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INFINITELY MANY SOLUTIONS FOR FRACTIONAL
SCHRÖDINGER EQUATIONS IN RN

CAISHENG CHEN

Abstract. Using variational methods we prove the existence of infinitely
many solutions to the fractional Schrödinger equation

(−∆)su + V (x)u = f(x, u), x ∈ RN ,

where N ≥ 2, s ∈ (0, 1). (−∆)s stands for the fractional Laplacian. The poten-

tial function satisfies V (x) ≥ V0 > 0. The nonlinearity f(x, u) is superlinear,

has subcritical growth in u, and may or may not satisfy the (AR) condition.

1. Introduction and statement of main results

In this article, we investigate the existence of infinitely many solutions to the
fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, u), x ∈ RN , (1.1)

where N ≥ 2, s ∈ (0, 1). (−∆)s stands for the fractional Laplacian. The function
f(x, u) is odd, sublinear or suplinear and subcritical in u, V (x) is positive and
bounded below in RN .

Equation (1.1) arises in the study of the fractional Schrödinger equation

i
∂ψ

∂t
+ (−∆)sψ + V (x)ψ = f(x, ψ), x ∈ RN , t > 0, (1.2)

when looking for standing waves, that is, solutions with the form ψ(x, t) = eiωtu(x),
where ω is a constant. This equation was introduced by Laskin [14, 15] and comes
from an expansion of the Feynman path integral and from Brownian-like to Lévy-
like quantum mechanical paths.

This equation is of particular interest in fractional quantum mechanics for the
study of particles on stochastic fields modelled by Lévy processes, which occur
widely in physics, chemistry and biology. The stable Lévy processes that gives rise
to equations with the fractional Laplacian have recently attracted much research
interest. For more details, we can see [5].

Nonlinear equations like (1.1) have recently been studied by Cabré and Roque-
joffre [3], Cabré and Tan [4], Sire and Valdinoci [22], Iannizzotto et al. [13], Hua
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and Yu [12]. A one-dimensional version of (1.1) has been studied in the context of
solitary waves by Weinstein [27].

Equations of the form (1.1) in the whole space RN were studied by a number
of authors; see for instance [6, 9, 19, 20, 21] and the references therein. Felmer
et al. [9] considered the existence and regularity of positive solution of (1.1) with
V (x) = 1 and s ∈ (0, 1) when f has subcritical growth and satisfies the Ambrosetti-
Rabinowitz ((AR) for short) condition. Secchi [19] obtained the existence of ground
state solutions of (1.1) for s ∈ (0, 1) when V (x) → ∞ as |x| → ∞ and (AR)
condition holds. In [8], the authors proved the existence of infinitely many weak
solutions for (1.1) by variant fountain theorem under the assumption

0 < inf
x∈RN

V (x) < lim inf
|x|→∞

V (x) = V∞ <∞. (1.3)

Tang [25] studied (1.1) with a potential V (x) satisfying

0 < inf
x∈RN

V (x), meas({x ∈ RN |V (x) ≤ d}) <∞, ∀d > 0. (1.4)

Similar assumptions can be found in [10, 21, 23, 28]. Each of these conditions
ensures that the embedding W s,2(RN ) ↪→ Lq(RN ) is compact for 2 ≤ q < 2∗s =

2N
N−2s . On the other hand, Gou and Sun [11], Chang and Wang [7] investigated the
existence of radial solutions for (1.1).

In this article, we are interest in the existence of infinitely many solutions for
(1.1) under the assumptions (A3)–(A7) below. Our assumptions on f(x, u) are
different from that in the above papers. The weighted functions h1(x), h2(x) and
h3(x) depend on the potential function V (x) and the nonlinear function f(x, u)
either satisfies (AR) condition or does not. Moreover, two cases that f(x, u) is
bounded and unbounded in x ∈ RN are considered. We note that, in [17, 23, 26],
f(x, u) is assumed to bounded in x ∈ RN

To state our main results, we recall some fractional Sobolev spaces and norms
[16]. Let V (x) satisfy (A1) below and

E =
{
u ∈W s,2(RN ) :

∫
RN
|ξ|2s|û|2dξ +

∫
RN

V (x)|u|2dx <∞
}

(1.5)

endowed with the norm

‖u‖E =
(∫

RN
|ξ|2s|û|2dξ + ‖u‖22,V

)1/2

, (1.6)

where and in the sequel, ‖u‖22,V =
∫

RN V (x)|u|2dx and ω̂ = ω̂(ξ) is the Fourier
transform of ω(x); that is,

ω̂ = F [ω(x)] =
1

(2π)N/2

∫
RN

ω(x)e−iξ·xdx,

ω(x) = F−1[ω̂] =
1

(2π)N/2

∫
RN

ω̂(ξ)eiξ·xdξ.
(1.7)

In [16], the author shows that

((−∆)su)(x) = F−1[|ξ|2û], ∀x ∈ RN , (1.8)

[u]2E =
2

C(N, s)

∫
RN
|ξ|2|û|2dξ, (1.9)
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where

[u]E =
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

(1.10)

is called the Gagliardo norm, and the constant C(N, s) depends only on the space
dimensional N and the order s, and it is explicitly given by the integral

1
C(N, s)

=
∫

RN

1− cos(ζ1)
|ζ|N+2s

dζ, ζ = (ζ1, ζ2, . . . , ζN ) ∈ RN . (1.11)

Moreover, by the Plancherel formula in Fourier analysis, we have

[u]2E =
2

C(N, s)
‖(−∆)s/2u‖22. (1.12)

Then, from (1.8)-(1.12), we obtain that the norm ‖ · ‖E is equivalent to the norms

‖u‖1 =
(∫

RN
V (x)|u|2dx+

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

,

‖u‖2 =
(∫

RN
V (x)|u|2dx+ ‖(−∆)s/2u‖22

)1/2

.

