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ASYMPTOTICALLY PERIODIC SOLUTIONS OF VOLTERRA
INTEGRAL EQUATIONS

MUHAMMAD N. ISLAM

Abstract. We study the existence of asymptotically periodic solutions of a

nonlinear Volterra integral equation. In the process, we obtain the existence
of periodic solutions of an associated nonlinear integral equation with infinite

delay. Schauder’s fixed point theorem is used in the analysis.

1. Introduction

Although many research have been done on periodic solutions of differential and
integral equations, not much has been done on asymptotically periodic solutions of
such equations. References [1, 5, 7, 9, 10] are among the few that we have found
on asymptotically periodic solutions. Article [5], which motivated us to write the
present article, is about asymptotically periodic and periodic solutions of Volterra
integral equations. The results of our work in the present paper differ substantially
from the work of [5] in terms of assumptions and methods of proof.

In [10, p. 631], a result on an asymptotically periodic solutions of a Volterra
integral equation under certain growth, monotonicity, and sign conditions on the
kernel and on its derivative is given. Articles [1, 7, 9] are on difference equations
where the asymptotically periodic solutions are studied. On periodic solutions, we
refer to the following partial list [4, 6, 8, 10, 11, 12, 13], and the references therein.

Let R = (−∞,∞) and R+ = [0,∞). We consider the nonlinear Volterra equation

x(t) = a(t) +
∫ t

0

C(t, s)f(s, x(s))ds, (1.1)

and the associated integral equation with infinite delay

x(t) = b(t) +
∫ t

−∞
D(t, s)g(s, x(s))ds. (1.2)

Throughout this article, we assume that a : R→ R and b : R→ R are bounded
continuous functions, f : R+ × R → R and g : R × R → R are continuous and
bounded for bounded x, C(t, s) is continuous on 0 ≤ s ≤ t < ∞, and D(t, s) is
continuous on −∞ < s ≤ t < ∞. In addition to these continuity assumptions, we
assume that there exists a positive constant T and a function q : R→ R such that
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a(t) = b(t) + q(t), b(t + T ) = b(t), q(t) → 0 as t → ∞, g(t + T, x) = g(t, x), and
D(t+T, s+T ) = D(t, s). We call these as our basic assumptions. We prove, under
suitable conditions, that (1.1) has a continuous asymptotically T -periodic solution,
and that (1.2) has a continuous T -periodic solution.

Definition 1.1. A function x is asymptotically T -periodic if there exists a T -
periodic function y and a function z such that x(t) = y(t) + z(t) with z(t) → 0 as
t→∞.

The function y in the above definition will be referred as the T -periodic part of
x. In this article we show that (1.1) has an asymptotically T -periodic solution, and
that the T -periodic part of that solution is indeed a T -periodic solution of (1.2).

We employ Schauder’s fixed point theorem for the existence of asymptotically
T -periodic solution. Like many fixed point theorems, Schauder’s theorem requires
a compact mapping. For problems on finite domains, this compactness is normally
obtained by Arzela-Ascoli’s theorem. Since the domain of an asymptotically peri-
odic function is unbounded, Arzela-Ascoli’s theorem does not apply in our work. We
obtain the required compactness following a method found in [2, 3]. The researchers
who study existence results for problems on unbounded domains employing fixed
point theory, will find this method very useful for the required compactness prop-
erty.

We assume
(H1) there exists real valued continuous functions Q(t, s), 0 ≤ s ≤ t < ∞ and

h : R+ × R→ R, with C(t, s)f(t, x) = D(t, s)g(t, x) +Q(t, s)h(t, x), and

lim
t→∞

∫ t

0

|Q(t, s)|ds = 0;

(H2) the function t 7→
∫ t
−∞ |D(t, s)|ds is continuous, and∫ t

−∞
|D(t, s)|ds ≤ d∗ <∞,

for all t ∈ R.
For any positive constant ρ, let

Bρ := {x ∈ R : |x| ≤ ρ}.
Assume

(H3) (i) (mf)ρ = supx∈Bρ, t∈R+
|f(t, x)| <∞,

(ii) (mg)ρ = supx∈Bρ, t∈R+
|g(t, x)| <∞,

(iii) (mh)ρ = supx∈Bρ, t∈R+
|h(t, x)| <∞.

