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BIFURCATION FOR ELLIPTIC FORTH-ORDER PROBLEMS
WITH QUASILINEAR SOURCE TERM

SOUMAYA SÂANOUNI, NIHED TRABELSI

Abstract. We study the bifurcations of the semilinear elliptic forth-order

problem with Navier boundary conditions

∆2u− div(c(x)∇u) = λf(u) in Ω,

∆u = u = 0 on ∂Ω.

Where Ω ⊂ Rn, n ≥ 2 is a smooth bounded domain, f is a positive, increasing

and convex source term and c(x) is a smooth positive function on Ω such
that the L∞-norm of its gradient is small enough. We prove the existence,

uniqueness and stability of positive solutions. We also show the existence of

critical value λ∗ and the uniqueness of its extremal solutions.

1. Introduction and statement of main results

In the literature the term ‘bifurcation’ is used in a general way to indicate sta-
bility changes, structural changes in a system etc.. The foundations of the theory
has been laid by Poincaré who studied branching of solutions in many problem in
celestial mechanics and bifurcation, i.e. splitting into two parts, of rotating fluid
masses when the rotational velocity reached a certain value.

The non-linearity of a phenomenon can have several origins. It often results from
the geometry. Wish show very interesting characteristics, namely the existence of
multiple solutions, the presence of bifurcations, the passage of a solution to another
through loss of stability.

The Bifurcations are one of the most interesting events and surprising of nonlin-
ear systems. We say that a system has a bifurcation if an infinitesimal variation of
its parameters causes a sudden change of regime.

The main interest of non-linear physics lies in its ability to explain the evolution
of the problems: a phenomenon usually depends on a number of parameters, called
control parameters that control the evolution of the system. By variation of the
parameters and the result of non-linearities, the system may undergo transitions.
In math, they are bifurcations.
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Various authors have studied the existence of weak solutions for the bifurcation
problem

−∆u = λf(u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded open subset of Rn, n ≥ 2.
Mironescu and Rădulescu have proved in [15] that there exists 0 < λ∗ < ∞, a

critical value of the parameter λ, such that (1.1) has a minimal, positive, classical
solution uλ for 0 < λ < λ∗ and does not have a weak solution for λ > λ∗. Abid et
al generalized in [1] the same result for the Bi-laplace operator. Now, let

a := lim
t→∞

f(t)
t
.

The value a was be crucial in the study of (Eλ∗) and of the behavior of uλ when λ
approaches λ∗.

Also in dimension 4, Wei in [18], have studied the behavior of solutions to the
following non-linear eigenvalue problem (1.1). More precisely, when f(u) = eu,
we can see that (1.1) is issued from the geometry by prescribing the so-called Q-
curvature. For more details, see [3] and [4].

Our main interest here is the study of a bifurcation problem for λ > 0,

∆2u− div(c(x)∇u) = λf(u) in Ω,
u > 0 in Ω,

∆u = u = 0 on ∂Ω,
(1.2)

Where Ω be a smooth bounded domain in Rn (n ≥ 2), c(x) is a smooth posi-
tive function on Ω and f is a positive, increasing and convex smooth function on
(0,+∞), which verifies

lim
t→∞

f(t)
t

= a ∈ (0,∞).

In this paper, we show how the critical problem behaves when he is considered
with the Navier boundary condition, we have to use the maximum principle which
assured with smallest condition: There exists ε = ε(n,Ω) such that

‖∇c‖∞ � ε

For more detail, see [8].
Throughout this article, we denote by ‖ · ‖2, the L2(Ω)-norm, whereas we denote

by ‖ · ‖, the H2(Ω) ∩H1
0 (Ω)-norm given by

‖u‖2 =
∫

Ω

|∆u|2.

We say that u ∈ H2(Ω)∩H1
0 (Ω) is a weak solution of (1.2), if f(u) ∈ L1(Ω) and∫

Ω

∆u ·∆ϕ+
∫

Ω

c(x)∇u · ∇ϕ = λ

∫
Ω

f(u)ϕ, ∀ϕ ∈ C2(Ω) ∩H2(Ω) ∩H1
0 (Ω).

Such solutions are usually known as weak energy solutions. For short, we will refer
to them simply as solutions wish is assuredly by the next lemma.

Lemma 1.1. Since f(t) ≤ at + f(0), if u ∈ H2(Ω) ∩H1
0 (Ω) is a weak solution of

(1.2), it is easily seen by a standard bootstrap argument that u is always a classical
solution.
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For more details, see [8, Proposition 7.15]. In the rest of this article, we denote
by a solution of (1.2) any weak or classical solution.

Definition 1.2. We say that a solution uλ of (1.2) is minimal if uλ ≤ u in Ω for
any solution u of (1.2).

