptic problems with concave-convex nonlinearities [2, 13]. Regarding this
interesting topic, we refer the readers to the paper [4], in which the authors studied
elliptic problems with local superlinearity and sublinearity.

To state the main result of this paper, let us introduce the following conditions
on the function f :

(A1) There exists a positive constant t > 0 such that F (x, t) ≥ 0 a.e. x ∈ Ω and
all t ∈ [0, t], where F (x, t) :=

∫ t
0
f(x, s) ds.

(A2) lim sup|t|→0
F (x,t)
|t|p < λ1 uniformly a.e. x ∈ Ω, where λ1 is the first eigen-

value of −∆p.
(A3) lim|t|→+∞

F (x,t)
|t|p = +∞ uniformly a.e. x ∈ Ω.

(A4) There exist constants θ ≥ 1, C∗ > 0 such that

θH(x, t) + C∗ ≥ H(x, st)
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for all t ∈ R, x ∈ Ω, s ∈ [0, 1], where H(x, t) = f(x, t)t− pF (x, t).
It should be noticed that the function f(x, t) = |t|p−2t log(1 + |t|) satisfies (A1)–

(A4). We refer the readers to [8, 9] for more details. In this article, we look for
weak solutions to (1.2) in the usual Sobolev space W 1,p

0 (Ω) which is equipped with
the norm ‖u‖ =

( ∫
Ω
|∇u|p dx

)1/p.
Definition 1.1. We say that u ∈W 1,p

0 (Ω) is a weak solution of (1.2) if∫
Ω

|∇u|p−2∇u∇v dx− λ
∫

Ω

|u|q−2uv dx−
∫

Ω

f(x, u)v dx = 0

for all v ∈W 1,p
0 (Ω).

Our main result is given by the following theorem.

Theorem 1.2. Suppose that (A0)–(A4) are satisfied. Then, there exists λ∗ > 0
such that for any λ ∈ (0, λ∗), problem (1.2) has two nontrivial weak solutions.

2. Multiple solutions

In this section, we prove our main result. Let us denote by ci general positive
constants. As we will see, in order to obtain the existence of at least two weak
solutions for problem (1.2) we use variational methods (mountain pass theorem
and Ekeland variational principle).

We look for the weak solutions of (1.2) which are the same as the critical points
of the functional J : W 1,p

0 (Ω)→ R defined by

J(u) =
1
p

∫
Ω

|∇u|p dx− λ

q

∫
Ω

|u|q dx−
∫

Ω

F (x, u) dx.

We can see that J ∈ C1(W 1,p
0 (Ω),R) and

J ′(u)(v) =
∫

Ω

|∇u|p−2∇u∇v dx− λ
∫

Ω

|u|q−2uv dx−
∫

Ω

f(x, u)v dx

for all u, v ∈W 1,p
0 (Ω).

Lemma 2.1. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗), we can choose
α, ρ > 0 so that J(u) ≥ α for all u ∈W 1,p

0 (Ω) with ‖u‖ = ρ.

Proof. From (A0) and (A2), for any ε > 0, there exists c(ε) > 0 depending on ε,
such that

F (x, t) ≤ 1
p

(λ1 − ε)|t|p + c(ε)|t|p
∗

(2.1)

for all t ∈ R and a.e. x ∈ Ω. Hence, using Sobolev’s embedding, we have

J(u) =
1
p

∫
Ω

|∇u|p dx− λ

q

∫
Ω

|u|q dx−
∫

Ω

F (x, u) dx

≥ 1
p
‖u‖p − λ

q
c1‖u‖q −

1
p

(λ1 − ε)
∫

Ω

|u|p dx− c(ε)
∫

Ω

|u|p
∗
dx

≥ 1
p

(
1− λ1 − ε

λ1

)
‖u‖p − λ

q
c1‖u‖q − c(ε)‖u‖p

∗

=
( ε

pλ1
− λ

q
c1‖u‖q−p − c(ε)‖u‖p

∗−p
)
‖u‖p,

(2.2)

where c(ε) and c1 are positive constants.
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For each λ > 0, we consider the function γλ : (0,+∞)→ R defined by

