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NONOSCILLATION CRITERIA AND ENERGY FUNCTIONAL
FOR EVEN-ORDER HALF-LINEAR TWO-TERM

DIFFERENTIAL EQUATIONS

ONDŘEJ DOŠLÝ, VOJTĚCH RŮŽIČKA

Abstract. We investigate oscillatory properties of even-order half-linear dif-

ferential equations and conditions for negativity of the associated energy func-
tional. First, using the relationship between positivity of the functional and

nonoscillation of the investigated equation, we prove Hille-Nehari type nonoscil-

lation criteria which extend criteria known in the linear case. In the second
part of the paper, we present conditions which guarantee that the energy func-

tional attains a negative value, i.e., it is unbounded below.

1. Introduction

We consider the even-order half-linear two-term differential equation

(−1)n
(
tαΦ(y(n))

)(n) + c(t)Φ(y) = 0, (1.1)

where Φ(y) = |y|p−2y, p > 1, is the odd power function and α ∈ R. If p = 2, then
(1.1) reduces to the linear even-order Sturm-Liouville differential equation

(−1)n
(
tαy(n)

)(n) + c(t)y = 0 (1.2)

whose oscillation and spectral theory is relatively deeply developed. We refer to the
books [16, 22], the papers [2, 4, 6, 13, 14, 17, 19], and the references given therein.

Equation (1.1) is a particular case of the general even-order half-linear differential
equation

n∑
k=0

(−1)k
(
rk(t)Φ(y(k))

)(k) = 0 (1.3)

which, in the linear case p = 2, takes the form
n∑
k=0

(−1)k
(
rk(t)y(k)

)(k) = 0. (1.4)
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The investigation of oscillatory properties of (1.4) is based on the relationship
between this equation and its quadratic energy functional

F(y; a, b) =
∫ b

a

[ n∑
k=0

rk(t)
(
yk(t)

)2]
dt (1.5)

and on the fact that using the substitution

x =


y
y′

...
y(n−1)

 , u =


∑n
k=1(−1)k−1

(
rky

(k)
)(k)

...
−
(
rny

(n)
)′ + rn−1y

(n−1)

rny
(n)


equation (1.4) can be written as the linear Hamiltonian system

x′ = Ax+B(t)u, u′ = C(t)x−ATu (1.6)

with

B(t) = diag
{

0, . . . , 0,
1

rn(t)
}
, C(t) = diag{r0(t), . . . , rn−1(t)},

A = Ai,j =

{
1 j = i+ 1, i = 1 . . . , n− 1,
0 elsewhere.

In particular, using the so-called Reid Roundabout Theorem for (1.6) (see [21,
Theorem 6.3, p. 284]), it is proved that F(y;T,∞) > 0 for every 0 6≡ y ∈Wn,2

0 [T,∞)
(the definition of this space is recalled later) if and only if no nontrivial solution of
(1.4) has more than one zero point of multiplicity n in [T,∞), i.e., there exists no
pair of distinct points t1, t2 ∈ [T,∞) such that

y(i)(t1) = 0 = y(i)(t2), i = 0, . . . , n− 1. (1.7)

Following the linear case, equation (1.3) is said to be nonoscillatory if there exists
T ∈ R such that for any nontrivial solution of this equation there is no pair of
distinct points in [T,∞) such that (1.7) holds. Points t1, t2 with this property are
said to be conjugate points relative to (1.3).

Equation (1.3) can be written as a Hamiltonian type system

x′ = Ax+B(t)Φ−1(u), u′ = C(t)Φ(x)−ATu (1.8)

with

x =


y
y′

...
y(n−1)

 , u =


∑n
k=1(−1)k−1

(
rkΦ(y(k))

)(k)

...
−
(
rnΦ(y(n))

)′ + rn−1Φ(y(n−1))
rnΦ(y(n))

 . (1.9)

The functions Φ,Φ−1 of a vector argument are defined in a natural way as

Φ(x) =


Φ(x1)
Φ(x2)

...
Φ(xn)

 , Φ−1(u) =


Φ−1(u1)
Φ−1(u2)

...
Φ−1(un)
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for column vectors x = (xi)ni=1 and u = (ui)ni=1, where the scalar function Φ−1(y) =
|y|q−2y is the inverse function of Φ, i.e., q can be expressed as q = p

p−1 . The number
q is called the conjugate exponent of p and satisfies the equality 1

p + 1
q = 1.