Definition 1.3. We say that u ∈ H2(Ω) ∩H1
0 (Ω) is a supersolution (resp. subso-

lution) of (1.2) if f(u) ∈ L1(Ω) and

∆2u− div(c(x)∇u) ≥ λf(u) (resp. ≤ λf(u)) in D′(Ω).

Definition 1.4. A solution u of (1.2) is stable if and only if the first eigenvalue of
the linearized operator

v 7→ Lλ(v) := ∆2v − div(c(x)∇v)− λf ′(u)v,

given by

η1(λ, u) := inf
ϕ∈H2(Ω)∩H1

0 (Ω)−{0}

∫
Ω
|∆ϕ|2 +

∫
Ω
c(x)|∇ϕ|2 − λ

∫
Ω
f ′(u)ϕ2

‖ϕ‖22
,

is nonnegative.
If η1(λ, u) < 0, the solution u is said to be unstable.

Let v1 be a positive eigenfunction (see [8, section 3.1.3]) associated with the first
eigenvalue λ1 of the operator ∆2 − div(c(x)∇) with Navier boundary conditions,
namely

∆2v1 − div(c(x)∇v1) = λ1v1 in Ω,
∆v1 = v1 = 0 on ∂Ω,

‖v1‖2 = 1.
(1.3)

Next, we let

Λ := {λ > 0 : (1.2) admits a solution and λ∗ := sup Λ ≤ +∞.
We also let

r0 := inf
t>0

f(t)
t
.

The two values a and r0 that we have already defined will be important in the
bifurcation phenomena. More precisely, in the frame of the critical value λ∗.

Theorem 1.5. There exists a critical value λ∗ ∈ (0,∞) such that the following
properties hold:

(i) For any λ ∈ (0, λ∗), problem (1.2) has a minimal solution uλ, which is the
unique stable solution of (1.2).

(ii) For any λ ∈ (0, λ1/a), uλ is the unique solution of problem (1.2).
(iii) The mapping λ 7−→ uλ is increasing.
(iv) u∗ := limλ→λ∗ uλ is a solution stable of the problem (1.2) with λ in stead

of λ. In particular, η1(λ∗, u∗) = 0.

An important role in our arguments will be played by

l := lim
t→∞

(
f(t)− at

)
.

We distinguish two situations strongly depending on the sign of l.

Theorem 1.6. Assume that l ≥ 0. Then
(i) λ∗ = λ1/a;
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(ii) problem (1.2) with λ in stead of λ has no solution;
(iii) limλ→λ∗ uλ =∞ uniformly on compact subsets of Ω.

Theorem 1.7. Assume l < 0. Then the critical value λ∗ belongs to (λ1/a, λ1/r0)
and (1.2) with λ in stead of λ has a unique solution u∗. In this case, (1.2) has an
unstable solution vλ for any λ ∈ (λ1/a, λ

∗) and the sequence (vλ)λ has the following
properties:

(i) limλ→λ1/a vλ =∞ uniformly on compact subsets of Ω;
(ii) limλ→λ∗ vλ = u∗ uniformly in Ω.

2. Proof of Theorem 1.5

The basic idea is to apply the barrier method, when the existence of the critical
value λ∗ is a consequence of the following auxiliary result.

Lemma 2.1. Problem (1.2) has no solution for any λ > λ1/r0, but has at least
one solution provided λ is positive and small enough.

Proof. To show that (1.2) has a solution, we use the barrier method. To this aim,
let w ∈ H4(Ω) that satisfies

∆2w − div(c(x)∇w) = 1 in Ω
∆w = w = 0 on ∂Ω.

The choice of w implies that w is a super-solution of (1.2) for λ ≤ 1/f(‖w‖∞).
Notice that for any λ > 0, the function w ≡ 0 is a sub-solution of (1.2) since
f(0) > 0.

Next, we define a sequence wn ∈ H4(Ω) by

∆2wn+1 − div(c(x)∇wn+1) = λf(wn) in Ω
∆wn+1 = wn+1 = 0 on ∂Ω.

(2.1)

The maximum principle (see [8]] implies that

w ≤ wn ≤ wn+1 ≤ w for all n ∈ N,
so that the sequence (wn)n≥0 is increasing and bounded, then it converges. It
follows that problem (1.2) has a solution.

Assume now that u is a solution of (1.2) for some λ > 0. Using v1 given in (1.3)
as a test function and integrating by parts, we obtain

λ1

∫
Ω

v1u =
∫

Ω

(∆2v1 − div(c(x)∇v1))u

=
∫

Ω

∆2uv1 +
∫

Ω

c(x)∇u · ∇v1

=
∫

Ω

∆2uv1 −
∫

Ω

div(c(x)∇u)v1

= λ

∫
Ω

f(u)v1

≥ λr0

∫
Ω

uv1.

This yields

(λ1 − λr0)
∫

Ω

v1u ≥ 0.
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Since v1 > 0 and u > 0, we conclude that the parameter λ should belong to
(0, λ1/r0). This completes our proof. �

Another useful result is stated in what follows.