γλ(t) =
λ

q
c1t

q−p − c(ε)tp
∗−p. (2.3)

It is clear that γλ(t) is a continuous function on (0,+∞). Since p∗ > p > q > 1, it
follows that

lim
t→0+

γλ(t) = lim
t→+∞

γλ(t) = +∞. (2.4)

Hence, we can find t∗ > 0 such that 0 < γλ(t∗) = mint∈(0,+∞) γλ(t), in which t∗ is
defined by the equation

0 = γ′λ(t∗) =
λc1
q

(q − p)tq−p−1
∗ + c(ε)(p∗ − p)tp

∗−p−1
∗

or

t∗ =
( λc1(p− q)
qc(ε)(p∗ − p)

) 1
p∗−q

.

Some simple computations show that

γλ(t∗) = c2.λ
p∗−p
p∗−q → 0 as λ→ 0+. (2.5)

From relations (2.3), (2.4) and (2.5), there exists λ∗ > 0 such that for any λ ∈
(0, λ∗), we can choose α > 0 and ρ > 0 so that J(u) ≥ α > 0 for all u ∈ W 1,p

0 (Ω)
with ‖u‖ = ρ. �

Lemma 2.2. There exists φ ∈W 1,p
0 (Ω), φ > 0 such that J(tφ)→ −∞ as t→ +∞.

Proof. (ii) From (A3), it follows that for any M > 0 there exists a constant cM =
c(M) > 0 depending on M , such that

F (x, t) ≥M |t|p
+
− cM , for a.e. x ∈ Ω, ∀t ∈ R. (2.6)

Take φ ∈ C∞0 (Ω) with φ > 0, from (2.6) and the definition of J , we obtain

J(tφ) =
1
p

∫
Ω

|∇tφ|p dx− λ
∫

Ω

1
q
|tφ|q dx−

∫
Ω

F (x, tφ) dx

≤ 1
p
‖tφ‖p −M

∫
Ω

|tφ|p dx− λ

q

∫
Ω

|tφ|q dx+ cM |Ω|

≤ tp
(1
p
‖φ‖p −M

∫
Ω

|φ|p dx
)
− λtq

q

∫
Ω

|φ|q dx+ cM |Ω|,

(2.7)

where t > 0 and |Ω| denotes the Lebesgue measure of Ω.
From (2.7) and the fact that 1 < q < p, if M is large enough such that

1
p
‖φ‖p −M

∫
Ω

|φ|p dx < 0,

then we have limt→+∞ J(tφ) = −∞. �

Lemma 2.3. There exists ψ ∈ W 1,p
0 (Ω), ψ > 0 such that J(tψ) < 0 for all t > 0

small enough.
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Proof. Take ψ ∈ C∞0 (Ω) with ψ > 0, from the definition of J and condition (A1),
for all t ∈

(
0, t
‖ψ‖L∞(Ω)

)
small enough, we obtain

J(tψ) =
1
p

∫
Ω

|∇tψ|p dx− λ

q

∫
Ω

|tψ|q dx−
∫

Ω

F (x, tψ) dx

≤ tp

p
‖ψ‖p − λtq

q

∫
Ω

|ψ|q dx.
(2.8)

From this inequality, taking

0 < δ <
λp
∫

Ω
|ψ|q dx

q‖ψ‖p

we conclude that J(tψ) < 0 for all 0 < t < min{δ
1
p−q , t

‖ψ‖L∞(Ω)
}. The proof of

Lemma 2.3 is complete. �

Lemma 2.4. The functional J satisfies the (Ce) condition.