However, a Roundabout type theorem for (1.8) is missing, so the theory of (1.8)
and (1.3) is much less developed than in the linear case. Concerning oscillatory
properties of (1.1) and (1.3), as far as we know, only the papers [10, 20] and the
book [9, Sec. 9.4] deal with this problem.

This article consists essentially of two parts. The first one can be regarded as
a continuation of [10]. In our paper we prove Hille-Nehari nonoscillation criteria
for (1.1) which extend previously proved (in [4, 8]) nonoscillation criteria for (1.2).
The second one is devoted to the investigation of conditions which imply that the
p-degree energy functional associated with (1.1) attains a negative value.

2. Preliminary results

In our investigation, an important role is played by the test functions from certain
Sobolev spaces which are defined as follows. We denote

Wn,p
0 [T,∞) =

{
y : [T,∞)→ R : y(n−1) ∈ AC[T,∞); y(n) ∈ Lp(T,∞);

there exists T1 > T such that y(t) = 0 for t ≥ T1

and y(i)(T ) = 0 for i = 0, . . . , n− 1
}

and

Wn,p
0 (R) =

{
y : R→ R : y(n−1) ∈ AC(R); y(n) ∈ Lp(R);

and there exists T1 ∈ R such that y(t) = 0 for |t| ≥ T1

}
.

We use the following variational lemma which is proved e.g. in [9, Sec. 9.4].

Lemma 2.1. Suppose that there exists T ∈ R such that

F(y;T,∞) =
∫ ∞
T

[ n∑
k=0

rk(t)|y(k)|p
]
dt > 0 (2.1)

for every nontrivial y ∈ Wn,p
0 [T,∞). Then equation (1.3) is nonoscillatory, i.e.,

no solution of (1.3) has more than one zero point of multiplicity n in [T,∞).

Another principal tool we use is the Wirtinger type inequality which we will
apply in the following form, see [9, Lemma 2.1.1].

Lemma 2.2. Let M be a positive continuously differentiable function for which
M ′(t) 6= 0 in [T,∞) and let y ∈W 1,p

0 [T,∞). Then∫ ∞
T

|M ′(t)||y|p dt ≤ p p
∫ ∞
T

Mp(t)
|M ′(t)|p−1

|y′|p dt. (2.2)

If we take (−∞,∞) instead of [T,∞) and W 1,p
0 (R) instead of W 1,p

0 [T,∞) in
Lemma 2.2, then the corresponding statement also holds.

The previous inequality, with Mp(t)/|M ′(t)|p−1 = tα and α 6= p− 1, applied to
y ∈W 1,p

0 [T,∞), reduces to the inequality∫ ∞
T

tα|y′|p dt ≥ γp,α
∫ ∞
T

tα−p|y|p dt, γp,α =
( |p− 1− α|

p

)p
. (2.3)
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If α = p− 1, then we have the inequality∫ ∞
T

tp−1|y′|p dt ≥ γp
∫ ∞
T

|y|p

t logp t
dt, γp = γp,0 =

(p− 1
p

)p
. (2.4)

We will also use the following auxiliary inequality.