(1.13)

In general, we define the fractional Sobolev space W s,p(RN )(0 < s < 1 < p, sp <
N) as follows

W s,p(RN ) =
{
u ∈ Lp(RN ) :

|u(x)− u(y)|
|x− y|

N
p +s

∈ Lp(R2N )
}
. (1.14)

This space is endowed with the natural norm

‖u‖W s,p =
(∫

RN
|u|pdx+

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

, (1.15)

while

[u]W s,p =
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

(1.16)

is called the Gagliardo norm. For the reader’s convenience, we recall the main
embedding results for W s,p(RN ).

Lemma 1.1 ([16]). Let s ∈ (0, 1) and p ≥ 1 such that sp < N . Then there exists
a positive constant S0 = S0(N, p, s) such that, for any measurable and compactly
supported function u : RN → R, we have

‖u‖p∗s ≤ S0[u]W s,p , (1.17)

where p∗s = pN/(N−ps) is the fractional critical exponent. Consequently, the space
W s,p(RN ) is continuously embedded in Lq(RN ) for any q ∈ [p, p∗s]. Moreover, the
embedding W s,p(RN ) ↪→ Lq(RN ) is locally compact whenever 1 < q < p∗s.

Remark 1.2. By the density of the compactly supported functions in W s,p(RN ),
we know that (1.17) holds for any u ∈W s,p(RN ).

From the Hölder inequality and Lemma 1.1, we obtain the following lemma.

Lemma 1.3. Let s ∈ (0, 1), sp < N and p ≤ q ≤ p∗s. Then for any u ∈ X =
W s,p(RN ),

‖u‖q ≤ Sq‖u‖X (1.18)
where Sq is a constant depending on s, q, p,N . In particular, we denote Sp∗s by S0.
The inequality (1.18) shows that the embedding X ↪→ Lq(RN ) is continuous.
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Proof. When q = p, inequality (1.18) is obvious. For q = p∗s, (1.18) can be obtained
from (1.17). Let p < q < p∗s. Then there exists t ∈ (0, 1) such that q = pt+p∗s(1−t).
It follows from the Hölder inequality and (1.17) that∫

RN
|u|qdx =

∫
RN
|u|p

∗
s(1−t)|u|ptdx ≤

(∫
RN
|u|p

∗
sdx
)(1−t)(∫

RN
|u|pdx

)t
≤ S1−t

0 [u]p
∗
s(1−t)
X ‖u‖ptp ≤ Sqq‖u‖

p∗s(1−t)
X ‖u‖ptX = Sqq‖u‖

q
X ,

(1.19)

where Sqq = S1−t
0 . This implies (1.18). �

Similarly, for the Sobolev space E defined by (1.5), we have the following result.

Lemma 1.4. Let s ∈ (0, 1), 2s < N and 2 ≤ q ≤ 2∗s. Assume V (x) ≥ V0 > 0 in
RN . Then, for any u ∈ E,

‖u‖q ≤ Sq‖u‖E (1.20)

where Sq is a constant depending on s, q, p,N and V0. In particular, we denote S2∗s
by S0.

Definition 1.5. A function u ∈ E is said to be a (weak) solution of (1.1) if for
any ϕ ∈ E, we have∫

RN
|ξ|2sûϕ̂dξ +

∫
RN

V (x)uϕdx =
∫

RN
f(x, u)ϕdx. (1.21)

Let J(u) : E → R be the energy functional associated with (1.1) defined by

J(u) =
1
2

∫
RN
|ξ|2s|û|2dξ +

1
2

∫
RN

V (x)|u|2dx−
∫

RN
F (x, u)dx, (1.22)

where F (x, u) =
∫ u

0
f(x, t)dt.

Using (1.18) and assumptions (A3)–(A7) below, we see that the functional J is
well defined and J ∈ C1(E,R) with

J ′(u)ϕ =
∫

RN
|ξ|2ûϕ̂dξ +

∫
RN

V (x)uϕdx−
∫

RN
f(x, u)ϕdx, ∀ϕ ∈ E. (1.23)

Throughout this article, the function f(x, u) ∈ C(RN × R) is odd in u. In
addition, we use the following assumptions.

(A1) The function V (x) ∈ C(RN ) satisfies infx∈RN V (x) ≥ V0 > 0, where V0 is a
constant.

(A2) There exists a > 0 such that lim|y|→∞meas({x ∈ Ba(y) : V (x) ≤ d}) = 0
for any d > 0, where “meas” denotes the Lebesgue measure on RN and
Br(x) denotes any open ball of RN centered at x and of radius r > 0, while
we simply write Br when x = 0.