Lemma 2.2. Assume that (1.2) has a solution for some λ ∈ (0, λ∗). Then there
exists a minimal solution denoted by uλ. Moreover, for any λ′ ∈ (0, λ), problem
(1.2) with λ′ instead of λ has a solution.

Proof. Fix λ ∈ (0, λ∗) and let u be a solution of (1.2). As above, we use the
barrier method to obtain a minimal solution of (1.2). The basic idea is to prove by
induction that the sequence (wn)n≥0 defined in (2.1) is increasing and bounded by
u, so it converges to some solution uλ. Since uλ is independent of the choice of u,
then it is a minimal solution.

Now, if u is a solution of (1.2), then u is a super-solution for the problem (1.2)
with λ′ instead of λ for any λ′ in (0, λ) and 0 can be used always as a sub-solution.
These complete the proof. �

Remark 2.3. Thanks to lemmas 2.1 and 2.2, the set Λ is an interval bounded and
not empty.

Proof of (i) of Theorem 1.5. First, we claim that uλ is stable. Indeed, arguing by
contradiction, i.e. the first eigenvalue η1(λ, uλ) is negative. Then, there exists an
eigenfunction ψ ∈ H4(Ω) such that

∆2ψ − div(c(x)∇ψ)− λf ′(uλ)ψ = η1ψ in Ω
ψ > 0 in Ω

∆ψ = ψ = 0 on ∂Ω.

Consider uε := uλ − εψ. Hence, by linearity, we have

∆2uε − div(c(x)∇uε)− λf(uε)

= λf(uλ)− ε(∆2ψ − div(c(x)∇ψ))− λf(uλ − εψ)

= λf(uλ)− ε(λf ′(uλ)ψ + η1ψ)− λf(uλ − εψ)

= λ
(
− f(uλ − εψ) + f(uλ)− εf ′(uλ)ψ

)
− εη1ψ

= λoε(εψ)− εη1ψ

= εψ(λoε(1)− η1).

Since η1(λ, uλ) < 0, for ε > 0 small enough, we have

∆2uε − div(c(x)∇uε)− λf(uε) ≥ 0 in Ω.

Then, for ε > 0 small enough, we use the strong maximum principle to deduce that
uε ≥ 0 is a super-solution of (1.2). As before, we obtain a solution u such that
u ≤ uε and since uε < uλ, then we contradict the minimality of uλ.

Now, we show that (1.2) has at most one stable solution. Assume the existence
of another stable solution v 6= uλ of problem (1.2). Then the function w := v − uλ
satisfies

λ

∫
Ω

f ′(v)w2 ≤
∫

Ω

|∆w|
2

+
∫

Ω

c(x)|∇w|2

≤
∫

Ω

∆2ww −
∫

Ω

div(c(x)∇w)w
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≤
∫

Ω

[
∆2v − div(c(x)∇v)−∆2uλ + div(c(x)∇uλ)

]
w

≤ λ
∫

Ω

[
f(v)− f(uλ)

]
w.

Therefore ∫
Ω

[
f(v)− f(uλ)− f ′(v)(v − uλ)

]
w ≥ 0.

By the maximum principle, we deduce that w > 0 in Ω. Thanks to the convexity
of f , the term in the brackets is nonpositive, hence

f(v)− f(uλ)− f ′(v)(v − uλ) = 0 in Ω,

which implies that f is affine over [uλ, v] in Ω. So, there exists two real numbers ā
and b such that

f(x) = āx+ b in [0,max
Ω

v].

Finally, since uλ and v are two solutions to ∆2w − div(c(x)∇w) = λāw + λb, we
obtain

0 =
∫

Ω

(
uλ∆2v−v∆2uλ

)
−
∫

Ω

(
uλ div(c(x)∇v)−v div(c(x)∇uλ)

)
= λb

∫
Ω

(uλ−v).

This is impossible since b = f(0) > 0 and w = v − uλ is positive in Ω. �

Proof of (ii) of Theorem 1.5. Recall that λ1 is defined in (1.3). By the convexity
of f , we deduce that a = supR+

f ′(t). Let u be a solution to (1.2) for λ ∈ (0, λ1/a),
we suppose that u is unstable. Then, we can take ϕ = v1 ∈ H2(Ω) ∩H1

0 (Ω) which
satisfy

λa

∫
Ω

ϕ2 ≥ λ
∫

Ω

f ′(u)ϕ2 >

∫
Ω

|∆ϕ|2 +
∫

Ω

c(x)|∇ϕ|2 = λ1

∫
Ω

ϕ2,

which shows that
(λa− λ1)

∫
Ω

ϕ2 > 0.

That is impossible for λ ∈ (0, λ1/a). So, η1(λ, u) ≥ 0 and by (i), we obtain the
uniqueness of u.

