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A PRIORI BOUNDS AND EXISTENCE OF NON-REAL
EIGENVALUES OF FOURTH-ORDER BOUNDARY VALUE

PROBLEM WITH INDEFINITE WEIGHT FUNCTION

XIAOLING HAN, TING GAO

Abstract. In this article, we give a priori bounds on the possible non-real

eigenvalue of regular fourth-order boundary value problem with indefinite

weight function and obtain a sufficient conditions for such problem to admit
non-real eigenvalue.

1. Introduction

In this article we study non-real eigenvalues of differential equations with in-
definite weights. The Sturm-Liouville problem with weighted functions is called
right-definite if the weighted function do not change signs. Otherwise, the problem
is called indefinite problem. The spectral theory of the right-definite problem with
self-adjoint boundary conditions has been accomplished, but the spectral struc-
ture of indefinite problems, especially both right and left indefinite problem, i.e.,
indefinite problem, is quite different from and more complicated than that of right-
definite problems. For example, there is neither upper nor lower bound for real
eigenvalues of indefinite Sturm-Liouville boundary problems. What is more, the
indefinite problem may have non-real eigenvalues. Such problems occur in certain
physical models, particularly in transport theory and statistical physics. The in-
definite nature of the problem was noticed by Haupt [7] and Richardson [12] at the
beginning of the previous century. For a review of the early work in this direction,
see [9].

In [10], the author considered the indefinite spectral problem

−y′′ + qy = λwy, y(−1) = y(1) = 0, y ∈ L2
|w|[−1, 1]

combined with conditions that q and w are real-valued functions satisfying

w(x) 6= 0 a.e. on [−1, 1], q, w ∈ L1[−1, 1],

and w(x) changes sign on [−1, 1]. Here, L2
|w|[−1, 1] is a Krein space, equipped with

the indefinite inner product

[f, g] =
∫ 1

−1

f(x)g(x)w(x)dx, f, g ∈ L2
|w|[−1, 1].
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The indefinite problems has discrete, real eigenvalues, unbounded from both below
and above, and may also admit non-real eigenvalues.

But most articles consider second-order differential equations; in this article, we
consider the indefinite spectral problem

τy := y(4) + qy = λwy,

y(−1) = y(1) = y′′(−1) = y′′(1) = 0, y ∈ L2
|w|[−1, 1]

(1.1)

combined with conditions that q and w are real-valued functions satisfying

w(x) 6= 0 a.e. on [−1, 1], q, w ∈ L1[−1, 1], (1.2)

and w(x) changes sign on [−1, 1]. We will first obtain a priori bounds for possible
non-real eigenvalues and then find sufficient conditions for the existence of non-real
eigenvalues of (1.1).

2. A priori bounds of non-real eigenvalues

For the indefinite problem (1.1), let

τy := y(4) + qy = λ|w|y,
y(−1) = y(1) = y′′(−1) = y′′(1) = 0, y ∈ L2

|w|[−1, 1]
(2.1)

be the corresponding right-definite problem.
Firstly, we consider the fourth-order differential equation

y4 + qy = λwy, x ∈ [a, b] (2.2)

combined with the boundary conditions

B1y := y(a) cos(θ1)− y′′′(a) sin(θ1) = 0,

B2y := y(b) cos(θ2)− y′′′(b) sin(θ2) = 0,

B3y := y′(a) cos(θ3)− y′′(a) sin(θ3) = 0,

B4y := y′(b) cos(θ4)− y′′(b) sin(θ4) = 0,

(2.3)

where q and w satisfies (1.2) and θ1, θ2, θ3, θ4 ∈ R. The corresponding right-definite
problem is

y4 + qy = λ|w|y (2.4)

combined with (2.3).
Assumption: λ = 0 is not an eigenvalue of the boundary problems in questions.

Proposition 2.1. If problem (2.2)-(2.3) has non-real eigenvalues, then problem
(2.4)-(2.3) has at least one negative eigenvalue.