Remark 1.2. When Q satisfies condition (H1) then it is easy to see that Q satisfies
the integrability condition

sup
t≥0

∫ t

0

|Q(t, s)|ds ≤ q∗ <∞. (1.3)

Remark 1.3. When D satisfies the integrability condition in (H2), then D satisfies

lim
τ→∞

∫ t

−∞
|D(t+ τ, s)|ds = 0, (1.4)

uniformly in t.
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Here is a proof of Remark 1.3. Since D satisfies (H2), we can write∫ t

−∞
|D(t, s)|ds =

∫ t−nT

−∞
|D(t, s)|ds+

∫ t

t−nT
|D(t, s)|ds

Now taking limit on both sides as n→∞, we obtain∫ t

−∞
|D(t, s)|ds = lim

n→∞

∫ t−nT

−∞
|D(t, s)|ds+

∫ t

−∞
|D(t, s)|ds

This implies

lim
n→∞

∫ t−nT

−∞
|D(t, s)|ds = 0

Since D(t, s) = D(t+ T, s+ T ), we can write D(t, s) = D(t+ nT, s+ nT ). Now we
conclude the proof by showing that

lim
n→∞

∫ t−nT

−∞
|D(t, s)|ds = lim

n→∞

∫ t−nT

−∞
|D(t+ nT, s+ nT )|ds

= lim
n→∞

∫ t

−∞
|D(t+ nT, s)|ds

= lim
τ→∞

∫ t

−∞
|D(t+ τ, s)|ds

Remark 1.4. When (H1)-(H3) hold then C satisfies the integrability condition

sup
t≥0

∫ t

0

|C(t, s)|ds ≤ c∗ <∞, (1.5)

which follows easily when (H2), (1.3), and (H3) is applied on C(t, s)f(t, x) =
D(t, s)g(t, x) +Q(t, s)h(t, x) of (H1).

Lemma 1.5. In addition to the basic assumptions, let assumptions (H1)–(H3) hold
and let x be a continuous asymptotically T -periodic solution function of (1.1) with
|x(t)| ≤ ρ, t ≥ 0. Then the function

n(t) =
∫ t

0

C(t, s)f(s, x(s))ds

is continuous and asymptotically T -periodic. Moreover, the T -periodic part of n(t)
is

ϕ(t) =
∫ t

−∞
D(t, s)g(s, π̄(s))ds,

where π̄ is the T -periodic extension of π, with x = π + σ, π(t + T ) = π(t), and
σ(t)→ 0 as t→∞.

Proof. The continuity of n(t) follows easily from the assumptions. Also, it is easy
to verify that ϕ(t + T ) = ϕ(t). Now we show that |n(t) − ϕ(t)| → 0, as t → ∞.
This will prove that n(t) is asymptotically T -periodic, with n(t)− ϕ(t) = α(t).

|n(t)− ϕ(t)|

=
∣∣∣ ∫ t

0

C(t, s)f(s, x(s))ds−
∫ t

−∞
D(t, s)g(s, π̄(s))ds

∣∣∣
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=
∣∣∣ ∫ t

0

D(t, s)g(s, x(s))ds+
∫ t

0

Q(t, s)h(s, x(s))ds−
∫ t

−∞
D(t, s)g(s, π̄(s))ds

∣∣∣
=
∣∣∣ ∫ t−τ

0

D(t, s)g(s, x(s))ds+
∫ t

t−τ
D(t, s)g(s, x(s))ds+

∫ t

0

Q(t, s)h(s, x(s))ds

−
∫ t−τ

−∞
D(t, s)g(s, π̄(s))ds−

∫ t

t−τ
D(t, s)g(s, π̄(s))ds

∣∣∣ (1.6)

≤
∫ t

−∞
|D(t+ τ, s)‖g(s, x(s))|ds+

∫ t

−∞
|D(t+ τ, s)||g(s, π̄(s))|ds

+
∫ t

0

|Q(t, s)‖h(s, x(s))|ds+
∫ t

t−τ
|D(t, s)‖g(s, x(s))− g(s, π̄(s))|ds

In the above calculations we have used assumption (H1), and replaced
∫ t−τ
0

D(t, s)ds
by
∫ t
0
D(t + τ, s)ds where 0 < τ < t. Then we have used

∫ t
0
|D(t + τ, s)|ds ≤∫ t

−∞ |D(t+ τ, s)|ds.
Let x, π ∈ Bρ. Using assumption (H3) in (1.6) yields,

|n(t)− ϕ(t)| ≤ 2(mg)ρ
∫ t

−∞
|D(t+ τ, s)|ds

+
∫ t

t−τ
|D(t, s)‖g(s, x(s))− g(s, π̄(s))|ds

+ (mh)ρ
∫ t

0

|Q(t, s)|ds

(1.7)

Let ε > 0 be arbitrary. Each of the three terms on the right hand side of (1.7) can
be made less than ε

3 for sufficiently large t.
First term: By (1.4), there exists a τ > 0 such that for t > τ ,∫ t

−∞
|D(t+ τ, s)|ds < ε

6(mg)ρ

which makes the first term less than ε/3.
Second term: The function g is continuous, and |x(t) − π(t)| → 0 as t → ∞.

