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EXISTENCE, BOUNDARY BEHAVIOR AND ASYMPTOTIC
BEHAVIOR OF SOLUTIONS TO SINGULAR ELLIPTIC

BOUNDARY-VALUE PROBLEMS

GE GAO, BAOQIANG YAN

Abstract. In this article, we consider the singular elliptic boundary-value

problem

−∆u+ f(u)− u−γ = λu in Ω, u > 0 in Ω, u = 0 on ∂Ω.

Using the upper-lower solution method, we show the existence and uniqueness
of the solution. Also we study the boundary behavior and asymptotic behavior

of the positive solutions.

1. Introduction

In this article, we consider the singular elliptic boundary-value problem

−∆u+ f(u)− u−γ = λu in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN , N ≥ 2, with C2,β boundary ∂Ω, γ > 0,
β ∈ (0, 1) and λ > 0 is a real parameter. We use the following assumptions in this
article.

(A1) f : R+ → R is a continuous function.
(A2) s−1f(s) is strictly increasing for s > 0.
(A3) f : R+ → R is strictly increasing.

Existence, boundary behavior and asymptotic behavior of solutions for nonlinear
elliptic boundary value problems have been intensively studied in the previous
decades. Berestycki [1] considered the problem

Lu+ f(x, u) = λau, in Ω,
u = 0, on ∂Ω,

(1.2)

where L is a second order uniformly elliptic operator, a ∈ C0(Ω̄), a > 0 in Ω̄ and
under the conditions that f(x, 0) = 0, s→ (f(x, s)/s) is strictly increasing for s > 0
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and lims→∞(f(x, s)/s) = +∞, it is proved that (1.2) has one and only one positive
solution uλ ∈W 2,p(Ω) for λ > λ1, where λ1 denotes the principle eigenvalue of

Lφ = λaφ in Ω, φ = 0 on ∂Ω.

As a special case for (1.2), Fraile, López-Gómez and Delis [6] studied

−∆u = λu+ f(u)− up+1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.3)

and described the structure of the positive solutions of (1.3) in detail. Some other
asymptotic behavior studies have been shown in [16, 17, 18].

Notice that in the above f needs to be continuous or differential at x = 0. On the
other hand, singular elliptic boundary value problems in various forms have been
studied extensively by many authors, see [2, 3, 4, 5, 7, 8, 10, 11, 12, 15, 19, 21, 22].
For instance, for the problem

−∆u− u−α = (λu)p in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.4)

by results in [4, 7, 8, 19], it follows that if λ = 0, (1.4) possesses a unique classical
solution and at least one classical solution for λ 6= 0 and p < 1. Coclite and Palmieri
[3] showed that if 0 < p < 1, (1.4) has at least one solution uλ for all λ ≥ 0; and if
p ≥ 1, there exist λ̃ ∈ (0,+∞] such that (1.4) has at least one classical solution for
all λ ∈ [0, λ̃) and has no solution for λ̃ < λ. See also results in [2, 12, 22]. A more
generalized work in [15] is about for the singular problem

−∆u+K(x)u−α = λup in Ω,
u > 0 in Ω,
u = 0 on ∂Ω .

(1.5)

If K(x) < 0 for all x ∈ Ω̄, then (1.5) has one and only one solution uλ for any
λ ∈ R, c1d(x) ≤ uλ(x) ≤ c2d(x) for any x ∈ Ω̄ and some c1, c2 > 0 independent of
x; if K(x) > 0 for all x ∈ Ω̄, there exist a λ̃ > 0 such that (1.5) has at least one
solution uλ for λ > λ̃, and (1.5) has no solution for λ < λ̃. Other results can be
found in [4, 5, 10, 12, 21].

Up to now, there are only a few results on existence, boundary behavior and
asymptotic behavior of positive solutions for (1.1). Our goal in this paper is to show
existence, boundary behavior and asymptotic behavior of the solutions for singular
elliptic boundary-value problem (1.1). Using the upper-lower solution method, we
obtain that (1.1) has at least one solution, and if 0 < γ < 1, (1.1) has one and
only one solution. In the meanwhile, the boundary behavior of the solution is
established for 0 < γ < 1. Finally, we obtain the asymptotic behavior of solutions
under a special form of f(u).