Lemma 2.3. Let β ∈ R and y ∈W 1,p
0 [T,∞), then∫ ∞

T

|y|p

tpβ+1 logp t
dt ≤ 1

γp

∫ ∞
T

tp−1
∣∣( y
tβ
)′∣∣p dt. (2.5)

Proof. For y ∈ W 1,p
0 [T,∞), we denote z = y/tβ and by using integration by parts

and the Hölder inequality we have∫ ∞
T

|y|p

tpβ+1 logp t
dt =

∫ ∞
T

|z|p

t logp t
dt

=
1

1− p
· |z|p

logp−1 t

∣∣∣∞
T
− p

1− p

∫ ∞
T

Φ(z)
t1/q logp−1 t

· z
′

t−
1
q

dt

≤ p

p− 1

(∫ ∞
T

|z|p

t logp t
dt
)1/q(∫ ∞

T

tp−1|z′|p dt
)1/p

≤ γ−
1
q

p

( p

p− 1
)( ∫ ∞

T

tp−1|z′|p dt
)1/q(∫ ∞

T

tp−1|z′|p dt
)1/p

=
1
γp

∫ ∞
T

tp−1
∣∣( y
tβ
)′∣∣p dt,

where between the third and the forth line of the previous computation inequality
(2.4) has been used. �

The proof of the next lemma can be found e.g. in [4].

Lemma 2.4. Let m ∈ {0, . . . , n− 1}, then

y(n) =
{1
t

[
tm+1

( y
tm
)′](m)

}(n−m−1)

.

3. Nonoscillation criteria

In this section we formulate and prove Hille-Nehari type nonoscillation criteria
for (1.1). As we have pointed out in [10], an important role in the investigation
of oscillatory properties of (1.1) plays the fact whether or not α ∈ {p − 1, 2p −
1, . . . , np− 1} =:Mp, the case α 6∈ Mp being easier than the other one. The next
theorem deals with the case α ∈Mp.

Theorem 3.1. Suppose that α = jp− 1 for some j ∈ {1, . . . , n} and

lim inf
t→∞

logp−1 t

∫ ∞
t

c−(s)sp(n−j) ds > K (3.1)

where c−(t) = min{0, c(t)} and

K = −1
p

(p− 1
p

)p−1[(j − 1)!(n− j)!]p.

Then equation (1.1) is nonoscillatory.
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Proof. Denote k = np−1−α
p = n − j ∈ N and for y ∈ Wn,p

0 [T,∞) denote z = y
tk

.
Let T be so large that the limited expression in (3.1) is greater than K for t ≥ T .
Using Lemma 2.3 (to obtain the last line from the previous one), we have∫ ∞

T

c(t)|y|p dt ≥
∫ ∞
T

c−(t)|y|p dt =
∫ ∞
T

c−(t)tpk
∣∣( y
tk
)∣∣p dt

= p

∫ ∞
T

c−(t)tpk
(∫ t

T

Φ(z)z′ ds
)
dt

= p

∫ ∞
T

Φ(z)z′
1

logp−1 t
logp−1 t

∫ ∞
t

c−(s)spk ds dt

> pK

∫ ∞
T

Φ(z)z′
1

logp−1 t
dt ≥ pK

∫ ∞
T

|Φ(z)|
t1/q logp−1 t

· t1/q|z′| dt

≥ pK
(∫ ∞

T

|y|p

tpk+1 logq(p−1) t
dt
)1/q(∫ ∞

T

t
p
q |z′|p dt

)1/p

= pK
(∫ ∞

T

|y|p

tpk+1 logp t
dt
)1/q(∫ ∞

T

tp−1
∣∣( y
tk
)′∣∣p dt)1/p

≥ pK

γ
1/q
p

∫ ∞
T

tp−1
∣∣( y
tk
)′∣∣p dt

for nontrivial y ∈Wn,p
0 [T,∞). The second line of the previous computation comes

from the equality (|z|p)′ = pΦ(z)z′ by integrating over [T, t] and using the definition
of z. To obtain the fifth line the Hölder inequality is used together with the equality
|Φ(z)|q = |z|p.

Next we apply Lemma 2.4 to
∫∞
T
tα|y(n)|p dt. We put m = k in Lemma 2.4, i.e.,

n−m− 1 = (n− k)− 1 = j − 1. Further, denote

u(t) = tk+1
(y(t)
tk

)′
, v(t) =

1
t

[
tk+1

(y(t)
tk

)′](k)

=
1
t

[u(t)](n−j) .