(A3) There exist 2 < α < β < 2∗s such that

|f(x, u)| ≤ h1(x)|u|α−1 + h2(x)|u|β−1,∀(x, u) ∈ RN × R, (1.24)

where h1(x), h2(x) ∈ C(RN ) and

lim
r→∞

sup
x∈Bcr

h1(x)
V t1(x)

= 0, lim
r→∞

sup
x∈Bcr

h2(x)
V t2(x)

= 0 (1.25)

with t1 = (2∗s − α)/(2∗s − 2), t2 = (2∗s − β)/(2∗s − 2) and Bcr = RN \ Br =
{x ∈ RN : |x| > r}.
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(A4) There exists µ > 2 such that

tf(x, t)− µF (x, t) ≥ 0, ∀(x, t) ∈ RN × R. (1.26)

(A5) lim|t|→∞(F (x, t)t−2) =∞ for any x ∈ RN .
(A6) There exist k > N

2s and 2 < α < β ≤ 2k
k−1 such that (1.24) and (1.25) hold.

Furthermore, there exist b, c1 ≥ 1 such that for x ∈ RN and |u| ≥ b,

F (x, u) ≥ 0, G(x, u) =
1
2
uf(x, u)− F (x, u) ≥ 0,

|F (x, u)|k ≤ ck1 |u|2k|h3(x)|2kG(x, u),
(1.27)

where h3(x) ∈ C(RN ) satisfies

lim
r→∞

sup
x∈Bcr

|h3(x)|2k′

V t3(x)
= 0, with k′ =

k

k − 1
, t3 =

2∗s − 2k′

2∗s − 2
. (1.28)

(A7) There exist a constant C0 > 0 and 2 < α < β < 2∗s, such that

|f(x, u)| ≤ C0(|u|α−1 + |u|β−1), ∀(x, u) ∈ RN × R. (1.29)

Remark 1.6. Condition (A2), which is weaker than the coercivity assumption
V (x) → ∞ as |x| → ∞, was originally introduced by Bartsch and Wang in [1] to
overcome the lack of compactness. Clearly, if V (x)→∞ as |x| → ∞, it is possible
that the functions h1(x), h2(x) and h3(x) in (A3) and (A6) are unbounded on RN .
So, it is necessary to consider the condition (A7).

Our main results in this paper are as follows.

Theorem 1.7. Let s ∈ (0, 1), 2s < N . Assume (A1), (A2) and (A5) hold. In
addition, suppose that either (A3), (A4) or (A6) are satisfied. Then (1.1) admits
infinitely many solutions un ∈ E such that J(un)→∞ as n→∞.

Theorem 1.8. Let s ∈ (0, 1), 2s < N . Assume (A1)–(A3) and (A7) hold. In
addition, suppose that either (A4) or (1.27) is satisfied with h3(x) ≡ 1. Then (1.1)
admits infinitely many solutions un ∈ E such that J(un)→∞ as n→∞.

Remark 1.9. Assumption (1.25) implies that the functions (h1V
−1), (h2V

−1),
(h1V

−t1), (h2V
−t2) belong to L∞(RN ) and

lim
r→∞

sup
x∈Bcr

[h1(x)V −1(x)] = lim
r→∞

sup
x∈Bcr

[h2(x)V −1(x)] = 0.

Moreover, the condition k > N
2s in (A7) implies that 2k

k−1 < 2∗s.

Remark 1.10. Assumption (A4) is called the (AR) condition. Obviously, the
power functions in u like f(x, u) =

∑n
i=1 hi(x)|u|βi−2u with 2 < βi < 2∗s satisfy

(A3) and (A4) for appropriate functions hi ∈ C(RN ). The functions like f(x, u) =
h(x)u log(1 + |u|) fails to satisfy condition (A4), but it satisfies (A6).

Teng [26] considered problem (1.1) under assumption (A4) with h1(x), h2(x) ∈
L∞(RN ). Obviously, our assumptions on h, h1 and h2 are weaker than that in [26].
Without loss of generality, we let V0 = 1 in (A1).



6 C. CHEN EJDE-2016/88

2. Proof of main results

To prove the main results, we recall some useful concepts and results.

Definition 2.1. Let E be a real Banach space and the functional J ∈ C1(E,R).
We say that J satisfies the (C)c condition if any (C)c sequence {un} ⊂ E:

J(un)→ c, (1 + ‖un‖E)‖J ′(un)‖E∗ → 0 as n→∞ (2.1)

has a convergent subsequence in E.

Lemma 2.2 ([18, 24]). Let E be an infinite dimensional real Banach space, the
functional J ∈ C1(E,R) be even and satisfy the (C)c condition for all c > 0 and
J(0) = 0. In addition, assume E = Y ⊕ Z, in which Y is finite dimensional, and
J satisfies

(A8) there exist constants ρ, α0 > 0 such that J(z) ≥ α0 on ∂Bρ ∩ Z;
(A9) for each finite dimensional subspace E0 ⊂ E, there is an R = R(E0) such

that J(z) ≤ 0 on E0 \ BR, where BR = {z ∈ E : ‖z‖E < R}, ∂BR = {z ∈
E : ‖z‖E = R}.

Then, J possesses an unbounded sequence of critical values, i.e. there exists a
sequence {un} ⊂ E such that J ′(un) = 0 and J(un)→∞ as n→∞.

In the proof of our results, we use the following lemma.

Lemma 2.3 ([17]). Let s ∈ (0, 1), 2s < N and 2 ≤ q < 2∗s = 2N
N−2s . Assume (A1)

and (A2). Then the embedding E ↪→ Lq(RN ) is compact.