Proof. Let {um} ⊂W 1,p
0 (Ω) be a (Cc) sequence of the functional J , that is,

J(um)→ c, ‖J ′(um)‖∗(1 + ‖um‖)→ 0 as m→∞,
which shows that

c = J(um) + o(1), J ′(um)(um) = o(1), (2.9)

where o(1)→ 0 as m→∞.
We prove that {um} is bounded in W 1,p

0 (Ω). Indeed, by contradiction, we assume
that ‖um‖ → +∞ as m → ∞. Let wm = um

‖um‖ we obtain wm ∈ W 1,p
0 (Ω) with

‖wm‖ = 1. Then there exists w ∈ W 1,p
0 (Ω) such that {wm} converges weakly to w

in W 1,p
0 (Ω) and

wm(x)→ w(x), a.e. in Ω, m→∞, (2.10)

wm → w strongly in Lr(Ω), m→∞, 1 ≤ r < p∗, (2.11)

|wm|p
∗

p∗ ≤ c3. (2.12)

Let Ω 6= := {x ∈ Ω : w(x) 6= 0}. If x ∈ Ω 6= then it follows from (2.10) that
limm→∞ wm(x) = limm→∞

um(x)
‖um‖ = w(x) and thus |um(x)| = |wm(x)|‖um‖ → +∞

as m→∞ for a.e. x ∈ Ω 6=.
Using (A3) we have

lim
m→∞

F (x, um(x))
|um(x)|p

= +∞, a.e. x ∈ Ω 6=. (2.13)

This implies

lim
m→∞

F (x, um(x))
|um(x)|p

|wm(x)|p = +∞, a.e. x ∈ Ω 6=. (2.14)

Using condition (A3) again, there exists t0 > 0 such that

F (x, t)
|t|p

> 1 (2.15)

for all x ∈ Ω and |t| > t0 > 0. Since F (x, t) is continuous on Ω × [−t0, t0], there
exists a positive constant c4 such that

|F (x, t)| ≤ c4 (2.16)
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for all (x, t) ∈ Ω× [−t0, t0]. From (2.15) and (2.16) there exists c5 ∈ R such that

F (x, t) ≥ c5 (2.17)

for all (x, t) ∈ Ω× R. From (2.17), for all x ∈ Ω and m, we have

F (x, um(x))− c5
‖um‖p

≥ 0

or
F (x, um(x))
|um(x)|p

|wm(x)|p − c5
‖um‖p

≥ 0, ∀x ∈ Ω, ∀m. (2.18)

Using (2.9) and the Sobolev embedding, there exists c6 > 0 such that

c = J(um) + o(1)

=
1
p

∫
Ω

|∇um|p dx−
λ

q

∫
Ω

|um|q dx−
∫

Ω

F (x, um) dx+ o(1)

≥ 1
p
‖um‖p −

λc6
q
‖um‖q −

∫
Ω

F (x, um) dx+ o(1);

since 1 < q < p, this implies∫
Ω

F (x, um) dx ≥ 1
p
‖um‖p −

λc6
q
‖um‖q − c+ o(1)→ +∞ as m→∞. (2.19)

Also we have

‖um‖p = p

∫
Ω

F (x, um) dx+
λp

q

∫
Ω

|um|q dx+ pc− o(1)

≥ p
∫

Ω

F (x, um) dx+ pc− o(1) > 0 for m large enough.
(2.20)

Next, we claim that |Ω 6=| = 0. In fact, if |Ω 6=| 6= 0, then by relations (2.18), (2.19),
(2.20) and the Fatou lemma, we have

+∞ = (+∞)|Ω 6=|

=
∫

Ω6=

lim inf
m→∞

F (x, um(x))
|um(x)|p

|wm(x)|p dx−
∫

Ω6=

lim sup
m→∞

c5
‖um‖p

dx

=
∫

Ω6=

lim inf
m→∞

(F (x, um(x))
|um(x)|p

|wm(x)|p − c5
‖um‖p

)
dx

≤ lim inf
m→∞

∫
Ω6=

(F (x, um(x))
|um(x)|p

|wm(x)|p − c5
‖um‖p

)
dx

≤ lim inf
m→∞

∫
Ω

(F (x, um(x))
|um(x)|p

|wm(x)|p − c5
‖um‖p

)
dx

= lim inf
m→∞

∫
Ω

F (x, um(x))
‖um‖p

dx− lim sup
m→∞

∫
Ω

c5
‖um‖p

dx

= lim inf
m→∞

∫
Ω

F (x, um(x))
‖um‖p

dx

≤ lim inf
m→∞

∫
Ω
F (x, um(x)) dx

p
∫

Ω
F (x, um) dx+ pc− o(1)

.