2. Existence and uniqueness of a solution for (1.1)

First, we introduce notation and present some lemmas. In the next lemma,
W k,q(Ω) denotes the usual Sobolev space.
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Lemma 2.1 ([4]). Let ϑ0, ϑ be bounded open domains in Rn with ϑ̄0 ⊂ ϑ. Suppose
L is a second order uniformly elliptic operator with coefficients continuous in ϑ̄ and
q > n. Then there is a constant K such that

‖w‖W 2,q(ϑ0) ≤ K(‖Lw‖Lq(ϑ) + ‖w‖Lq(ϑ))

for all w ∈ W 2,q(ϑ). The constant K depends on n, q, the diameter of ϑ, the
distance from ϑ0 to ∂ϑ, the ellipticity constant of L, and bounds for the coefficients
of L (in L∞(ϑ)) and the moduli of continuity of the coefficients.

We consider the nonlinear elliptic boundary-value problem

Lu+ f(x, u) = 0 in Ω,
Bu = g on ∂Ω,

(2.1)

where L is a second order uniformly elliptic operator

L =
n∑

i,j=1

aij
∂2u

∂xi∂xj
+

n∑
i=1

bi
∂u

∂xi
, x = (x1, . . . , xn),

and B is one of the boundary operators

Bu = u,

or

Bu =
∂u

∂v
+ β(x)u, x ∈ ∂Ω.

Here ∂/∂v denotes the outward conormal derivative, and we assume β ≥ 0 every-
where on the boundary, ∂Ω.

Lemma 2.2 ([14]). Let there exist two smooth functions u0(x) ≥ v0(x) such that

Lu0 + f(x, u0) ≤ 0, Bu0 ≥ g,
Lv0 + f(x, v0) ≥ 0, Bv0 ≤ g.

Assume f is a smooth function on min v0 ≤ u ≤ maxu0. Then there exists a regular
solution w of

Lw + f(x,w) = 0, Bw = g,

such that v0 ≤ w ≤ u0.

Let φ1 denote an eigenfunction corresponding to the first eigenvalue λ1 of

−∆u = λu in Ω,
u = 0 on ∂Ω.

As is known, φ1 belongs to C2,β(Ω̄), φ1 > 0 in Ω and λ1 > 0.

Lemma 2.3 ([12]).
∫

Ω
( 1
φ1

)sdx <∞ if and only if s < 1.

Assume that (1.1) has a positive solution uλ and let x0 ∈ Ω be the point where
uλ reaches its maximum. Thus, −∆uλ(x0) ≥ 0, which concludes that

λ ≥ −u−(γ+1)
λ (x0) +

f(uλ(x0))
uλ(x0)

.

Define

G(s) = −s−(γ+1) +
f(s)
s
, s > 0.
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Theorem 2.4. If f(u) satisfies (A1) and (A2), then (1.1) has at least one solution
uλ ∈ C(Ω̄) ∩ C2,β(Ω) for λ > λ1, and there exist a constant C > 0 such that
uλ ≥ Cφ1. Moreover, if 0 < γ < 1, (1.1) has one and only one solution for λ > λ1.

Proof. (i) (Existence) First we consider the solution of the nonlinear elliptic bound-
ary-value problem

−∆u+ f(u)− u−γ = λu in Ω,
u > 0 in Ω,

u = 1/k on ∂Ω,
(2.2)

where 1/k < G−1(λ), k ∈ N+. Set

u
(k)
λ (x) = G−1(λ),

then

−∆u(k)
λ + f(u(k)

λ )− u(k)
λ

−γ
= f(G−1(λ))− (G−1(λ))−γ

= G−1(λ)[
f(G−1(λ))
G−1(λ)

− (G−1(λ))−(γ+1)]

= G−1(λ)G(G−1(λ))

= λG−1(λ) = λu
(k)
λ .

So

−∆u(k)
λ + f(u(k)

λ )− u(k)
λ

−γ
≥ λu(k)

λ in Ω,

u
(k)
λ = G−1(λ) on ∂Ω.