For the prove Theorems 1.7 and 1.8, we need the following lemmas.

Lemma 2.4. Assume (A1) and (A2). If (A4) is satisfied, then any (C)c sequence
{un} is bounded in E.

Proof. Let the sequence {un} satisfy (2.1) and µ > 2. Then for large n, we have

c+ 1 + ‖un‖E ≥ J(un)− 1
µ
J ′(un)un

= (
1
2
− 1
µ

)‖un‖2E +
1
µ

∫
RN

f(x, un)un − µF (x, un))dx.
(2.2)

Then (A4) implies that {un} is bounded in E. The proof is complete. �

Lemma 2.5. Assume (A1), (A2), (A5), (A6) hold. Then any (C)c sequence {un}
is bounded in E.

Proof. To prove the boundedness of {un}, arguing contradiction, we suppose that
‖un‖E → ∞ as n → ∞. Let vn(x) = un(x)

‖un‖E . Then ‖vn‖E = 1 for all n ≥ 1. By
Lemma 2.3, there exists a subsequence of {vn}, still denoted by {vn}, and v ∈ E
such that ‖v‖E ≤ 1 and

vn ⇀ v weakly in E; vn → v in Lq(RN ) (2 ≤ q < 2∗s);

vn(x)→ v(x) a.e. in RN .
(2.3)

Clearly, it follows from (2.3) that there exists ω(x) ∈ Lq(RN )(2 ≤ q < 2∗s) such
that |vn(x)| ≤ ω(x) a.e. in RN for all n ≥ 1.
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From (1.22), (1.23) and (2.1), it follows that for, n large,

c+ 1 ≥ J(un)− 1
2
J ′(un)un =

∫
RN

G(x, un)dx, (2.4)

where G(x, u) = 1
2uf(x, u)− F (x, u), and

1
2
≤ lim sup

n→∞

∫
RN

|F (x, un)|
‖un‖2E

dx

≤ lim sup
n→∞

∫
Br

|F (x, un)|
|un|2

|vn|2dx+ lim sup
n→∞

∫
Bcr

|F (x, un)|
|un|2

|vn|2dx,
(2.5)

for any r > 0. By (A6), we obtain, for any ε > 0, there exists δ > 0 such
that |F (x,t)|

|t|2 ≤ ε(h1(x) + h2(x)) for all 0 < |t| ≤ δ and all x ∈ RN . Denote
Xn = {x ∈ RN : |un(x)| ≤ δ}, Yn = {x ∈ RN : δ < |un(x)| ≤ b}, Zn = {x ∈ RN :
|un(x)| ≥ b}, where the constant b is given in (A6). Obviously, RN = Xn ∪Yn ∪Zn
and Bcr = Bcr ∩ (Xn ∪ Yn ∪ Zn). Then∫

Bcr∩Xn

|F (x, un)|
|un|2

|vn|2dx ≤ ε
∫
Bcr∩Xn

(h1(x) + h2(x))|vn|2dx

≤ ε(‖h1V
−1‖∞ + ‖h2V

−1‖∞)
∫

RN
V |vn|2dx

≤ 2εM1‖vn‖2E = 2εM1,

(2.6)

where M1 = max{‖h1V
−1‖∞, ‖h2V

−1‖∞}. Furthermore, by (1.24) and (1.25), one
sees that ∫

Bcr∩Yn

|F (x, un)|
|un|2

|vn|2 dx

≤ bβ−2

∫
Bcr∩Yn

(h1(x) + h2(x))|vn(x)|2 dx

≤ bβ−2
(

sup
x∈Bcr

h1(x)
V (x)

+ sup
x∈Bcr

h2(x)
V (x)

)∫
Bcr

V (x)|vn|2dx

≤ bβ−2
(

sup
x∈Bcr

h1(x)
V (x)

+ sup
x∈Bcr

h2(x)
V (x)

)
→ 0 as r = |x| → ∞.

(2.7)

On the other hand, from (1.27) and (2.4) it follows that∫
Bcr∩Zn

|F (x, un)|
|un|2

|vn|2dx

≤
(∫

Bcr∩Zn

( |F (x, un)|
h2

3|un|2
)k
dx
)1/k(∫

Bcr∩Zn
|h3vn|2k

′
dx
)1/k′

≤ c1
(∫

RN
G(x, un)dx

)1/k(∫
Bcr∩Zn

|h3vn|2k
′
dx
)1/k′

≤ c1(c+ 1)1/k
(∫

Bcr

|h3vn|2k
′
dx
)1/k′

.

(2.8)
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Note that 2 < 2k′ < 2∗s. Let t3 = (2∗s − 2k′)/(2∗s − 2). By the Hölder inequality
and (1.20), we obtain∫

Bcr

|h3vn|2k
′
dx ≤ sup

x∈Bcr

|h3(x)|2k′

V t3(x)

(∫
Bcr

V v2
ndx

)t3(∫
Bcr

|vn|2
∗
sdx
)1−t3

≤ S0‖vn‖2k
′

E sup
x∈Bcr

|h3(x)|2k′

V t3(x)
≤ S0 sup

x∈Bcr

|h3(x)|2k′

V t3(x)
→ 0

(2.9)

as r = |x| → ∞, where S0 = S2∗s
is the constant in (1.20). Then, and application

of (2.6)-(2.9) implies that for any ε > 0, there exist n0, r0 ≥ 1, such that n ≥ n0,
r ≥ r0, ∫