(2.21)
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From (2.19) and (2.21), we obtain

+∞ ≤ 1
p
,

which is a contradiction. This shows that |Ω 6=| = 0 and thus w(x) = 0 a.e. in Ω.
Since the function t 7→ J(tum) is continuous in t ∈ [0, 1], for each m there exists

tm ∈ [0, 1] such that

J(tmum) := max
t∈[0,1]

J(tum), m = 1, 2, . . . . (2.22)

It is clear that tm > 0 and J(tmum) ≥ c > 0 = J(0) = J(0.um). If tm <
1 then d

dtJ(tum)|t=tm = 0 which gives J ′(tmum)(tmum) = 0. If tm = 1, then
J ′(um)(um) = o(1). So we always have

J ′(tmum)(tmum) = o(1). (2.23)

Now, we fix a big integer k ≥ 1 and define the sequence {vm} by

vm = (2p‖uk‖p)1/p
wm, m = 1, 2, . . . . (2.24)

From the dominated convergence theorem and since w = 0 we have

lim
m→∞

∫
Ω

|vm|q dx = 0. (2.25)

Furthermore, by (A0), for every ε > 0, there exists c(ε) > 0 such that

|F (x, t)| ≤ 1
c3
ε|t|p

∗
+ c(ε), ∀t ∈ R, a.e. x ∈ Ω.

Let δ = ε
2c(ε) > 0, E ⊆ Ω, |E| < δ we have

∣∣ ∫
E

F (x, vm) dx
∣∣ ≤ ∫

E

|F (x, vm)| dx

≤
∫
E

c(ε) dx+
1

2c3
ε

∫
E

|vm|p
∗
dx

≤ ε

2
+
ε

2
,

hence {
∫

Ω
F (x, vm) dx : m ∈ N} is equi-absolutely-continuous. It follows easily

from Vitali convergence theorem that∫
Ω

F (x, vm) dx→
∫

Ω

F (x, 0) dx = 0 as m→∞.

Since ‖um‖ → +∞ as m→∞, we can find mk ≥ k such that

0 <
(2p‖uk‖p)1/p

‖um‖
< 1, ∀m > mk. (2.26)
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Hence, using relations (2.22), (2.24)-(2.26), it follows that

J(tmum)

≥ J
( (2p‖uk‖p)1/p

‖um‖
um

)
= J(vm)

=
1
p

∫
Ω

|∇vm|p dx−
λ

q

∫
Ω

|vm|q dx−
∫

Ω

F (x, vm) dx

≥ 1
p

∫
Ω

(
‖uk‖p.(2p)

p
p .|∇wm|p

)
dx− λ

q

∫
Ω

|vm|q dx−
∫

Ω

F (x, vm) dx

≥ 2‖uk‖p −
λ

q

∫
Ω

|vm|q dx−
∫

Ω

F (x, vm) dx

≥ ‖uk‖p

(2.27)

for any m > mk ≥ k large enough.
On the other hand, using condition (A4) and relation (2.23), for all m > mk > k

large enough, we have

J(tmum)

= J(tmum)− 1
p
J ′(tmum)(tmum) + o(1)

=
1
p

∫
Ω

|∇tmum|p dx−
λ

q

∫
Ω

|tmum|q dx−
∫

Ω

F (x, tmum) dx

− 1
p

∫
Ω

|∇tmum|p dx+
λ

p

∫
Ω

|tmum|q dx

+
1
p

∫
Ω

f(x, tmum)tmum dx+ o(1)

= λ
(1
p
− 1
q

) ∫
Ω

|tmum|q dx+
1
p

∫
Ω

H(x, tmum) dx

≤ 1
p

∫
Ω

(
θH(x, um) + C∗

)
dx+ o(1)

= θ
(1
p

∫
Ω

|∇um|p dx−
λ

q

∫
Ω

|um|q dx−
∫

Ω

F (x, um) dx
)