Proof. Let y = y(t, λ) be the corresponding non-real eigenfunction of the non-real
eigenvalue λ. Multiplying (2.2) by y integrating over [a, b], we find

cot(θ2)|y(b)|2 − cot(θ1)|y(a)|2 + cot(θ3)|y′(a)|2

− cot(θ4)|y′(b)|2 +
∫ b

a

[|y′′|2 + q|y|2]dx

= λ

∫ b

a

w|y|2dx
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Then the smallest eigenvalue v of (2.4) is given by the minimum of the left side of
the equation. Let y ∈ S0, where

S0 =
{
y ∈ L2

|w|[a, b]|y, y
′, y′′ ∈ ACloc[a, b], y(4) + qy ∈ L2

|w|[a, b],

B1y = B2y = B3y = B4y = 0
}

Now the non-real eigenfunction y makes the left side of equation vanish. Moreover
y ∈ S0. Hence v < 0 since v = 0 is not an eigenvalue of (2.4), i.e., the problem has
at least one negative eigenvalue. �

Proposition 2.2 ([8]). If problem (2.4)-(2.3) has n negative eigenvalues, then
problem (2.2)-(2.3) has at most 2n non-real eigenvalues.

Denote by ‖ · ‖p the norm of the space Lp[−1, 1] and by ‖ · ‖C the maximum
norm of C[−1, 1]. If xw(x) > 0 a.e. on [−1, 1], we set

S1(ε1) = {x ∈ [−1, 1] : xw(x) < ε1}, m1(ε1) = measS1(ε1). (2.5)

If w ∈ ACloc[−1, 1], w′ ∈ L2[−1, 1], w′′ ∈ L2[−1, 1], we set

S2(ε2) = {x ∈ [−1, 1] : w2(x) < ε2}, m2(ε2) = measS2(ε2). (2.6)

A value of x about which w(x) changes its sign will be called a turning point. If
w(x) has only one turning point, we will obtain the following a priori bounds for
possible non-real eigenvalues.

Theorem 2.3. Suppose that λ is, if it exists, a non-real eigenvalue of (1.1). If
xw(x) > 0 a.e. on [−1, 1], then

|Reλ| ≤
2
√

2‖φ‖C(1 +
√
‖q−‖1‖φ‖C +

√
2‖q−‖1‖φ‖C)

ε1
,

| Imλ| ≤
2
√

2‖φ‖C(1 +
√
‖q−‖1‖φ‖C)

ε1
,

where ε1 > 0 satisfies (1−m1(ε1)‖φ‖2C) ≥ 1
2 and q−(x) = −min{0, q(x)}.

Proof. Let λ be a non-real eigenvalue of (1.1) and φ is the corresponding eigen-
function with ‖φ‖2 = 1, ‖φ‖C = max{|φ|, |φ′|, |φ′′′|}. Multiplying both sides of
φ(4) + qφ = λwφ by φ and integrating over the interval [x, 1] we have

− (φ′′′φ)(x) + (φ′′φ′)(x) +
∫ 1

x

|φ′′|2dx+
∫ 1

x

q|φ|2dx = λ

∫ 1

x

w|φ|2dx. (2.7)

Separating the real and imaginary parts of both sides of (2.4) yields

Reλ
∫ 1

x

w|φ|2dx = Re(−φ′′′φ)(x) + Re(φ′′φ′)(x) +
∫ 1

x

|φ′′|2dx+
∫ 1

x

q|φ|2dx,

(2.8)

Imλ

∫ 1

x

w|φ|2dx = Im(−φ′′′φ)(x) + Im(φ′′φ′)(x). (2.9)

We will use (2.8) and (2.9) to estimate Reλ and Imλ. To do this, let x = −1 in
(2.9). From Imλ 6= 0 and φ(−1) = 0 and φ′′(−1) = 0, we have

∫ 1

−1
w|φ|2dx = 0

and hence, by (2.8), ∫ 1

−1

|φ′′|2dx+
∫ 1

−1

q|φ|2dx = 0. (2.10)
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Let ‖q−‖1 =
∫ 1