For the existence, we consider the minimization problem

min
u∈H2(Ω)∩H1

0 (Ω)
J(u),

where
J(u) :=

1
2

∫
Ω

|∆u|2 +
1
2

∫
Ω

c(x)|∇u|2 − λ
∫

Ω

F(u),

for all u ∈ H2(Ω) ∩H1
0 (Ω) with

u+ := max (u, 0) and F(u) :=
∫ u+

0

f(s)ds.

If λ ∈ (0, λ1/a), there exist ε > 0 and A > 0 depending on λ such that

2λF(t) ≤ (λ1 − ε)t2 +A, ∀ t ∈ R.
Standard arguments imply that J(u) is coercive, bounded from below and weakly

lower semi-continuous in H2(Ω) ∩H1
0 (Ω). Hence, the minimum of J is attained by

some function u ∈ H2(Ω) ∩ H1
0 (Ω) and also by u+ since J(u+) ≤ J(u). So, the

critical point u of J gives a solution of (1.2). �
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Proof of (iii) and (iv) in Theorem 1.5. By sub- and super-solution method, see
Lemma 2.2, we obtain that the mapping λ 7−→ uλ is increasing and this proves (iii).

Now we consider the nonlinear operator G : (0,+∞)×C4,α(Ω) ∩E → C0,α(Ω),

(λ, u) 7−→ ∆2u− div(c(x)∇u)− λf(u),

where α ∈ (0, 1) and E is the function space

E := {u ∈W 4,2(Ω) : ∆u = u = 0 on ∂Ω}. (2.2)

Assume that (1.2) with λ in stead of λ has a solution u. Then for any λ ∈ (0, λ∗),
uλ ≤ u in Ω. Using the monotonicity of uλ, we deduce that the function

u∗ = lim
λ→λ∗

uλ

is well defined in Ω and is a stable solution of problem (1.2) with λ in stead of λ.
Assuming that the first eigenvalue η1(λ∗, u∗) is positive, we can apply the implicit
function theorem to the operator G. It follows that problem (1.2) has a solution
for λ in a neighborhood of λ∗. But this contradicts the definition of λ∗. So,
η1(λ∗, u∗) = 0 and this completes the proof of Theorem 1.5. �

Remark 2.4. Thanks to Lemma 2.1 and (ii) of Theorem 1.5, the critical value λ∗

satisfies
λ1/a ≤ λ∗ ≤ λ1/r0.

3. Proof of Theorem 1.6

To prove this theorem, we show that the three assertions are equivalent. And
finally, we prove that one hoolds. We first recall the following result which is due
to Hörmander [11].

Lemma 3.1. Let Ω be an open bounded subset of Rn, n ≥ 2 with smooth boundary.
Let (un) be a sequence of super-harmonic nonnegative functions defined on Ω. Then
the following alternative holds:

(i) either limn→∞ un =∞ uniformly on compact subsets of Ω,
(ii) or (un) contains a subsequence which converges in L1

loc(Ω) to some function
u.

Remark 3.2. The result by Hörmander is also true if (un) is a sequence of a
super-biharmonic nonnegative functions.

First, we assume that λ∗ = λ1/a. If (1.2) with λ in stead of λ has a solution u∗,
then, as we have already observed in (iv) of Theorem 1.5, η1(λ∗, u∗) = 0. Thus,
there exists ψ ∈ H4(Ω) satisfying:

∆2ψ − div(c(x)∇ψ)− λ∗f ′(u∗)ψ = 0 in Ω
ψ > 0 in Ω

∆ψ = ψ = 0 on ∂Ω.

Using v1, given in (1.3), as a test function and integrating by parts, we obtain∫
Ω

(
∆2v1 − div(c(x)∇v1)

)
ψ − λ∗

∫
Ω

f ′(u∗)ψv1 = 0;

therefore ∫
Ω

(
λ1 − λ∗f ′(u∗)

)
ψv1 = 0.
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Since λ1 − λ∗f ′(u∗) ≥ 0, the above equation forces λ1 − λ∗f ′(u∗) = 0. Hence

f ′(u∗) ≡ a in Ω.

This implies that f(t) = at + b in [0,maxΩ u
∗] for some scalar b > 0. But there is

no positive function in Ω such that u = ∆u = 0 on ∂Ω and

∆2u− div(c(x)∇u) = λ∗au+ λ∗b in Ω.

If not, Using v1 and integrating by parts, we have∫
Ω

∆2uv1 −
∫

Ω

div(c(x)∇u)v1 = λ∗a

∫
Ω

uv1 + λ∗b

∫
Ω

v1

then ∫
Ω

(
∆2v1 − div(c(x)∇v1)

)
u = λ1

∫
Ω

uv1 + λ∗b

∫
Ω

v1

i.e.
0 = λ∗b

∫
Ω

v1 which is impossible.