Therefore, u(k)
λ (x) is a super-solution of (2.2). Put

u
(k)
λ (x) = hkG

−1(λ− λ1)(φ1(x) + δk),

where δk = 1/k, hk = 1/(δk + 1), hkG−1(λ− λ1)δk ≤ 1/k. Since

u
(k)
λ ≤ 1/k on ∂Ω,

and

−∆u(k)
λ + f(u(k)

λ )− u(k)
λ

−γ

= λ1hkG
−1(λ− λ1)φ1(x) + f(hkG−1(λ− λ1)(φ1(x) + δk))

− [hkG−1(λ− λ1)(φ1(x) + δk)]−γ

≤ hkG−1(λ− λ1)(φ1(x) + δk)
{
λ1 +

f(hkG−1(λ− λ1)(φ1(x) + δk))
hkG−1(λ− λ1)(φ1(x) + δk)

− [hkG−1(λ− λ1)(φ1(x) + δk)]−(γ+1)
}

≤ hkG−1(λ− λ1)(φ1(x) + δk)
{
λ1 +

f(G−1(λ− λ1))
G−1(λ− λ1)

− [G−1(λ− λ1)]−(γ+1)
}

= hkG
−1(λ− λ1)(φ1(x) + δk)(λ1 + λ− λ1)

= λhkG
−1(λ− λ1)(φ1(x) + δk)

= λu
(k)
λ ,
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we obtain that u(k)
λ (x) is a sub-solution of (2.2).

When k = 1, standard elliptic arguments imply that there exist a solution u(1)
λ ∈

C(Ω̄) ∩ C2,β(Ω) such that

u
(1)
λ ≤ u

(1)
λ ≤ u

(1)
λ , in Ω̄.

Now taking u
(1)
λ (x) and u

(2)
λ (x) as a pair of super and sub-solutions for (2.2), we

obtain a solution u
(2)
λ ∈ C(Ω̄) ∩ C2,β(Ω) such that

u
(2)
λ ≤ u

(2)
λ ≤ u

(1)
λ in Ω̄.

In this manner we find a sequence {u(k)
λ }, such that

u
(k)
λ ≤ u(k)

λ ≤ u(k−1)
λ ≤ u(1)

λ in Ω̄.

Therefore limk→∞ u
(k)
λ (x) = uλ(x) exists everywhere in Ω̄, where uλ > 0 in Ω and

uλ = 0 on ∂Ω. It remains to see that uλ ∈ C2(Ω) and

−∆uλ + f(uλ)− u−γλ = λuλ, in Ω.

Choose open subsets ϑ1, ϑ2 of Ω so that ϑ̄2 ⊂ ϑ1 ⊂ ϑ̄1 ⊂ Ω and q > N . By Lemma
2.1 there is a constant K = K(N, q, ϑ1, ϑ2,∆) such that

‖u(k)
λ ‖W 2,q(ϑ2) ≤ K(‖∆u(k)

λ ‖Lq(ϑ1) + ‖u(k)
λ ‖Lq(ϑ1))

= K(‖f(u(k)
λ )− (u(k)

λ )−γ − λu(k)
λ ‖Lq(ϑ1) + ‖u(k)

λ ‖Lq(ϑ1)),

which implies that {u(k)
λ | k ∈ N+} is bounded in W 2,q

loc (Ω). Therefore u(k)
λ → uλ

weakly in W 2,q
loc (Ω). Choose α ∈ (0, 1) and q > N(1 − α)−1. If follows from the

Sobolev embedding theorems that {u(k)
λ } is compact in C1,α

loc (Ω). Thus we have
uλ ∈ W 2,p

loc (Ω). The Lq regularity theory for ∆ now implies uλ ∈ W 3,q
loc (Ω) and

hence uλ ∈ C2,α
loc (Ω) ⊂ C2(Ω). Notice that Lemma 2.2 ensures that u(k)

λ (x) is a
solution of (2.2), so

−∆u(k)
λ + f(u(k)

λ )− (u(k)
λ )−γ = λu

(k)
λ in Ω.

In conjunction with the results above, let k →∞, therefore

−∆uλ + f(uλ)− u−γλ = λuλ in Ω.