−1
q−dx, then∫ 1

−1

|φ′′|2dx = −
∫ 1

−1

q|φ|2dx ≤
∫ 1

−1

q−|φ|2dx ≤ ‖φ‖2C‖q−‖1

and
∫ 1

−1
q−|φ|2dx ≤ ‖φ‖2C‖q−‖1, hence

‖φ′′‖22 ≤ ‖φ‖2C‖q−‖1,
∫ 1

−1

q−|φ|2dx ≤ ‖φ‖2C‖q−‖1. (2.11)

Since xw(x) > 0 a.e. on [−1, 1], one can find ε1 > 0 such that (1−m1(ε1)‖φ‖2C) ≥ 1
2 ,

where m1(ε1) is defined in (2.5). Using
∫ 1

−1
w|φ|2dx = 0, from (2.11), we have∫ 1

−1

∫ 1

x

w(t)|φ(t)|2 dt dx =
∫ 1

−1

xw(x)|φ(x)|2dx

≥ ε1

(∫ 1

−1

|φ(x)|2dx−
∫
S1(ε1)

|φ(x)|2dx
)

≥ ε1(1−m1(ε1)‖φ‖2C) ≥ ε1

2
.

(2.12)

Set q+(x) = max{0, q(x)}, then q = q+−q− and |q| = q++q− = q+2q−. Repeatedly
using (2.10), we have

|
∫ 1

−1

∫ 1

x

(|φ′′|2 + q|φ|2) dt dx| = |
∫ 1

−1

x(|φ′′|2 + q|φ|2)dx|

≤
∫ 1

−1

(|φ′′|2 + q|φ|2 + 2q−|φ|2)dx

≤ 2
∫ 1

−1

q−|φ|2dx ≤ 2‖φ‖2C‖q−‖1.

Now, by (2.11) integrating (2.8) gives

|Reλ|
∫ 1

−1

∫ 1

x

w(t)|φ(t)|2 dt dx

= |
∫ 1

−1

Re(−φ′′′φ)(x)dx+
∫ 1

−1

Re(φ′′φ′)(x)dx+
∫ 1

−1

∫ 1

x

(|φ′′|2 + q|φ|2) dt dx|

≤
√

2‖φ‖C(1 +
√
‖q−‖1‖φ‖C +

√
2‖q−‖1‖φ‖C).

Therefore, in view of (2.11), we conclude that

|Reλ| ≤
2
√

2‖φ‖C(1 +
√
‖q−‖1‖φ‖C +

√
2‖q−‖1‖φ‖C)

ε1
. (2.13)

Moreover, integrating (2.9) and using (2.12) and (2.11), we have

ε1

2
| Imλ| ≤ | Imλ|

∫ 1

−1

∫ 1

x

w|φ|2 dt dx

= |
∫ 1

−1

(Im(−φ′′′φ)(x) + Im(φ′′φ′)(x))|

≤
√

2‖φ‖C(1 +
√
‖q−‖1‖φ‖C).

(2.14)

This completes the proof. �
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When w(x) is allowed to have more turning points, we have the following result.

Theorem 2.4. Suppose that λ is, if it exists, a non-real eigenvalue of (1.1). If
w ∈ ACloc[−1, 1], w′, w′′ ∈ L2[−1, 1], then

|Reλ| ≤
2‖φ‖C [2‖w‖C‖q−‖1‖φ‖C + 2

√
2‖w′‖2

√
‖q−‖1‖φ‖C +

√
‖q−‖1‖w′′‖2]

ε2
,

| Imλ| ≤
2‖φ‖C

√
‖q−‖1[2

√
2‖w′‖2‖φ‖C + ‖w′′‖2]
ε2

,

where ε2 > 0 satisfies (1−m2(ε2)‖φ‖2C) ≥ 1/2.