Bcr

|F (x, un)|
|un|2

|vn|2dx ≤ ε(2M1 + 1). (2.10)

Set Tn = Xn ∪ Yn. Notice that for all x ∈ Br0 ∩ Tn,

|F (x, un)|
|un|2

|vn|2 ≤ bβ−2(h1(x) + h2(x))|vn(x)|2

≤ bβ−2M2|ω(x)|2 ≡ d(x) ∈ L1(Br0),
(2.11)

where
M2 = sup

x∈Br0
(h1(x) + h2(x)). (2.12)

If v(x) = 0 in Br0 , it follows from Fatou’s lemma that

lim sup
n→∞

∫
Br0∩Tn

|F (x, un)|
|un|2

|vn|2dx ≤M2b
β−2

∫
Br0

lim sup
n→∞

|vn|2dx

= M2b
β−2

∫
Br0

|v|2dx = 0.
(2.13)

Arguing as in (2.8) and (2.9), we obtain∫
Br0∩Zn

|F (x, un)|
|un|2

|vn|2dx ≤ C1 sup
x∈Br0

|h3(x)|2
(∫

Br0

|vn|2k
′
dx
)1/k′

(2.14)

with C1 = c1(c + 1)1/k. Similarly, since |vn(x)|2k′ ≤ |ω(x)|2k′ a.e. in RN and
|ω(x)|2k′ ∈ L1(RN ), we obtain

lim sup
n→∞

∫
Br0

|vn|2k
′
dx ≤

∫
Br0

lim sup
n→∞

|vn|2k
′
dx =

∫
Br0

|v|2k
′
dx = 0.

Hence,

lim sup
n→∞

∫
Br0

|F (x, un)|
|un|2

|vn|2dx = 0. (2.15)

So, an application of (2.10) and (2.15) contradicts (2.5) and then meas(A) >
0, where A = {x ∈ RN : v(x) 6= 0}. Obviously, for a.e. x ∈ A, we have
limn→∞ |un(x)| =∞. Hence, A ⊂ Zn for large n. Moreover, one sees that∫

Tn

|F (x, un)|
|un|2

|vn|2dx ≤ bβ−2

∫
RN

(h1(x) + h2(x))|vn|2dx

≤ bβ−2(‖h1V
−1‖∞ + ‖h2V

−1‖∞)
∫

RN
V |vn|2dx

≤ 2bβ−2M1‖vn‖2E = 2bβ−2M1.

(2.16)
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Moreover, using assumption (A5) and Fatou’s lemma, it follows from J(un) → c
that

0 = lim
n→∞

c+ o(1)
‖un‖2E

= lim
n→∞

J(un)
‖un‖2E

≤ lim
n→∞

[1
2
−
∫

RN

F (x, un)
|un|2

|vn|2dx
]

≤ 1
2

+ 2bβ−2M1 − lim inf
n→∞

∫
Zn

F (x, un)
|un|2

|vn|2dx

≤ 1
2

+ 2bβ−2M1 −
∫

RN
lim inf
n→∞

F (x, un)
|un|2

χZn(x)|vn|2dx = −∞,

(2.17)

where χI denotes the characteristic function associated to the mensurable subset
I ⊂ RN . Clearly, (2.17) is impossible. Thus {un} is bounded in E and the proof of
Lemma 2.5 is finished. �

Lemma 2.6. Assume (A1), (A2), (A5), (A7). In addition, suppose that (1.27) is
satisfied with h3(x) ≡ 1. Then any (C)c sequence {un} is bounded in E.

Proof. Arguing as the proof of Lemma 2.5, we suppose that ‖un‖E →∞ as n→∞.
Let vn(x) = un(x)

‖un‖E . Then {vn} satisfies (2.3). For any ε > 0, we choose r1 > 0 such
that

∫
Bcr
|v(x)|2dx < ε when r ≥ r1. Since vn(x)→ v(x) in L2(RN ), we obtain

lim sup
n→∞

∫
Bcr

|vn(x)|2dx ≤
∫
Bcr

lim sup
n→∞

|vn(x)|2dx ≤
∫
Bcr

|v(x)|2dx < ε. (2.18)

Then

lim sup
n→∞

∫
Bcr∩Tn

|F (x, un)|
|un|2

|vn|2dx ≤ 2bβ−2C0 lim sup
n→∞

∫
Bcr

|vn|2dx

≤ C2

∫
Bcr

|ω(x)|2dx ≤ C2ε,

(2.19)

where C2 = 2bβ−2C0, b is the constant in (A6) and C0 is given in (1.29).
On the other hand, from (1.27) with h3(x) = 1 and (2.4) it follows that∫

Bcr∩Zn

|F (x, un)|
|un|2

|vn|2dx

≤
(∫

Bcr∩Zn

( |F (x, un)|
|un|2

)k
dx
)1/k(∫

Bcr∩Zn
|vn|2k

′
dx
)1/k′

≤ c1
(∫

RN
G(x, un)dx

)1/k(∫
Bcr∩Zn

|vn|2k
′
dx
)1/k′

≤ c1(c+ 1)1/k
(∫

Bcr

|vn|2k
′
dx
)1/k′

.