Hence, problem (1.2) with λ in stead of λ has no solution and (i) implies (ii).
Next, we assume that (ii) occurs and we claim that limλ→λ∗ uλ = ∞ uniformly

on compact subsets of Ω. If not, by Lemma 3.1 and up to a subsequence, (uλ)
converges locally in L1(Ω) to u∗ as λ → λ∗. If uλ is not bounded in L2(Ω), we
define

uλ := lλwλ,

with
‖wλ‖2 = 1 and lλ → +∞ as λ→ λ∗.

Since f(t) ≤ at+ f(0), we have∫
Ω

|∆wλ|2 ≤
∫

Ω

|∆wλ|2 +
∫

Ω

c(x)|∇wλ|2

=
∫

Ω

∆2wλwλ −
∫

Ω

div(c(x)∇wλ)wλ =
∫

Ω

λf(uλ)
lλ

wλ

≤ λ∗
∫

Ω

(
aw2

λ +
f(0)
lλ

wλ

)
≤ λ∗a+ cλ

∫
Ω

wλ

≤ λ∗a+ cλ
√
|Ω|,

where cλ is a positive constant independent on λ.
Recall that wλ satisfies ∆2wλ − div(c(x)∇wλ) = λf(lλwλ)

lλ
and f is quasilinear.

These facts imply that (wλ) is bounded in H4(Ω). Hence, up to a subsequence, we
have

wλ ⇀ w weakly in H4(Ω) and wλ → w strongly in H3(Ω) as λ→ λ∗.

Moreover, by the trace theorem,

w = ∆w = 0 on ∂Ω. (3.1)

We deduce that

∆2wλ − div(c(x)∇wλ) =
λf(uλ)
lλ

→ 0 in L1
loc(Ω) as λ→ λ∗.

This implies ∆2w− div(c(x)∇w) = 0 in D′(Ω). So, by (3.1), we deduce that w ≡ 0
in Ω. This contradicts the fact that ‖w‖2 = limλ→λ∗ ‖wλ‖2 = 1. Hence, (uλ) is
bounded in L2(Ω) and by the same arguments as above, it is bounded in H4(Ω).
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This shows that (ii) implies (iii). Moreover, this simply shows that (ii) and (iii) are
equivalent.

Now, if (1.2) with λ in stead of λ has a solution u∗, then the sequence (uλ) con-
verges to u∗ as λ tends to λ∗, which cannot happen in the case where limλ→λ∗ uλ =
∞. Hence, (iii) implies (i).

Indeed, clearly if (ii) and (iii) occur, we have limλ→λ∗ ‖uλ‖2 =∞. Set

uλ = lλwλ with ‖wλ‖2 = 1.

Then, up to a subsequence, we obtain

wλ ⇀ w weakly in H4(Ω) and wλ → w strongly in H3(Ω) as λ→ λ∗.

Moreover,

∆2wλ − div(c(x)∇wλ)→ ∆2w − div(c(x)∇w) in D′(Ω) as λ→ λ∗

and
λ

lλ
f(lλwλ)→ λ∗aw in L2(Ω) as λ→ λ∗.

Then

∆2w − div(c(x)∇w) = λ∗aw in Ω,
∆w = w = 0 on ∂Ω.

Multiplying by v1, which is defined in (1.3), we obtain∫
Ω

λ∗awv1 =
∫

Ω

∆2wv1 − div(c(x)∇w)v1

=
∫

Ω

∆2v1w − div(c(x)∇v1)w =
∫

Ω

λ1v1w.

This proves (i).
To finish the proof of Theorem 1.6, we need only to show that (1.2) with λ1/a in

stead of λ has no solution. Indeed, assume that u is a solution of (1.2) with λ1/a
in stead of λ. Since f(t)− at ≥ 0, we have

∆2u− div(c(x)∇u) =
λ1

a
f(u) ≥ λ1u in Ω.

Multiplying the previous equation by v1 and integrating by parts, we obtain f(u) =
au in Ω, which contradicts f(0) > 0. This concludes the proof of Theorem 1.6.

- λ
λ∗

6

uλ

Figure 1. Behavior of the minimal solution.
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Finally, we see that the branch containing the minimal solution has the behavior
shown in Figure 1.

Remark 3.3. Observe that the equivalence of the assertions of Theorem 1.6 does
not depend on the sign of l.

4. Proof of Theorem 1.7

For the first part of Theorem 1.7, we have already seen in Remark 2.4 that
λ1/a ≤ λ∗ ≤ λ1/r0. Hence it suffices to prove that λ∗ 6= λ1/a and λ∗ 6= λ1/r0.

First, assume that λ∗ = λ1/a. Let uλ be the minimal solution to (1.2). Then,
multiplying (1.2) by v1 given in (1.3) and integrating, we obtain

0 =
∫

Ω

(
λ1uλ − λf(uλ)

)
v1 =

∫
Ω

(
(λ1 − aλ)uλ − λ(f(uλ)− auλ)

)
v1

≥ −λ
∫

Ω

(
f(uλ)− auλ

)
v1.