Proof. Let λ be a non-real eigenvalue of (1.1) and φ the corresponding eigenfunction
with ‖φ‖2 = 1, ‖φ‖C = max{|φ|, |φ′|, |φ′′′|}. In this case we still can make use of
(2.7), (2.8) and (2.9). From (2.9), since Imλ 6= 0, we have

∫ 1

−1
w|φ|2dx = 0. Thus,

(2.10) and (2.11) holds, and particularly,

|φ|2 ≤ ‖φ‖2C , ‖φ′‖22 ≤ 2‖φ‖2C ,

‖φ′′‖22 ≤ ‖φ‖2C‖q−‖1,
∫ 1

−1

q−|φ|2dx ≤ ‖φ‖2C‖q−‖1.
(2.15)

Multiplying both sides of φ(4) + qφ = λwφ by wφ and integrating over the interval
[−1, 1] we have∫ 1

−1

w|φ′′|2dx+ 2
∫ 1

−1

φ′′w′φ′dx+
∫ 1

−1

φ′′w′′φdx+
∫ 1

−1

wq|φ|2dx

= λ

∫ 1

−1

w2|φ|2dx.
(2.16)

Separating the real and imaginary parts of both sides of (2.17) yields

Reλ
∫ 1

−1

w2|φ|2dx = Re
(

2
∫ 1

−1

φ′′w′φ′dx
)

+ Re
(∫ 1

−1

φ′′w′′φdx
)

+
∫ 1

−1

w|φ′′|2dx+
∫ 1

−1

wq|φ|2dx,
(2.17)

Imλ

∫ 1

−1

w2|φ|2dx = Im
(

2
∫ 1

−1

φ′′w′φ′dx
)

+ Im
(∫ 1

−1

φ′′w′′φdx
)
. (2.18)

Now, using (2.15) and |q| = q+ + q− = q + 2q− and
∫ 1

−1
q|φ|2dx = −

∫ 1

−1
|φ′′|2dx,

we obtain ∣∣ ∫ 1

−1

w|φ′′|2dx
∣∣ ≤ ‖w‖C‖φ‖2C‖q−‖1,∣∣ ∫ 1

−1

wq|φ|2dx
∣∣ ≤ ‖w‖C‖φ‖2C‖q−‖1,∣∣ ∫ 1

−1

φ′′w′φ′dx
∣∣ ≤ (∫ 1

−1

|φ′′|2dx
)1/2(∫ 1

−1

|w′|2dx
)1/2(∫ 1

−1

|φ′|2dx
)1/2

≤
√

2‖q−‖1‖w′‖2‖φ‖2C ,∣∣ ∫ 1

−1

φ′′w′′φdx
∣∣ ≤√‖q−‖1‖w′′‖2‖φ‖C .

(2.19)
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Recall that m2(ε2) = measS2(ε2) defined by (2.6) and w2(x) ≥ ε2 on the set
Ω(ε2) := [−1, 1]\S2(ε2). Then (1−m2(ε2)‖φ‖2C) ≥ 1

2 yields∫ 1

−1

w2(x)|φ(x)|2dx ≥ ε2

∫
Ω(ε2)

|φ(x)|2dx

= ε2

(∫ 1

−1

|φ(x)|2dx−
∫
S2(ε2)

|φ(x)|2dx
)

≥ ε2(1−m2(ε2)‖φ‖2C) ≥ ε2

2
,

(2.20)

which, together with (2.17), (2.18) and (2.19), completes the proof. �

In the particular case when q ≥ 0, by Theorems 2.3 and 2.4 we see that (1.1)
has no any non-real eigenvalues, which is in accordance with the conclusion in
Proposition 2.1 since (2.1) does not have any negative eigenvalues.

In what follows, we impose the symmetry conditions on q and w, namely,

q(x) = q(−x), w(−x) = −w(x). (2.21)

Under the conditions (1.2) and (2.21), it is easy to see that if λ ∈ C be a eigenvalue
of (1.1) and φ the corresponding eigenfunction, then −λ is an eigenvalue of (1.1)
with the eigenfunction φ(−x). Thus, if λ = iα with α ∈ R, then φ(−x) = cφ(x)
for some c 6= 0 since the geometric multiplicity is one. Then it follows that |c| = 1
from φ(0) = cφ(0), φ′(0) = cφ′(0), and |φ(0)|+ |φ′(0)| 6= 0. To sum up, we have a
lemma.