(2.20)

From (2.9) and (2.18), for large n, we obtain∫
Bcr

|vn|2k
′
dx ≤ ‖vn‖2t3L2(Bcr)‖vn‖

(1−t3)2∗s
L2∗s (Bcr)

≤ S0‖vn‖2t3L2(Bcr) ≤ S0ε. (2.21)

Then, an application of (2.19)-(2.21) gives that for any ε > 0 there exist n0, r0 ≥ 1
such that n ≥ n0, r ≥ r0,∫

Bcr

|F (x, un)|
|un|2

|vn|2dx ≤ ε(C2 + S0C1). (2.22)
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Similar to (2.11), for a.e. x ∈ Br0 ∩ Tn and n ≥ 1, we obtain

|F (x, un)|
|un|2

|vn|2 ≤ C2|vn(x)|2 ≤ C2|ω(x)|2 ≡ d(x) ∈ L1(Br0). (2.23)

By Fatou’s lemma,

lim sup
n→∞

∫
Br0∩Tn

|F (x, un)|
|un|2

|vn|2 ≤ C2

∫
Br0

lim sup
n→∞

|vn(x)|2

= C2

∫
Br0

|v(x)|2dx.
(2.24)

Similar to (2.20), we derive

lim sup
n→∞

∫
Br0∩Zn

|F (x, un)|
|un|2

|vn|2 ≤ C1

(∫
Br0

|v(x)|2k
′
dx
)1/k′

. (2.25)

If v(x) = 0 in Br0 , an application of (2.24) and (2.25) gives that

lim sup
n→∞

∫
Br0

|F (x, un)|
|un|2

|vn|2 = 0. (2.26)

Combining (2.22) with (2.26) contradicts (2.5). So, meas(A) > 0, where A = {x ∈
RN : v(x) 6= 0} and for a.e. x ∈ A, we have limn→∞ |un(x)| = ∞. Hence, A ⊂ Zn
for large n. Moreover, one sees that∫

Tn

|F (x, un)|
|un|2

|vn|2dx ≤ C1

∫
RN
|vn|2dx ≤ C1

∫
RN

V |vn|2dx ≤ C1‖vn‖2E = C1.

(2.27)
Moreover, using assumption (A5) and Fatou’s lemma, from J(un) → c it follows
that

0 = lim
n→∞

c+ o(1)
‖un‖2E

= lim
n→∞

J(un)
‖un‖2E

≤ lim
n→∞

[1
2
−
∫

RN

F (x, un)
|un|2

|vn|2dx
]

≤ 1
2

+ C1 − lim inf
n→∞

∫
Zn

F (x, un)
|un|2

|vn|2dx

≤ 1
2

+ C1 −
∫

RN
lim inf
n→∞

F (x, un)
|un|2

χZn(x)|vn|2dx = −∞.

(2.28)

Clearly, the limit (2.28) is impossible. Thus {un} is bounded in E and the proof is
complete. �

From Lemmas 2.4–2.6, we know that any (PS)c sequence and (C)c sequence
{un} of the functional J are bounded in E. Therefore, by Lemma 2.3, there exists
a subsequence of {un}, still denoted by {un}, and u ∈ E such that ‖un‖E +‖u‖E ≤
M(∀n ≥ 1) and

un ⇀ u weakly in E, un → u in Lq(RN ) (2 ≤ q < 2∗s),

un(x)→ u(x) a.e. in RN
(2.29)

with some constant M > 0.

Lemma 2.7. Assume (A1)–(A6) hold. If the sequence {un} satisfies (2.29), then

lim
n→∞

∫
RN

h1(|un|α − |u|α)dx = 0, lim
n→∞

∫
RN

h2(|un|β − |u|β)dx = 0, (2.30)
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lim
n→∞

∫
RN

f(x, un)(un − u)dx = 0, lim
n→∞

∫
RN

f(x, u)(un − u)dx = 0, (2.31)

lim
n→∞

∫
RN

F (x, un)dx =
∫

RN
F (x, u)dx. (2.32)

Proof. First, we assume (A3), (A4). From (2.29), we obtain

lim
n→∞

∫
Br

h1(|un|α − |u|α)dx = 0, lim
n→∞

∫
Br

h2(|un|β − |u|β)dx = 0 (2.33)

for any r > 0. On the other hand, we see from the Hölder inequality and (A3) that∫
Bcr

h1|un|αdx ≤ sup
x∈Bcr

h1(x)
V t1(x)

(∫
Bcr

V |un|2dx
)t1(∫

Bcr

|un|2
∗
sdx
)1−t1

≤ S0 sup
x∈Bcr

h1(x)
V t1(x)

‖un‖2t1E ‖un‖
(1−t1)2∗s
E

≤ S0M
α sup
x∈Bcr

h1(x)
V t1(x)

→ 0, as r →∞,

(2.34)

where t1 = (2∗s − α)/(2∗s − 2), S0 = S2∗s
. Similarly, as r →∞,∫

Bcr

h2|un|βdx ≤ S0 sup
x∈Bcr

h2(x)
V t2(x)

‖un‖2t2E ‖un‖
(1−t2)2∗s
E

≤ S0M
β sup
x∈Bcr

h2(x)
V t2(x)

→ 0,
(2.35)

where t2 = (2∗s−β)/(2∗s−2). Then an application of (2.33), (2.34) and (2.35) gives
(2.30). Moreover, the limit (2.30) and Brezis-Lieb lemma [2] give that

lim
n→∞

∫
RN

h1|un − u|αdx = 0, lim
n→∞

∫
RN

h2|un − u|βdx = 0. (2.36)