− θ

p

(∫
Ω

|∇um|p dx− λ
∫

Ω

|um|q dx−
∫

Ω

f(x, um)um dx
)

+ λθ
(1
q
− 1
p

) ∫
Ω

|um|q dx+
θC∗|Ω|
p

+ o(1)

= θJ(um)− θ

p
J ′(um)(um) + λθ

(1
q
− 1
p

) ∫
Ω

|um|q dx+
θC∗|Ω|
p

+ o(1)

≤ θJ(um)− θ

p
J ′(um)(um) + λθc7

(1
q
− 1
p

)
‖um‖q +

θC∗|Ω|
p

+ o(1).

(2.28)

From (2.27) and (2.28), we deduce that for all m > mk > k large enough,

‖uk‖p ≤ θJ(um)− θ

p
J ′(um)(um) + λθc7

(1
q
− 1
p

)
‖um‖q +

θC∗|Ω|
p

+ o(1)
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or

‖uk‖p − λθc7
(1
q
− 1
p

)
‖um‖q ≤ θJ(um)− θ

p
J ′(um)(um) +

θC∗|Ω|
p

+ o(1) (2.29)

Recall that k ≥ 1 is an arbitrarily big integer and m > mk > k. In (2.29), let
k →∞ we have m→∞ and the left hand side of (2.29) tends to +∞ since q < p.
In the right hand side of (2.29), J(um) → c and θ

pJ
′(um)(um) → 0 as m → ∞.

Thus, we have a contradiction. This proves that the sequence {um} is bounded in
W 1,p

0 (Ω).
Now, since the Banach space W 1,p

0 (Ω) is reflexive, there exists u ∈W 1,p
0 (Ω) such

that passing to a subsequence, still denoted by {um}, it converges weakly to u

in W 1,p
0 (Ω) and converges strongly to u in Lr(Ω), 1 ≤ r < p∗. Moreover, {um}

converges weakly to u in Lp
∗
(Ω) and we have |um|p

∗

p∗ ≤ c8. From (A0), for every
ε > 0, there exists c(ε) > 0 such that

|f(x, t)t| ≤ 1
2c8

ε|t|p
∗

+ c(ε), ∀t ∈ R, a.e. x ∈ Ω.

Let δ = ε
2c(ε) > 0, E ⊆ Ω, |E| < δ we have∣∣ ∫

E

f(x, um)um dx
∣∣ ≤ ∫

E

|f(x, um)um| dx

≤
∫
E

c(ε) dx+
1

2c8
ε

∫
E

|um|p
∗
dx

≤ ε

2
+
ε

2
,

hence {
∫

Ω
f(x, um)um dx : m ∈ N} is equi-absolutely-continuous. It follows easily

from Vitali convergence theorem that∫
Ω

f(x, um)um dx→
∫

Ω

f(x, u)u dx as m→∞. (2.30)

Using (A0) again, for any ε > 0 there exists c(ε) > 0 such that

|f(x, t)| ≤ 1
2c9c10

ε|t|p
∗−1 + c(ε), ∀t ∈ R, a.e. x ∈ Ω,

where

c9 ≥
(∫

Ω

|um|p
∗
dx
) p∗−1

p∗
, ∀m; c10 :=

(∫
Ω

|u|p
∗
dx
)1/p∗

.

From the Hölder inequality, for every E ⊆ Ω, we have∫
E

c(ε)|u| dx ≤ c(ε)|E|
p∗−1
p∗
(∫

E

|u|p
∗
dx
)1/p∗

= c(ε)|E|
p∗−1
p∗ c10,∫

E

|um|p
∗−1|u| dx ≤

(∫
E

|um|p
∗
dx
) p∗−1

p∗
(∫

E

|u|p
∗
dx
)1/p∗

≤ c9c10.