Lemma 2.5. Let (1.2) and (2.21) hold. If λ ∈ C is an eigenvalue of (1.1) with an
eigenfunction φ, then −λ is an eigenvalue of (1.1) with the eigenfunction φ(−x).
Particularly, if λ = iα with α ∈ R and α 6= 0, then φ(−x) = cφ for some c ∈ C
with |c| = 1.

In this case, more accurate a priori bounds on imaginary eigenvalues can be
found if q is bounded below and w keeps away from zero.

Theorem 2.6. Suppose that (2.21) holds and xw(x) > 0 a.e. on [−1, 1]. If, for
some q0 < 0 and w0 > 0,

q(x) ≥ q0, |w(x)| ≥ w0, a.e. x ∈ [−1, 1], (2.22)

then for any possible pure imaginary eigenvalue λ of (1.1), we have

| Imλ| ≤ 8
√

2‖φ‖3C(1 +
√
−q0)

w0
. (2.23)

Proof. Let φ be an eigenfunction corresponding to λ = iα with ‖φ‖2 = 1, ‖φ‖C =
max{|φ|, |φ′|, |φ′′′|}. It follows from Lemma 2.5 that there exists an ω ∈ [0, 2π)
such that φ(−x) = eiωφ(x) and −φ′(−x) = eiωφ′(x). So, |φ(x)| and |φ′(x)| are
even functions. We see that (2.7)-(2.11) hold for this φ. And

|φ(x)|2 ≤ (x+ 1)
∫ x

−1

|φ′(t)|2dt ≤
∫ 0

−1

|φ′(t)|2dt =
1
2
‖φ′‖22, x ∈ [−1, 0] (2.24)

since |φ′(x)| is even. Actually, (2.24) is true for x ∈ [−1, 1] since |φ(x)| is even.
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Since q(x) ≥ q0, on [−1, 1], it follows from (2.10) and ‖φ‖2 = 1, that ‖φ′′‖22 =
−
∫ 1

−1
q|φ|2dx ≤ −q0. Then integrating (2.9) produces

| Imλ‖
∫ 1

−1

∫ 1

x

w|φ|2 dt dx| = |
∫ 1

−1

(Im(−φ′′′φ)(x) + Im(φ′′φ′)(x))dx|

≤
√

2‖φ‖C(1 +
√
−q0).

(2.25)

Let δ = 1/(4‖φ‖2C). By (2.24), we have∣∣ ∫ 1

−1

∫ 1

x

w(t)|φ(t)|2 dt dx
∣∣

=
∫ 1

−1

xw(x)|φ(x)|2dx ≥ w0

∫ 1

−1

|x‖φ(x)|2dx

≥ w0δ

∫
|x|≥δ

|φ(x)|2dx

≥ w0δ
(∫ 1

−1

|φ(x)|2dx−
∫ δ

−δ
|φ(x)|2dx

)
≥ w0δ(1− 2δ‖φ‖2C) ≥ w0

8‖φ‖2C
.

(2.26)

Now, (2.23) follows from (2.25) and (2.26). �

3. Existence of non-real eigenvalues

Although a priori estimate can be given in section 2 and the exact number of
non-real eigenvalues are still difficult; there are recent studies by means of the
operator theory in Krein spaces [6]. In this section we prove the existence of non-
real eigenvalues.

Lemma 3.1 ([6]). If wj ∈ L1[−1, 1] and wj(x) > 0 a.e. on [−1, 1] for j = 1, 2,
then the two eigenvalue problems

y(4) + qy = λwj(x)y, y(−1) = y(1) = y′′(−1) = y′′(1) = 0, j = 1, 2 (3.1)

have the same number of negative eigenvalues.