Consequently, (1.1) has at least one solution uλ ∈ C(Ω̄) ∩ C2,β(Ω) for λ > λ1.
Furthermore, since limk→∞ u

(k)
λ (x) = uλ(x) and

hkG
−1(λ− λ1)(φ1(x) + δk) = u

(k)
λ (x) ≤ u(k)

λ (x), in Ω,

G−1(λ − λ1) > 0, δk = 1/k → 0, hk = 1/(δk + 1) → 1 as k → ∞, so there exist a
constant C > 0 such that Cφ1 ≤ uλ in Ω.

(ii) (Uniqueness) If 0 < γ < 1, we put

h(s) = λs− f(s) + s−γ , s > 0,

hence s−1h(s) is strictly decreasing for s > 0.
Assume that v(x) is another solution of (1.1). Then we argue by contradiction.

Notice that
∆u+ h(u) = 0, ∆v + h(v) = 0,
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and u, v > 0 in Ω, u = v on ∂Ω. Since Cφ1(x) ≤ uλ(x), it is easy to see that
∆u ∈ L1(Ω) by Lemma 2.3. If u(x) = v(x) is not true, we can assume that
u(x) > v(x), then there exist ε0, δ0 > 0, and a ball B b Ω such that

u(x)− v(x) > ε0, x ∈ B,∫
B

uv(
h(v)
v
− h(u)

u
)dx > δ0.

Let

M = max{1, ‖∆u‖L1(Ω)}, ε = min{1, ε0,
δ0

4M
},

and θ be a smooth function on R, such that θ(t) = 0 if t ≤ 1
2 ; θ(t) = 1 if t ≥ 1;

θ(t) ∈ (0, 1) if t ∈ ( 1
2 , 1), θ′(t) ≥ 0 for t ∈ R. Then for ε > 0, define the function

θε(t) by

θε(t) = θ(
t

ε
), t ∈ R.

It follows from θε(t) ≥ 0 for t ∈ R that

(v∆u− u∆v)θε(u− v) = uv(
h(v)
v
− h(u)

u
)θε(u− v) in Ω.

On the other hand, by the continuity of u, v and θε, and the fact that u = v on ∂Ω.
It is easy to see that there exist a subdomain Ω̂ such that B ⊂ Ω̂ b Ω satisfying
that u(x)− v(x) < ε

2 for all x ∈ Ω\Ω̂. Then∫
Ω̂

(v∆u− u∆v)θε(u− v)dx =
∫

Ω̂

uv(
h(v)
v
− h(u)

u
)θε(u− v)dx.

Denote

Θε(t) =
∫ t

0

sθ′ε(s)ds, t ∈ R .

It is easy to verify that 0 ≤ Θε(t) ≤ 2ε for t ∈ R, and Θε(t) = 0 for t < ε
2 . Therefore∫

Ω̂

(v∆u− u∆v)θε(u− v)dx

=
∫
∂Ω̂

vθε(u− v)
∂u

∂n
ds−

∫
Ω̂

(∇u · ∇v)θε(u− v)dx

−
∫

Ω̂

v∇uθ′ε(u− v)(∇u−∇v)dx−
∫
∂Ω̂

uθε(u− v)
∂v

∂n
ds

+
∫

Ω̂

(∇v · ∇u)θε(u− v)dx+
∫

Ω̂

u∇vθ′ε(u− v)(∇u−∇v)dx

=
∫

Ω̂

uθ′ε(u− v)(∇v −∇u)(∇u−∇v)dx+
∫

Ω̂

(u− v)θ′ε(u− v)∇u(∇u−∇v)dx

≤
∫

Ω̂

∇u∇(Θ′ε(u− v))dx

=
∫
∂Ω̂

Θε(u− v)
∂u

∂n
ds−

∫
Ω̂

∆uΘε(u− v)dx

≤ 2ε
∫

Ω̂

|∆u|dx

≤ 2εM <
δ0
2
.
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However,∫
Ω̂

uv(
h(v)
v
− h(u)

u
)θε(u− v)dx ≥

∫
B

uv(
h(v)
v
− h(u)

u
)θε(u− v)dx

=
∫
B

uv(
h(v)
v
− h(u)

u
)dx > δ0,

which is a contradiction. Thus the uniqueness is proved. �

Our method to prove the uniqueness of the solution is similar to and motivated
by the proof of Shi and Yao [15, Lemma 2.3].