Therefore, |g(t, x(t))− g(t, π(t))| → 0 as t→∞. This means there exists a T1 > τ
such that for t > T1, we can make∫ t

t−τ
|D(t, s)‖g(s, x(s))− g(s, π̄(s))|ds < ε

3
.

Third term: From assumption (H1) we see that
∫ t
0
Q(t, s)ds → 0 as t → ∞.

Therefore, there exists a T2 such that for t > T2,∫ t

0

|Q(t, s)|ds < ε

3(mh)ρ
,

which means the third term is less than ε/3.
Let T = max{T1, T2}. Then for t > T , it follows from (1.7) that

|n(t)− ϕ(t)| < ε.

This concludes the proof. �
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Let
B = {x : x is continuous and bounded on R+}.

Then B is a Banach space with the norm ‖x‖ = supt∈R+ |x(t)|. Let

Bl = {x ∈ B : ∃ lim
t→∞

x(t) ∈ R}.

A convenient compactness criterion, given below in Lemma 1.6, holds on this space.

Lemma 1.6 ([2, 3]). A family A ⊂ Bl is relatively compact if and only if
(a) A is uniformly bounded,
(b) A is equicontinuous on compact subsets of R+,
(a) A is equiconvergent.

Theorem 1.7 (Schauder’s Fixed Point Theorem). If S is a closed, bounded, convex
subset of a Banach space X, and H : S → S is completely continuous, then H has
a fixed point in S.

An operator is completely continuous if it is continuous and it maps bounded
sets into relatively compact sets.

2. Existence Theorems

Theorem 2.1. Suppose (H1)–(H3) along with the basic assumptions hold. Then
(1.1) has a continuous asymptotically T -periodic solution.

Proof. Let

M = ‖b‖+ d∗(mg)ρ, N = ‖q‖+ c∗(mf)ρ + d∗(mg)ρ, (2.1)

where c∗ and d∗ are the constants of (1.5) and (H2) respectively. And (mf)ρ and
(mg)ρ are the constants of (H3) (i) and (ii) respectively.

Suppose there exists a ρ > 0 such that

M +N = ‖b‖+ ‖q‖+ c∗(mf)ρ + 2d∗(mg)ρ ≤ ρ. (2.2)

Let Sρ be the set of functions x ∈ B, x = π + σ, π(t + T ) = π(t), σ(t) → 0 as
t → ∞, ‖π‖ ≤ M , and ‖σ‖ ≤ N . Clearly, ‖x‖ ≤ ρ, and the set Sρ is a closed and
convex subset of the Banach space B.

Define H on Sρ as follows. For x ∈ Sρ,

Hx(t) = a(t) +
∫ t

0

C(t, s)f(s, x(s))ds. (2.3)

Since x ∈ Sρ, x = π + σ, π(t + T ) = π(t), σ(t) → 0 as t → ∞ for some π and σ.
From Lemma 1.5 we know that

n(t) =
∫ t

0

C(t, s)f(s, x(s))ds

is continuous and asymptotically T -periodic, and that the T -periodic part of n(t)
is

ϕ(t) =
∫ t

−∞
D(t, s)g(s, π̄(s))ds,

where π̄ is the T -periodic extension of π on R. Let α(t) = n(t) − ϕ(t). Then
α(t) → 0 as t → 0. By our basic assumptions, a(t) = b(t) + q(t), b(t + T ) = b(t),
q(t)→ 0 as t→∞. Therefore from (2.3), we can write