Thus, from (2.36), it follows that∫
RN

h1|un|α−1|un − u|dx ≤
(∫

RN
h1|un|αdx

)(α−1)/α(∫
RN

h1|un − u|αdx
)1/α

≤ (S0M
α‖h1V

−t1‖∞)(α−1)/α
(∫

RN
h1|un − u|αdx

)1/α

→ 0, as n→∞

(2.37)

and∫
RN

h2|un|β−1|un − u|dx

≤
(∫

RN
h2|un|βdx

)1−1/β(∫
RN

h2|un − u|βdx
)1/β

≤ (S0M
β‖h2V

−t2‖∞)1−1/β
(∫

RN
h2|un − u|βdx

)1/β

→ 0, as n→∞.

(2.38)

Hence,∫
RN
|f(x, un)(un − u)|dx ≤

∫
RN

(h1|un|α−1 + h2|un|β−1)|un − u|dx→ 0, (2.39)

as n→∞. This proves the first limit of (2.31). The second limit of (2.31) can be
obtained in a similar way.
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To prove the limit (2.32), we use (1.24) and derive that

|F (x, un)− F (x, v)|

≤ C
[
h1(x)(|un|α−1 + |u|α−1) + h2(x)(|un|β−1 + |u|β−1)

]
|un − u|.

(2.40)

Then an application of (2.37) and (2.38) yields that the limit (2.32). The proof is
complete. �

Lemma 2.8. Let the assumptions in Theorem 1.8 hold. If the sequence {un}
satisfies (2.29), then the limits (2.31) and (2.32) hold.

Proof. Choose ψ ∈ C∞0 (R) such that suppψ ⊂ [−2, 2] and ψ(t) = 1 on [−1, 1].
Denote g(x, t) = ψ(t)f(x, t), H(x, t) = (1 − ψ(t))f(x, t). Then f(x, t) = g(x, t) +
H(x, t). Furthermore, from (1.29), there exist the constants a1, b1 > 0 such that

|g(x, t)| ≤ a1|t|α−1, |H(x, t)| ≤ b1|t|β−1, ∀(x, t) ∈ RN × R. (2.41)

Denote

An =
∫

RN
|g(x, un)− g(x, u)|α

′
dx, Dn =

∫
RN
|H(x, un)−H(x, u)|β

′
dx, (2.42)

where t′ = t/(t − 1). By (2.29), there exist ω1(x) ∈ Lα(RN ) and ω2(x) ∈ Lβ(RN )
such that |un(x)| ≤ ω1(x) and |un(x)| ≤ ω2(x) a.e. in RN for all n ≥ 1. Note that

|g(x, un)− g(x, u)|α
′
≤ C3(|un(x)|α + |u(x)|α)

≤ C3(|ω1(x)|α + |u(x)|α) ≡ d1(x) ∈ L1(RN )
(2.43)

and

|H(x, un)−H(x, u)|β
′
≤ C3(|un(x)|β + |u(x)|β)

≤ C3(|ω2(x)|β + |u(x)|β) ≡ d2(x) ∈ L1(RN ),
(2.44)

where C3 is a constant independent of n. By the Lebesgue dominated convergence
theorem and (2.29), we have

lim
n→∞

An =
∫

RN
lim
n→∞

|g(x, un)− g(x, u)|α
′
dx = 0,

lim
n→∞

Dn =
∫

RN
lim
n→∞

|H(x, un)−H(x, u)|β
′
dx = 0.

(2.45)

Therefore, by the Hölder inequality,∫
RN
|f(x, un)− f(x, u)||un − u|dx

≤
∫

RN
(|g(x, un)− g(x, u)|+ |H(x, un)−H(x, u)|)|un − u|dx

≤ A1/α′

n ‖un − u‖α +D1/β′

n ‖un − u‖β
≤ (A1/α′

n +D1/β′

n )‖un − u‖E ≤M(A1/α′

n +D1/β′

n ).

(2.46)

An application of (2.45) and (2.46) gives

lim
n→∞

∫
RN

f(x, un)(un − u)dx = lim
n→∞

∫
RN

f(x, u)(un − u)dx. (2.47)
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Similarly, from (2.41), (2.43) and (2.44), we can derive that

lim
n→∞

∫
RN

f(x, u)(un − u)dx =
∫

RN
lim
n→∞

f(x, u)(un − u)dx = 0. (2.48)

Consequently, the limit (2.31) is given. Similarly, (2.32) can be proved and the
proof is complete. �

Lemma 2.9. Let the assumptions in Theorems 1.7 and 1.8 hold. Let {un} be the
sequence in Lemmas 2.4–2.6 satisfying (2.29). Then u is a critical point of the
functional J and un → u in E.