3. The boundary behavior of the solution to (1.1)

Theorem 3.1. If f(u) satisfies (A1)–(A3) and 0 < γ < 1, then the solution uλ of
(1.1) is strictly increasing with respect to λ. Furthermore, there exist two positive
constants c1, c2 > 0 depending on λ such that c1d(x) ≤ uλ(x) ≤ c2d(x) in Ω.

Proof. (i) (Dependence on λ) We assume 0 < λ1 < λ2, and uλ1 , uλ2 are corre-
sponding unique solution to (1.1). Since Cφ1(x) ≤ uλ(x), it is easy to see that
∆uλ ∈ L1(Ω) by Lemma 2.3. Thus,

0 = ∆uλ2 − f(uλ2) + u−γλ2
+ λ2uλ2

= ∆uλ1 − f(uλ1) + u−γλ1
+ λ1uλ1

< ∆uλ1 − f(uλ1) + u−γλ1
+ λ2uλ1

for x ∈ Ω and uλ1(x) = uλ2(x) on ∂Ω. Therefore, similar to the proof of Theorem
2.4 (ii),

uλ1(x) ≤ uλ2(x), x ∈ Ω̄.
Moreover, by the maximum principle,

uλ1(x) < uλ2(x), x ∈ Ω.

So uλ is increasing with respect to λ.
(ii) (Bounds for the solution) Fix λ > 0, let uλ be the unique solution of (1.1).

There exists a unique nonnegative solution ξ ∈ C2,β(Ω̄) of

−∆ξ = 1 in Ω,
ξ = 0 on ∂Ω.

By the weak maximum principle (see [9]), ξ > 0 in Ω. Put z(x) = cξ(x). Consider
that we can find č > 0 small enough such that

λz(x) + (z(x))−γ ≥ λč‖ξ‖∞ + (č‖ξ‖∞)−γ ,

and ĉ > 0 small enough such that

ĉ[
−f(ĉ‖ξ‖∞) + (ĉ‖ξ‖∞)−γ

2ĉ
− 1] + ĉ‖ξ‖∞[

−f(ĉ‖ξ‖∞) + (ĉ‖ξ‖∞)−γ

2ĉ‖ξ‖∞
+ λ] ≥ 0 .

Select 0 < c < min{č, ĉ}. Then

∆z(x) + λz(x)− f(z(x)) + (z(x))−γ

≥ −c+ λc‖ξ‖∞ − f(c‖ξ‖∞) + (c‖ξ‖∞)−γ



8 G. GAO, B. YAN EJDE-2016/89

= c[
−f(c‖ξ‖∞) + (c‖ξ‖∞)−γ

2c
− 1]

+ c‖ξ‖∞[
−f(c‖ξ‖∞) + (c‖ξ‖∞)−γ

2c‖ξ‖∞
+ λ]

≥ 0

for each x ∈ Ω. Therefore, z(x) is a sub-solution of (1.1) for c > 0 small enough.
Since ξ ∈ C2,β(Ω̄), ξ > 0 in Ω, and ξ = 0 on ∂Ω, by Gilbarg and Trudinger [9,
Lemma 3.4],

∂ξ

∂ν
(y) < 0, ∀y ∈ ∂Ω.

Therefore, there exist a positive constant c0 such that
∂ξ

∂ν
(y) = lim

x∈Ω,x→y

ξ(y)− ξ(x)
|x− y|

≤ −c0, ∀y ∈ ∂Ω.

So for each y ∈ Ω, there exist ry > 0, such that

ξ(x)
|x− y|

≥ c0
2
, ∀x ∈ Bry (y) ∩ Ω. (3.1)

Using the compactness of ∂Ω, we can find a finite number k of balls Bryi(yi) such
that

∂Ω ⊂ ∪ki=1Bryi(yi).
Moreover, assume that for small d0 > 0,

{x ∈ Ω : d(x) < d0} ⊂ ∪ki=1Bryi(yi).