Let K be the Krein space L2
|w|[−1, 1], equipped with the indefinite inner product

[f, g] =
∫ 1

−1

f(x)g(x)w(x)dx, f, g ∈ L2
|w|[−1, 1], (3.2)

and T be a self-adjoint operator inK with domainD(T ) = {y ∈ L2
|w|[−1, 1]|y, y′, y′′ ∈

ACloc[−1, 1], T ∈ L2
|w|[−1, 1]}. See [1, 3, 5]. We say that the operator T has k neg-

ative squares, k ∈ N0, if there exists a k-dimensional subspace X of K in D(T )
such that [Tf, f ] < 0 if f ∈ Xand f 6= 0, but no (k+ 1)-dimensional subspace with
this property.

Theorem 3.2. Let (2.21) hold. If the eigenvalue problem

y(4) + qy = λ|w|y, y(−1) = y(1) = y′′(−1) = y′′(1) = 0 (3.3)

has one negative eigenvalue and the rest eigenvalues are all positive, then (1.1) has
exactly two purely imaginary eigenvalues.
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Proof. Let A = 1
w τ and B = 1

|w|τ be the operators associated with y(4) +qy = λwy

and y(4)+qy = λ|w|y with boundary conditions, respectively. Then B is self-adjoint
with respect to the definite inner product

(f, g) =
∫ 1

−1

f(x)g(x)|w(x)|dx, f, g ∈ L2
|w|[−1, 1]

and A is self-adjoint with respect to the indefinite inner product (3.2).
It follows from Lemma 3.1 and the assumption in Theorem 3.2 that B has one

negative eigenvalue and the rest are positive, and hence, A has exactly one negative
square since [Af, f ] = (Bf, f) and 0 is a resolvent point of A. It is well known
(see, [5, 6]) that this implies the existence of exactly one eigenvalue λ of (1.1)
in R or the upper half-plane C+ and that if λ ∈ R with eigenfunction φ then
[Af, f ] = λ(f, f) ≤ 0. Let λ be such an eigenvalue with eigenfunction φ. If λ is
real, then −λ = −λ is also an eigenvalue with the eigenfunction φ(−x) by Lemma
2.5 and

−λ[φ(−x), φ(−x)] = λ[φ, φ] ≤ 0
by the odd symmetry of w. Thus, we get that λ and −λ are two such eigenvalues,
which is a contradiction. Since λ ∈ C+ implies −λ ∈ C+, we see that λ = −λ, i.e.,
λ is purely imaginary. The proof is complete. �

For more details about non-real eigenvalue of second-order boundary value prob-
lems, please see [1, 2, 3, 4, 11, 13].
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[7] O. Haupt; Über eine methode zum beweis von oszillations theoremen, Math. Ann., 76 (1915),

67-104.

[8] A. B. Mingarelli; Indefinite Sturm-Liouville problems. Ordinary and partial differential equa-
tions (Dundee, 1982), pp. 519-528, Lecture Notes in Math., 964, Springer, Berlin-New York,

1982.
[9] A. B. Mingarelli; A survey of the regular weighted Sturm-Liouville problem-The non-definite

case, arXiv:1106.6013v1 [math.CA] (2011).

[10] J. Qi, S. Chen; A priori bounds and existence of non-real eigenvalues of indefinite Sturm-

Liouville problems, axXiv:1306.5517, J. Spectral Theory, 4 (2014), 53-63.
[11] J. Qi, B. Xie, S. Chen; The upper and lower bounds on non-real eigenvalues of indefinite

Sturm-Liouville problems, Proc. Amer. Math. Soc. 144 (2016), 547-559.
[12] R. G. D. Richardson; Theorems of oscillation for two linear differential equations of second

order with two parameters, Trans. Amer. Math. Soc., 13 (1912), 22-34.



EJDE-2016/82 EXISTENCE OF NON-REAL EIGENVALUES 9

[13] B. Xie, J. Qi; Non-real eigenvalues of indefinite Sturm-Liouville problems, J. Differential

Equations, 255 (2013), 2291-2301.

Xiaoling Han

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu
730070, China

E-mail address: hanxiaoling@nwnu.edu.cn

Ting Gao

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu

730070, China
E-mail address: 939832645@qq.com


	1. Introduction
	2. A priori bounds of non-real eigenvalues
	3. Existence of non-real eigenvalues 
	Acknowledgments

	References