Proof. First, we show that J ′(u) = 0 in E∗. By Lemmas 2.4–2.6, the sequence
{un} is bounded in E. So, there exists a subsequence, still denoted by {un}, such
that {un} satisfies (2.29). Moreover, one sees that for all ϕ ∈ C∞0 (RN ),

lim
n→∞

(∫
RN
|ξ|2(ûn − û)ϕ̂dx+

∫
RN

V (x)(un − u)ϕdx
)

= 0. (2.49)

Under assumptions (A3)–(A7), we obtain

lim
n→∞

∫
RN

(f(x, un)− f(x, u))ϕdx = 0. (2.50)

Furthermore, from (2.49), (2.50) and the assumption J ′(un)→ 0 in E∗, we have

0 = lim
n→∞

J ′(un)ϕ = J ′(u)ϕ, ∀ϕ ∈ C∞0 (RN ). (2.51)

By the denseness of C∞0 (RN ) in E, it follows that J ′(u)ϕ = 0,∀ϕ ∈ E. Hence, u is
a critical point of J in E. On the other hand, from (2.29) it follows that

Rn =
∫

RN
|ξ|2û(ûn − û)dξ +

∫
RN

V (x)u(un − u)dx→ 0, as n→∞. (2.52)

Set

Wn :=
∫

RN
f(x, un)(un − u)dx, Sn :=

∫
RN

f(x, u)(un − u)dx, ∀n ∈ N. (2.53)

From (2.31), it follows that Wn, Sn → 0 as n→∞ and so

J ′(u)(un − u) = Rn − Sn → 0. (2.54)

Similarly, we set

Qn := (J ′(un)− J ′(u))(un − u) = ‖un − u‖2E −Wn + Sn, ∀n ∈ N. (2.55)

Obviously, relation (2.55) can be reduced to the form

‖un − u‖2E = Wn +Qn − Sn, ∀n ∈ N. (2.56)

From (2.53), (2.54) and J ′(un)→ 0, we find Qn → 0 and ‖un−u‖E → 0 as n→∞.
Thus un → u in E as n→∞ under assumptions (A3)–(A7). Therefore, J satisfies
the (C)c condition in E and the proof is complete. �

Proof of Theorem 1.7. Clearly, the functional J defined by (1.22) is even. By
Lemma 2.9, the functional J satisfies the (C)c condition. Next, we prove that
J satisfies (A8) and (A9) in Lemma 2.2. From (A3), we have

J(u) =
1
2
‖u‖2E −

∫
RN

F (x, u)dx ≥ 1
2
‖u‖2E −

∫
RN

(h1|u|α + h2|u|β)dx. (2.57)
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Arguing as in the proof of (2.34) and (2.35), we obtain

J(u) ≥ 1
2
‖u‖2E−S0M3(‖u‖αE+‖u‖βE) ≥ ρ2(

1
2
−2S0M3ρ

α−2) ≥ ρ2

4
≡ α0 > 0, (2.58)

where M3 = max{‖h1V
−t1‖∞, ‖h2V

−t2‖∞} and ‖u‖E = ρ = min{1, (8S0M3)
1

2−α }.
Thus, by (2.58), condition (A8) is satisfied. We now satisfy condition (A9). For
any finite dimensional subspace E0 ⊂ E, we assert that there holds J(un) → −∞
when un ∈ E0 and ‖un‖E → ∞. Arguing by contradiction, suppose that for some
sequence {un} ⊂ E0 with ‖un‖E →∞, there is M4 > 0 such that J(un) ≥ −M4, for
all n ≥ 1. Set vn(x) = un(x)

‖un‖E , then ‖vn‖E = 1. Passing to a subsequence, we may
assume that vn ⇀ v in E, vn(x)→ v(x) a.e on RN . Since E0 is finite dimensional,
then vn → v in E0 and so v 6= 0 a.e.in RN . Set Ω = {x ∈ RN : v(x) 6= 0}, then
meas(Ω) > 0. For x ∈ Ω, we have limn→∞ |un(x)| =∞.

Then, from (A5) it follows that

0 = lim sup
n→∞

−M
‖un‖2E

≤ lim sup
n→∞

J(un)
‖un‖2E

= lim sup
n→∞

[1
2
−
∫

RN

F (x, un)
|un|2

|vn|2dx
]

≤ 1
2
−
∫

RN
lim inf
n→∞

F (x, un)
|un|2

χΩ(x)|vn|2dx = −∞,
(2.59)

and we have a contradiction. So, there exists R = R(E0) > 0 such that J(u) <
0 for u ∈ E0 and ‖u‖E ≥ R. Therefore, condition (A9) is satisfied. Then an
application of Lemma 2.2 shows that (1.1) admits infinitely many solutions un ∈ E
with J(un)→∞ as n→∞. This completes the proof. �

Proof of Theorem 1.8. Clearly, the functional J defined by (1.22) is even. By
Lemma 2.9, the functional J satisfies the (C)c condition. Next, we prove that
J satisfies (A8) and (A9) in Lemma 2.2. From (A7), we have

J(u) =
1
2
‖u‖2E −

∫
RN

F (x, u)dx ≥ 1
2
‖u‖2E − C0

∫
RN

(|u|α + |u|β)dx. (2.60)

Furthermore, from (1.20) it follows that

J(u) ≥ 1
2
‖u‖2E − C4(‖u‖αE + ‖u‖βE) ≥ ρ2(

1
2
− C4ρ

α−2) ≥ ρ2

4
≡ α1 > 0, (2.61)

with ‖u‖E = ρ = min{1, (4C4)
1

2−α } and C4 = max{Sαα , S
β
β}. Thus, by (2.61),

condition (A8) is satisfied. Similarly, we can derive (2.59) and the verification of
condition (A9) is finished. Again, using Lemma 2.2, we complete the proof of
Theorem 1.8. �
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