By (3.1) we obtain

ξ(x) ≥ c0
2
d(x), ∀x ∈ Ω with d(x) < d0.

This fact, combined with ξ > 0 in Ω, shows that for some constant c̃ > 0,

ξ(x) ≥ c̃d(x), ∀x ∈ Ω.

Thus, z(x) ≥ c1d(x) in Ω for some constant c1 > 0 follows by the definition of z.
Since

∆uλ − f(uλ) + u−γλ + λuλ = 0 ≤ ∆z − f(z) + z−γ + λz,

and uλ, z > 0 in Ω, uλ = z on ∂Ω, ∆z ∈ L1(Ω). It follows that uλ ≥ z in Ω̄.
Therefore, from the above proof, c1d(x) ≤ uλ(x) for all x ∈ Ω, where c1 is a
positive constant.

Next, we prove that uλ(x) ≤ c2d(x) for some constant c2 > 0. Our method
is similar to that by Gui and Lin [10]. Using the smoothness of ∂Ω, we can find
δ ∈ (0, 1) such that for all

x0 ∈ Ωδ := {x ∈ Ω; d(x) ≤ δ},
there exists a y ∈ RN \ Ω̄, with d(y, ∂Ω) = δ, and d(x0) = |x0 − y| − δ. Let K > 1
be such that diam(Ω) < (K − 1)δ and let ω be the unique solution of the Dirichlet
problem

−∆ω = λω − f(ω) + ω−γ in BK(0) \B1(0),

ω > 0 in BK(0) \B1(0),

ω = 0 on ∂(BK(0) \B1(0)),
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where Br(0) is the open ball in RN of radius r and centered at the origin. By
uniqueness, ω is radially symmetric. Hence, ω(x) = ω̃(|x|) and

ω̃′′ +
N − 1
r

ω̃′ + λω̃ − f(ω̃) + ω̃−γ = 0 for r ∈ (1,K),

ω̃ > 0 in (1,K),

ω̃(1) = ω̃(K) = 0.

(3.2)

Integrating in (3.2) yields

ω̃′(t) = ω̃′(a)aN−1t1−N − t1−N
∫ t

a

rN−1[λω̃(r)− f(ω̃(r)) + (ω̃(r))−γ ]dr

= ω̃′(b)bN−1t1−N + t1−N
∫ b

t

rN−1[λω̃(r)− f(ω̃(r)) + (ω̃(r))−γ ]dr,

where 1 < a < t < b < K. Since −f(ω̃) + ω̃−γ ∈ L1(1,K), we deduce that both
ω̃′(1) and ω̃′(K) are finite. Then ω̃ ∈ C2(1,K) ∩ C1[1,K] and

ω(x) ≤ C min{K − |x|, |x| − 1}, for any x ∈ BK(0) \B1(0). (3.3)

Let us fix x0 ∈ Ωδ. Then we can find y0 ∈ RN \ Ω̄ with

d(y0, ∂Ω) = δ, d(x0) = |x0 − y| − δ.

Thus, Ω ⊂ BKδ(y0) \Bδ(y0). Define

v(x) = cω(
x− y0

δ
), x ∈ Ω̄.

We show that v is a super-solution of (1.1) provided that c is large enough. Indeed,
if c > max{1, δ2}, then

∆v + λv − f(v) + v−γ

≤ c

δ2
(ω̃′′(r) +

N − 1
r

ω̃′(r)) + λ(cω̃(r))− f(cω̃(r)) + (cω̃(r))−γ ,

where

r =
|x− y0|

δ
∈ (1,K).

Using assumption (A2) we obtain

λ(cω̃)− f(cω̃) + (cω̃)−γ ≤ c(λω̃ − f(ω̃) + (ω̃)−γ) in (1,K).

The above relation leads us to

∆v + λv − f(v) + v−γ

≤ c

δ2
(ω̃′′ +

N − 1
r

ω̃′ + λω̃ − f(ω̃) + ω̃−γ) = 0.