Passing to the limit in the last inequality as λ tends to λ∗, we find

0 ≥ −lλ∗
∫

Ω

v1 > 0,

which is impossible.
Now, assume that λ∗ = λ1/r0 and let u be a solution of problem (1.2) with λ in

stead of λ. Multiplying (1.2) with λ in stead of λ by v1 and integrating by parts,
we have

λ1

∫
Ω

uv1 =
λ1

r0

∫
Ω

f(u)v1 ≥ λ1

∫
Ω

uv1,

which forces f(u) = r0u in Ω, so that f(t) = r0t in [0,maxΩ u]. As above, this
contradicts the fact that f(0) > 0.

Since λ∗ > λ1/a, the existence of a solution to (1.2) with λ in stead of λ is
assured by Remark 3.3. Then, it remains to prove the uniqueness. Assume that u
is another solution to (1.2) with λ in stead of λ and let w := u− u∗. Since uλ < u
and limλ→λ∗ uλ = u∗, we have w > 0. Then by convexity of f we have

∆2w − div(c(x)∇w) = λ∗(f(u)− f(u∗)) ≥ λ∗f ′(u∗)w in Ω.

Recall that η1(λ∗, u∗) = 0, so let ψ be the corresponding eigenfunction. Multiplying
the last inequality by ψ and integrating by parts, we find

0 =
∫

Ω

λ∗
(
f(u)− f(u∗)− f ′(u∗)w

)
ψ ≥ 0.

Therefore, we must have equality f(u)−f(u∗) = f ′(u∗)w in Ω, which implies that
f is linear in [0,maxΩ u] and this leads a contradiction as in the proof of Theorem
1.6.

The second part of Theorem 1.7 concerning the existence of a non stable solution
vλ of (1.2) will be proved by using the mountain pass theorem of Ambrosetti and
Rabinowitz [2] in the following form.

Theorem 4.1. Let E be a real Banach space and J ∈ C1(E,R). Assume that J
satisfies the Palais-Smale condition and the following geometric assumptions:

(*) there exist positive constants R and ρ such that

J(u) ≥ J(u0) + ρ, for all u ∈ E with ‖u− u0‖ = R.
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(**) there exists v0 ∈ E such that ‖v0 − u0‖ > R and J(v0) ≤ J(u0).
Then the functional J possesses at least a critical point. The critical value is char-
acterized by

c := inf
g∈Γ

max
u∈g([0,1])

J(u),

where
Γ :=

{
g ∈ C([0, 1], E) : g(0) = u0, g(1) = v0

}
and satisfies c ≥ J(u0) + ρ.

In our case, J : E → R

u 7−→ 1
2

∫
Ω

|∆u|2 +
1
2

∫
Ω

c(x)|∇u|2 −
∫

Ω

F (u),

where E is the function space defined in (2.2) and

F (t) = λ

∫ t

0

f(s)ds, for all t ≥ 0.

We take u0 as the stable solution uλ for each λ ∈ (λ1/a, λ
∗).

Remark 4.2. The energy functional J belongs to C1(E,R) and

〈J ′(u), v〉 =
∫

Ω

∆u ·∆v +
∫

Ω

c(x)∇u · ∇v − λ
∫

Ω

f(u)v, for all u, v ∈ E.

Since η1(λ, uλ) > 0, the function uλ is a strict local minimum for J , we apply
the mountain pass theorem for J .

Using the same arguments of Mironescu and Rădulescu in [15, Lemma 9], we
show in the next lemma that J satisfies the Palais-Smale compactness condition.

Lemma 4.3. Let (un) ⊂ E be a Palais-Smale sequence; that is,

sup
n∈N
|J(un)| < +∞, (4.1)

‖J ′(un)‖E∗ → 0 as n→∞. (4.2)

Then (un) is relatively compact in E.

Proof. Since any subsequence of (un) verifies (4.1) and (4.2) it is enough to prove
that (un) contains a convergent subsequence. It suffices to prove that (un) contains
a bounded subsequence in E. Indeed, suppose we have proved this. Then, up to a
subsequence, un → u weakly in E, strongly in L2(Ω). Now (4.2) gives

∆2un − div(c(x)∇un)− λf(un)→ 0 in D′(Ω)

Note that f(un)→ f(u) in L2(Ω) because |f(un)− f(u)| ≤ a|un − u|. This shows
that

∆2un − div(c(x)∇un)→ λf(u) in D′(Ω).

That is
∆2u− div(c(x)∇u)− λf(u) = 0.