Hx(t) = b(t) + q(t) +ϕ(t) +α(t) = (b(t) +ϕ(t)) + (q(t) +α(t)) = u(t) + v(t), (2.4)
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where u(t) = b(t) + ϕ(t) and v(t) = q(t) + α(t). Clearly, u is continuous and T -
periodic since both b and ϕ are of these properties. Similarly, the function v is
bounded, continuous, and v(t)→ 0 as t→∞, because both q and α have the same
properties. Note that

|ϕ(t)| ≤
∫ t

−∞
|D(t, s)‖g(s, π̄(s))|ds ≤ d∗(mg)ρ,

which implies ‖ϕ‖ ≤ d∗(mg)ρ. Also,

|α(t)| ≤ |n(t)|+ |ϕ(t)| ≤
∫ t

0

|C(t, s)‖f(s, x(s))|ds+ ‖ϕ‖ ≤ c∗(mf)ρ + d∗(mg)ρ,

from which we obtain ‖α‖ ≤ c∗(mf)ρ + d∗(mg)ρ. Therefore,

‖u‖ ≤ ‖b‖+ ‖ϕ‖ ≤ ‖b‖+ d∗(mg)ρ = M,

‖v‖ ≤ ‖q‖+ ‖α‖ ≤ ‖q‖+ c∗(mf)ρ + d∗(mg)ρ = N.

So, from (2.4) and (2.2), we find

|Hx(t)| ≤M +N ≤ ρ. (2.5)

This shows that H maps from Sρ into itself i.e., HSρ ⊆ Sρ, and hence HSρ is
uniformly bounded.

Now we show that H is a continuous operator, and that the set HSρ is relatively
compact. For the continuity of the operator H, define operators U and V as follows.
For each x ∈ Sρ,

(Ux)(t) =
∫ t

0

C(t, s)x(s)ds,

(V x)(t) = f(t, x(t)),

for all t ∈ R+. Clearly, V is continuous in x because f is. The operator U is a
linear operator and hence is continuous. The continuity of the operator H is then
follows from Hx = a+ (U ◦ V )x, for all x ∈ Sρ.

We show the relative compactness of HSρ by showing that every sequence in HSρ
has a subsequence that converges to an element in HSρ. Let {xm} be an arbitrary
sequence in HSρ. Then by (2.4), each xm = um + vm, with um being T -periodic
and vm(t)→ 0 as t→∞. Here ‖xm‖ ≤ ρ with ‖um‖ ≤M and ‖vm‖ ≤ N .

The sequence {um} is a continuous bounded T -periodic functions. Therefore,
there exists a subsequence {umk} that converges uniformly to a continuous bounded
T -periodic function, say u. Now, consider the corresponding sequence {vmk} of
functions on R+. Since all members of this sequence satisfy ‖vmk‖ ≤ N , the se-
quence is uniformly bounded. Also, limt→∞ vmk(t) = 0, for all members of this
sequence, and hence, the sequence is equiconvergent. Now, we show that the se-
quence is equicontinuous on compact subsets of R+. To show this, it is sufficient
to show the equicontinuity on an arbitrary interval [0, T ], for a T > 0.

Let t1, t2 ∈ [0, T ]. Without loss of generality, we assume t1 < t2. For notational
simplicity, let us write j = mk. Then

|vj(t1)− vj(t2)| ≤ |q(t1)− q(t2)|+ |αj(t1)− αj(t2)|
≤ |q(t1)− q(t2)|+ |nj(t1)− nj(t2)|+ |ϕj(t1)− ϕj(t2)|.

(2.6)
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Employing (H3)(i) on the expression for n(t) we can write

|nj(t1)− nj(t2)| ≤ (mf)ρ{
∫ t1

0

|C(t1, s)− C(t2, s)|ds+
∫ t2

t1

|C(t2, s)|ds}. (2.7)

Employing (H3) (ii) on the expression for ϕ(t) we can write

|ϕj(t1)− ϕj(t2)| ≤ (mg)ρ|
∫ t1

−∞
D(t1, s)ds−

∫ t2

−∞
D(t2, s)ds| (2.8)

Let ε > 0 be arbitrary. Since q is continuous, there exists a δ1 > 0 such that
|q(t1)−q(t2)| < ε

3 when |t1−t2| < δ1. By the continuity of C, one can see from (2.6)
that there exists a δ2 > 0 such that |nj(t1) − nj(t2)| < ε

3 when |t1 − t2| < δ2. We
know from Remark 1.4 that assumption (H2) implies the continuity of the function∫ t
−∞D(t, s)ds in t. Therefore, from (H2) and (2.8) there exists a δ3 > 0 such that
|ϕj(t1)− ϕj(t2)| < ε

3 when |t1 − t2| < δ3. Let δ = min{δ1, δ2, δ3}. Then from (2.6)
we have |vj(t1) − vj(t2)| < ε when |t1 − t2| < δ. This concludes that the sequence
{vj} i.e., the sequence {vmk} is equicontinuous on compact subsets of R+.