Since ∆uλ ∈ L1(Ω), then uλ ≤ v in Ω. This combined with (3.3) yields

uλ(x0) ≤ v(x0) ≤ C min{K − |x0 − y0|
δ

,
|x0 − y0|

δ
− 1} ≤ C

δ
d(x0).

Hence uλ ≤ (C \ δ)d(x) in Ωδ and the last inequality follows. �
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4. Asymptotic behavior of the solution

In this section, we consider the asymptotic behavior of the positive solution of
(1.1) under the assumption that f(u) = up+1, p > 0, which satisfy (A1)–(A3).
Thus,

−∆u+ up+1 − u−γ = λu in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(4.1)

Notice that the function g(u) defined by

g(u) = u−(γ+1) − up, u > 0, (4.2)

is continuous. Thus limu→+∞ g(u) = −∞. In terms of g(u) problem (4.1) can be
written as

−∆u = (λ+ g(u))u.

In the next two theorems we collect some general features and estimate the positive
solutions of (4.1) for λ large.

Theorem 4.1. The following assertions hold
(i) uλ ≤ cλ for any positive solution uλ of (4.1), where cλ > 0 is the largest

real number such that

λ+ g(cλ) = 0, (4.3)

and g(u) is the function defined by (4.2). Moreover,

lim
λ→∞

cλ
λ1/p

= 1. (4.4)

(ii) Given ε > 0 arbitrary, there exists λ(ε) > σΩ
1 such that

| 1
λ

1
uγ+1
λ

| ≤ ε (4.5)

for all λ ≥ λ(ε) on any compact subsets of Ω.

Proof. (i) Assume that (4.1) has a positive solution and let x0 ∈ Ω be the point
where uλ reaches its maximum. Obviously, −∆uλ(x0) ≥ 0, and

λ+ g(uλ(x0)) ≥ 0.

Consider that λ + g(u) is strictly decreasing for u > 0 and λ + g(cλ) = 0. Then,
any positive solution uλ of (4.1) satisfies uλ(x0) ≤ cλ, where x0 is the point at
which uλ reaches its maximum, hence uλ ≤ cλ. As limu→+∞ g(u) = −∞, we have
limλ→+∞ cλ = +∞. From (4.2) and (4.3) it follows easily that

λ1/p

cλ
= [1− 1

cγ+p+1
λ

]1/p,

and since cλ →∞ as λ→∞, one has

lim
λ→∞

1
cγ+p+1
λ

= 0 and lim
λ→∞

λ1/p

cλ
= 1.

Hence (4.4) holds.
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(ii) Since G−1(λ−λ1)φ1(x) < uλ(x) from the proof of Theorem 2.4 (i), it is easy
to see that uλ → ∞ as λ → ∞ on any compact subsets of Ω. Let ε > 0. There
exists λ1(ε), if λ ≥ λ1(ε) such that

| 1
uγ+p+1

| ≤ ε

3
.

As limλ→∞
cpλ
λ = 1, there exists λ2(ε) > 0, if λ ≥ λ2(ε) such that

cpλ
λ
≤ 3

2
.

Set
λ(ε) = max{λ1(ε), λ2(ε)}.

Let λ ≥ λ(ε) and assume that (4.1) has a positive solution uλ. Then

| 1
λ

1
uλ(x)γ+1

| =
{uλ(x)

cλ

}p cpλ
λ
| 1
uλ(x)γ+p+1

| ≤ 3
2
ε

3
=
ε

2

because uλ ≤ cλ. Thus, (4.5) holds. �

Note that θλ,m is the unique positive solution of the problem

− 1
λ

∆u = mu− up+1 in Ω,

u = 0 on ∂Ω.

Theorem 4.2. For each ε > 0 arbitrary, there exists λ(ε) > σΩ
1 such that

λ1/pθλ,1−ε ≤ uλ ≤ λ1/pθλ,1+ε (4.6)

for all λ ≥ λ(ε) on any compact subsets of Ω. In particular,

lim
λ→∞

uλ
λ1/p

= 1 (4.7)

uniformly on any compact subsets of Ω.