The above equality multiplied by u gives∫
Ω

|∆u|2 +
∫

Ω

c(x)|∇u|2 − λ
∫

Ω

f(u)u = 0. (4.3)
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Now (4.2) multiplied by (un) gives∫
Ω

|∆un|2 +
∫

Ω

c(x)|∇un|2 − λ
∫

Ω

f(un)un → 0 (4.4)

in view of the boundedness of (un) and the L2(Ω)-convergence of un and f(un), we
have

λ

∫
Ω

f(un)un → λ

∫
Ω

f(u)u

Hence, (4.3) and (4.4) give∫
Ω

|∆un|2 →
∫

Ω

|∆u|2 and
∫

Ω

c(x)|∇un|2 →
∫

Ω

c(x)|∇u|2

which insures us that un → u in E. Actually, it is enough to prove that (un) is
(up to a subsequence) bounded in L2(Ω). Indeed, the L2(Ω)-boundedness of (un)
implies that E-boundedness of (un) as it can be seen by examining (4.1).

We shall conclude the proof obtaining a contradiction from the supposition that
‖un‖2 →∞. Let un = knwn with kn > 0, kn →∞ and ‖wn‖2 = 1. Then

0 = lim
n→∞

J(un)
k2
n

= lim
n→∞

[1
2

∫
Ω

|∆wn|2 +
1
2

∫
Ω

c(x)|∇wn|2 −
1
k2
n

∫
Ω

F (un)
]

However, since |f(t)| ≤ a|t|+ b, we have

|F (un)| = |F (knwn)| ≤ aλ

2
k2
nw

2
n + bλ|knwn|.

This shows that
1
k2
n

∫
Ω

F (un) ≤ aλ

2

∫
Ω

w2
n +

bλ

kn

∫
Ω

wn <∞.

We claim that

∆2w − div(c(x)∇w) = aλw+ where w+ := max{0, w}. (4.5)

Indeed, (4.2) divided by kn gives∫
Ω

∆wn ·∆v +
∫

Ω

c(x)∇wn · ∇v − λ
∫

Ω

f(un)
kn

v → 0 (4.6)

for each v ∈ E. Now∫
Ω

∆wn ·∆v +
∫

Ω

c(x)∇wn · ∇v →
∫

Ω

∆w ·∆v +
∫

Ω

c(x)∇w · ∇v

Hence (4.5) can be concluded from (4.6) if we show that 1/knf(un) converges (up
to a subsequence) to aw+ in L2(Ω). Now 1/knf(un) = 1/knf(knwn) and it is easy
to see that the required limit is equal to aw in the set {x ∈ Ω : wn(x)→ w(x) 6= 0}.

If w(x) = 0 and wn(x) → w(x), let ε > 0 and n0 be such that |wn(x)| < ε for
n ≥ n0. Then

f(knwn)
kn

≤ aε+
b

kn
for suchn,

that is the required limit is 0. Thus, f(un)/kn → aw+ a.e. Here b = f(0). Now
wn → w in L2(Ω) and, thus, up to a subsequence, wn is dominated in L2(Ω) (see
[5, Theorem IV.9]).
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Since 1/knf(un) ≤ a|wn| + 1/knb, it follows that 1/knf(un) is also dominated.
Hence (4.5) is now obtained. Now (4.5) and the maximum principle imply that
w ≥ 0 and (4.5) becomes

∆2w − div(c(x)∇w) = λaw in Ω,
w ≥ 0 in Ω,

‖w‖2 = 1 in Ω.
(4.7)

Thus from (1.3), we have λa = λ1 and w = v1, which contradicts the fact that
λ 6= λ1/a. This contradiction finishes the proof of the lemma 4.3. �

Now, we need only to check that the two geometric assumptions of theorem 4.1
are fulfilled.

First, since uλ is a local minimum of J , there exists R > 0 such that for all
u ∈ E satisfying ‖u− uλ‖ = R, we have J(u) ≥ J(uλ) . Then

J(u)− J(uλ) = J”(uλ)(u− uλ, u− uλ) + ρ whereρ > 0.

This makes uλ becomes a strict local minimal for J , which proves (∗).
Recall that limt→+∞(f(t)− a t) is finite, then there exists β ∈ R such that

f(t) ≥ a t+ β, ∀t > 0.

Hence

F (t) ≥ a λ

2
t2 + βλt, ∀t > 0.

This yields, using the definition of v1 mentioned in (1.3),

J(tv1) =
λ1 − aλ

2
t2
∫

Ω

v2
1 − βλt

∫
Ω

v1,

since ‖v1‖2 = 1, then we have

Jε(tv1)
t2

=
λ1 − aλ

2
− βλ

t

∫
Ω

v1 (4.8)

which implies

lim sup
t→+∞

1
t2
J(tv1) ≤ λ1 − aλ

2
< 0, ∀λ > λ1/a.

Therefore
lim

t→+∞
J(tv1) = −∞.