Then by Lemma 1.6, there exists a subsequence {vmkl } that converges to a
function, say v on R+. As the limit function v has the properties that v is con-
tinuous, bounded and v(t) → 0 as t → ∞, and ‖v‖ ≤ N . Now, consider the
corresponding sequence {umkl }, which is it self a subsequence of {umk}. We al-
ready found that {umk} converges to u. Thus, the subsequence {umkl } also con-
verges to u. As the limit function, u is continuous and T -periodic. It is now clear
from the very construction that for the sequence {xm}, there exists a subsequence
{xmkl } = {umkl } + {vmkl } that converges to x = u + v, where u is T -periodic,
‖u‖ ≤ M , v(t) → 0 as t → ∞, ‖v‖ ≤ N . Then ‖x‖ ≤ ‖u‖ + ‖v‖ ≤ M + N = ρ.
This means the limit function is in HSρ. This concludes the proof that the set HSρ
is relatively compact.

By Schauder’s fixed point theorem, there exists a function x in HSρ such that
x = Hx; the function x is a solution of (1.1). This concludes the proof of Theorem
2.1. �

Theorem 2.2. Suppose (H1)–(H3) along with the basic assumptions hold. Then
(1.2) has a continuous T -periodic solution.

Proof. Let x = π + σ, π(t + T ) = π(t), σ(t) → 0 as t → ∞ is an asymptotically
T -periodic solution of (1.1). Then from (1.1) we obtain

π(t) + σ(t) = b(t) + q(t) +
∫ t

0

C(t, s)f(s, x(s))ds. (2.9)

By Lemma 1.5,∫ t

0

C(t, s)f(s, x(s))ds =
∫ t

−∞
D(t, s)g(s, π(s))ds+ α(t), (2.10)

where α(t)→ 0 as t→∞. Therefore, combining (2.9) and (2.10), we find

π(t) + σ(t) = b(t) +
∫ t

−∞
D(t, s)g(s, π(s))ds+ α(t) + q(t) (2.11)

Equating the T -periodic part from both sides of (2.11) we obtain

π(t) = b(t) +
∫ t

−∞
D(t, s)g(s, π(s))ds.
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It is easy to verify that π(t + T ) = π(t). Therefore, π is a T -periodic solution of
(1.2). This concludes the proof of Theorem 2.2, showing that (1.2) has a continuous
T -periodic solution. �

As an example, consider the Volterra equation

x(t) = sin t+ e−|t| +
∫ t

0

(cos t+ se−s)x(s)ds, (2.12)

Here a(t) of (1.1) is sin t + e−|t|, which is clearly asymptotically 2π periodic with
b(t) of (1.2) being sin t and q(t) = e−|t|. Also, in this equation, we consider the
functions C(t, s) = es cos t+ s, and f(t, x(t)) = e−tx(t). Note that we can write

C(t, s)f(t, x(t)) = es−tx(t) cos t+ se−tx(t).

Let D(t, s) = es−t, g(t, x(t)) = x(t) cos t, Q(t, s) = se−t, and h(t, x(t)) = x(t).
Clearly, D and Q satisfy assumptions (H1) and (H2). For any fixed positive ρ, the
conditions in (H3) hold with all three constants (mf)ρ, (mf)ρ, and (mf)ρ being
ρ. Therefore, equation (2.12) has an asymptotically 2π periodic solution x with
‖x‖ ≤ ρ, and the 2π periodic part of this solution is indeed a periodic solution of
the associated integral equation

x(t) = sin t+
∫ t

−∞
es−tx(s) cos s ds.

Remark 2.3. It is important to understand that equations (1.1) and (1.2) are of
different nature. An asymptotically periodic solution function of (1.1) is defined
on [0,∞), where as a periodic solution function of (1.2) is defined on (−∞,∞).
We have shown in Theorem 2.1 that (1.1) has an asymptotically periodic solution
x with x(t) = π(t) + σ(t), π(t+ T ) = π(t), σ(t)→ 0 as t→∞. In Theorem 2.2, we
have shown that (1.2) has a T -periodic solution and that solution is the T -periodic
extension of the periodic part π of the solution x of (1.1). More explicitly, let π̃(t),
defined on (−∞,∞), be the T -periodic extension of π(t), defined on [0,∞). Then
π̃ is the periodic solution of (1.2).
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