Proof. The charge of variable u = λ1/pv transforms (4.1) into

− 1
λ

∆v = v +
1

λ(γ+p+1)/pvγ
− vp+1 in Ω,

v > 0 in Ω,
v = 0 on ∂Ω,

(4.8)

where p > 0, γ > 0 and λ > 0 is a real parameter.
By Theorem 2.4 (see [6]), to prove this theorem it is sufficient to show that

θλ,1−ε ≤ vλ ≤ θλ,1+ε

for all λ ≥ λ(ε) on any compact subsets of Ω.
Fixed ε > 0, we first show that there exists λ1(ε) > σΩ

1 such that θλ,1−ε ≤ vλ for
all λ ≥ λ1(ε) on any compact subsets of Ω. Let vλ be a positive solution of (4.8).
If θλ,1−ε = vλ for λ large we have concluded. If θλ,1−ε 6= vλ, then

vp+1
λ − θp+1

λ,1−ε

vλ − θλ,1−ε
= θpλ,1−ε +Q(x),
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with Q(x) > 0 for some x ∈ Ω and hence

σ1[− 1
λ

∆− 1 + ε+
vp+1
λ − θp+1

λ,1−ε

vλ − θλ,1−ε
] > σ1[− 1

λ
∆− 1 + ε+ θpλ,1−ε].

By the definition of θλ,1−ε, we find that

σ1[− 1
λ

∆− 1 + ε+ θpλ,1−ε] = 0.

Thus,

σ1[− 1
λ

∆− 1 + ε+
vp+1
λ − θp+1

λ,1−ε

vλ − θλ,1−ε
] > 0.

On the other hand, after some straightforward manipulations it follows from (4.8)
that[
− 1
λ

∆− 1 + ε+
vp+1
λ − θp+1

λ,1−ε

vλ − θλ,1−ε
]
(vλ − θλ,1−ε) =

[
ε+

1
λ

1
(λ1/pvλ)γ+1

]
vλ. (4.9)

Moreover, it follows from (4.5) that there exists λ1(ε) > σΩ
1 such that

ε+
1
λ

1
(λ1/pvλ)γ+1

> 0

for all λ ≥ λ1(ε) on any compact subsets of Ω. Therefore, applying the maximum
principle to (4.9) we find that θλ,1−ε ≤ vλ for all λ ≥ λ1(ε) and any positive solution
vλ of (4.8) on any compact subsets of Ω (see [13, 20]).

We now prove that there exists λ2(ε) > σΩ
1 such that vλ ≤ θλ,1+ε for all λ ≥ λ2(ε)

on any compact subsets of Ω. Let vλ be a positive solution of (4.8). If θλ,1+ε = vλ
for λ large we have concluded. If θλ,1+ε 6= vλ for λ, then

θp+1
λ,1+ε − v

p+1
λ

θλ,1+ε − vλ
= θpλ,1+ε + Q̂(x),

with Q̂(x) > 0 for some x ∈ Ω. Thus, arguing as above we find that

σ1

[
− 1
λ

∆− 1− ε+
θp+1
λ,1+ε − v

p+1
λ

θλ,1+ε − vλ
]
> σ1

[
− 1
λ

∆− 1− ε+ θpλ,1+ε

]
= 0.

On the other hand, after some straightforward manipulations it follows from (4.8)
that[
− 1
λ

∆− 1− ε+
θp+1
λ,1+ε − v

p+1
λ

θλ,1+ε − vλ
]
(θλ,1+ε − vλ) =

[
ε− 1

λ

1
(λ1/pvλ)γ+1

]
vλ. (4.10)

Moreover, it follows from (4.5) that there exists λ2(ε) > σΩ
1 such that

ε− 1
λ

1
(λ1/pvλ)γ+1

> 0

for all λ ≥ λ2(ε) on any compact subsets of Ω. Therefore, applying the maximum
principle to (4.10) we find that vλ ≤ θλ,1+ε for all λ ≥ λ2(ε) and any positive
solution vλ of (4.8) on any compact subsets of Ω (see [13, 20]).

Taking λ(ε) = max{λ1(ε), λ2(ε)}, the proof of (4.6) is completed. The rest of
the proof follows from [6, Theorem 2.1]. �
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