So, there exists v0 ∈ E such that J(v0) ≤ J(uλ) and (∗∗) is proved.
Finally, let ṽ (respectively c̃) be the critical point (respectively critical value) of

J , we recall that the function ṽ belongs to E and satisfies

∆2ṽ − div(c(x)∇ṽ) = λf(ṽ) in Ω and J(ṽ) = c̃.

The next lemma states that the limit of a sequence of unstable solutions is also
unstable (the proof is similar to that of [15, Lemma 11]).

Lemma 4.4. Let un ⇀ u in H2(Ω)∩H1
0 (Ω) and µn → µ be such that η1(µn, un) <

0. Then, η1(µ, u) < 0.
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Proof. The fact that η1(µn, un) < 0 is equivalent to the existence of a ϕn ∈ H2(Ω)∩
H1

0 (Ω) such that∫
Ω

|∆ϕn|2 +
∫

Ω

c(x)|∇ϕn|2 ≤ µn
∫

Ω

f ′(un)ϕ2
n with

∫
Ω

ϕ2
n = 1 (4.9)

Since f ′ ≤ a, (4.9) shows that (ϕn) is bounded in H2(Ω) ∩H1
0 (Ω). Let ϕ ∈ E be

such that, up to a subsequence, ϕn ⇀ ϕ in H2(Ω) ∩H1
0 (Ω). Then

µn

∫
Ω

f ′(un)ϕ2
n → µ

∫
Ω

f ′(u)ϕ2

This can be seen by extracting from (ϕn) a subsequence dominated in L2(Ω)) as in
[5, Theorem IV.9]. Now we have∫

Ω

|∆ϕ|2 ≤ lim inf
∫

Ω

|∆ϕn|2,∫
Ω

c(x)|∇ϕ|2 ≤ lim inf
∫

Ω

c(x)|∇ϕn|2

finally, since ‖ϕ‖2 = 1, we obtain∫
Ω

|∆ϕ|2 +
∫

Ω

c(x)|∇ϕ|2 ≤ µ
∫

Ω

f ′(u)ϕ2.

�

Obviously, the fact that the function v belongs to C4(Ω̄) ∩ E follows from a
bootstrap argument.

Proof of (i) of Theorem 1.7. Thanks to Lemma 3.1, if (i) does not occur, then there
is a sequence of positives scalars (µn) and a sequence (vn) of unstable solutions to
(Pµn) such that vn → v in L1

loc(Ω) as µn → λ1/a for some function v.
We first claim that (vn) cannot be bounded in E. Otherwise, let w ∈ E be such

that, up to a subsequence,

vn ⇀ w weakly in E and vn → w strongly in L2(Ω).

Therefore,

∆2vn − div(c(x)∇vn)→ ∆2w − div(c(x)∇w) in D′(Ω),

f(vn)→ f(w) in L2(Ω),

which implies that ∆2w − div(c(x)∇w) = λ1
a f(w) in Ω. It follows that w ∈ E and

solves (1.2) with λ1/a in stead of λ. From Lemma 4.4, we deduce that

η1

(λ1

a
,w
)
≤ 0. (4.10)

Relation (4.10) shows that w 6= uλ1/a which contradicts the fact that (1.2) with
λ1/a in stead of λ has a unique solution. Now, since ∆2vn − div(c(x)∇vn) =
µnf(vn), the unboundedness of (vn) in E implies that this sequence is unbounded
in L2(Ω), too. To see this, let

vn = knwn, where kn > 0, ‖wn‖2 = 1 and kn →∞.

Then
∆2wn − div(c(x)∇wn) =

µn
kn
f(vn)→ 0 in L1

loc(Ω).
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So, we have convergence also in the sense of distributions and (wn) is seen to be
bounded in E with standard arguments. We obtain

∆2w − div(c(x)∇w) = 0 and ‖w‖2 = 1.

The desired contradiction is obtained since w ∈ E. �

Proof of (ii) of Theorem 1.7. As before, it is sufficient to prove the L2(Ω) bound-
edness of vλ near λ∗ and to use the uniqueness property of u∗. Assume that
‖vn‖2 →∞ as µn → λ∗, where vn is a solution to (Pµn). We write again vn = lnwn.
Then,

∆2wn − div(c(x)∇wn) =
µn
ln
f(vn). (4.11)

The fact that the right-hand side of (4.11) is bounded in L2(Ω) implies that (wn)
is bounded in E. Let (wn) be such that (up to a subsequence)

wn ⇀ w weakly in E and wn → w strongly in L2(Ω).

A computation already done shows that

∆2w − div(c(x)∇w) = λ∗aw, w ≥ 0 and ‖w‖2 = 1,

which forces λ∗ to be λ1/a. This contradiction concludes the proof. �

In the end, Figure 2 gives the behavior of the solutions when l is negative.

-
λ0 λ∗λ1

a
λ1
r0

6
uλ

u∗

Figure 2. Bifurcation branches in the case l < 0.
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