Let δ = ( ε
2c10c(ε)

)
p∗
p∗−1 > 0, E ⊆ Ω, |E| < δ we have∣∣ ∫

E

f(x, um)u dx
∣∣ ≤ ∫

E

|f(x, um)u| dx

≤
∫
E

c(ε)|u| dx+
1

2c9c10
ε

∫
E

|um|p
∗−1|u| dx
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≤ ε

2
+
ε

2
,

hence {
∫

Ω
f(x, um)um dx : m ∈ N} is equi-absolutely-continuous. It follows easily

from Vitali convergence theorem that∫
Ω

f(x, um)u dx→
∫

Ω

f(x, u)u dx as m→∞. (2.31)

From (2.30) and (2.31) we have∫
Ω

f(x, um)(um − u) dx→ 0 as m→∞. (2.32)

We also have∫
Ω

|um|q−2um(um − u) dx ≤
∫

Ω

|um|q−1|um − u| dx

≤
(∫

Ω

|um|q dx
) q−1

q
(∫

Ω

|um − u|q dx
)1/q

→ 0
(2.33)

as m → ∞. Since J ′(um)(um − u) → 0 as m → ∞, we deduce from (2.32) and
(2.33) that ∫

Ω

|∇um|p−2∇um(∇um −∇u) dx→ 0 as m→∞,

which gives us that {um} converges strongly to u in W 1,p
0 (Ω) and the functional J

satisfies the (Ce) condition. �

Proof Theorem 1.2. By Lemmas 2.1, 2.2 and 2.4, there exists λ∗ > 0 such that for
any λ ∈ (0, λ∗), the functional J satisfies all the assumptions of the mountain pass
theorem. Then we deduce u1 as a non-trivial critical point of the functional J with
J(u1) = c > 0 and thus a non-trivial weak solution of problem (1.2).

We now prove that there exists a second weak solution u2 ∈ W 1,p
0 (Ω) such that

u2 6= u1. Indeed, by (2.2), the functional J is bounded from below on the ball
Bρ(0).

Applying the Ekeland variational principle in [5] to the functional J : Bρ(0)→ R,
it follows that there exists uε ∈ Bρ(0) such that

J(uε) < inf
u∈Bρ(0)

J(u) + ε,

J(uε) < J(u) + ε‖u− uε‖, u 6= uε.

By Lemmas 2.1 and 2.2, we have

inf
u∈∂Bρ(0)

J(u) ≥ R > 0 and inf
u∈Bρ(0)

J(u) < 0.

Let us choose ε > 0 such that

0 < ε < inf
u∈∂Bρ(0)

J(u)− inf
u∈Bρ(0)

J(u).

Then, J(uε) < infu∈∂Bρ(0) J(u) and thus, uε ∈ Bρ(0).
Now, we define the functional I : Bρ(0) → R by I(u) = J(u) + ε‖u − uε‖. It is

clear that uε is a minimum point of I and thus

I(uε + tv)− I(uε)
t

≥ 0
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for all t > 0 small enough and all v ∈ Bρ(0). The above information shows that

J(uε + tv)− J(uε)
t

+ ε‖v‖ ≥ 0.

Letting t→ 0+, we deduce that 〈J ′(uε), v〉 ≥ −ε‖v‖. It should be noticed that −v
also belongs to Bρ(0), so replacing v by −v, we obtain

〈J ′(uε),−v〉 ≥ −ε‖ − v‖, 〈J ′(uε), v〉 ≤ ε‖v‖,

which helps us to deduce that ‖J ′(uε)‖∗ ≤ ε.
Then, there exists a sequence {um} ⊂ Bρ(0) such that

J(um)→ c = inf
u∈Bρ(0)

J(u) < 0, J ′(um)→ 0 in W−1,p(Ω) as m→∞. (2.34)

From Lemma 2.4, the sequence {um} converges strongly to some u2 ∈ W 1,p
0 (Ω) as

m → ∞. Moreover, since J ∈ C1(W 1,p
0 (Ω),R), by (2.9) it follows that J(u2) = c

and J ′(u2) = 0. Thus, u2 is a non-trivial weak solution of (1.2).
Finally, we point out that u1 6= u2 since J(u1) = c > 0 > c = J(u2). The proof

of Theorem 1.2 is complete. �
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