Then using repeated application of the Wirtinger inequality (2.3) we have∫ ∞
T

tα|y(n)|p dt =
∫ ∞
T

tjp−1|v(j−1)|p dt

≥ [(j − 1)!]p
∫ ∞
T

tp−1|v|p dt

= [(j − 1)!]p
∫ ∞
T

t−1|u(n−j)|p dt

≥ [(j − 1)!(n− j)!]p
∫ ∞
T

t−1−(n−j)p|u|p dt

= [(j − 1)!(n− j)!]p
∫ ∞
T

t−1−(n−j)pt(n−j+1)p
∣∣( y
tk
)′∣∣p dt

= [(j − 1)!(n− j)!]p
∫ ∞
T

tp−1
∣∣( y
tk
)′∣∣p dt

for y ∈Wn,p
0 [T,∞). Summarizing the previous computations,∫ ∞

T

{
tα|y(n)|p + c(t)|y|p

}
dt
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>
{

[(j − 1)!(n− j)!]p +
pK

γ
1/q
p

}∫ ∞
T

tp−1
∣∣( y
tk
)′∣∣p dt = 0

for nontrivial y ∈Wn,p
0 [T,∞). This means, by Lemma 2.1, that (1.1) is nonoscilla-

tory. �

The next example illustrates the nonoscillation criterion in Theorem 3.1 and
shows that the constant K in (3.1) cannot be improved.

Example 3.2. Consider the equation

(−1)n
(
tjp−1Φ(y(n))

)(n) +
γ

t(n−j)p+1 log2 t
Φ(y) = 0 (3.2)

for some j ∈ {1, . . . , n}. Then

logp−1 t

∫ ∞
t

γs(n−j)p

s(n−j)p+1 logp s
=

γ

p− 1
.

Hence, by Theorem 3.1, equation (3.2) is nonoscillatory if

γ > −
(p− 1

p

)p[(j − 1)!(n− j)!]p.

In particular, if n = 1 in (3.2), then j = 1 and the criterion from Theorem 3.1
complies with the known result that the second order equation

−
(
tp−1Φ(y′)

)′ + γ

t logp t
Φ(y) = 0

is nonoscillatory if and only if γ ≥ −
(
p−1
p

)p. Note also that we cannot apply
Theorem 3.1 if the limit in (3.1) equals the constant K as shows the example of
the second order Riemann-Weber type equation

−
(
tp−1Φ(y′)

)′ + [− (p− 1
p

)p 1
t logp t

+
µ

t logp t log2(log t)

]
Φ(y) = 0

which is nonoscillatory if µ ≥ − 1
2

(
p−1
p

)p−1 and oscillatory in the opposite case, see
[12].

The fundamental role in the proof of the next theorem is played by a nonoscil-
lation criterion for the second order half-linear differential equations. To formulate
it, consider the pair of second order differential equations

−
(
r(t)Φ(x′)

)′ + c(t)Φ(x) = 0 (3.3)

and its perturbation

−
(
r(t)Φ(x′)

)′ + [c(t) + d(t)]Φ(x) = 0, (3.4)

where r, c, d are continuous functions with r(t) > 0. The following nonoscillation
criterion is proved in [7, Theorem 3].

Proposition 3.3. Suppose that (3.3) is nonoscillatory and possesses a positive
solution h satisfying

(i) h′(t) 6= 0 for large t;
(ii) ∫ ∞ dt

r(t)h2(t)|h′(t)|p−2
=∞;
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(iii) There exists a finite limit

lim
t→∞

r(t)h(t)Φ(h′(t)) =: L 6= 0.

Moreover, suppose that the integral
∫∞

d(t)hp(t) dt is convergent. Then equation
(3.4) is nonoscillatory provided

lim inf
t→∞

G(t)
∫ ∞
t

d(s)hp(s) ds > − 1
2q
, (3.5)

lim sup
t→∞

G(t)
∫ ∞
t

d(s)hp(s) ds <
3
2q
, (3.6)

where G(t) =
∫ t
r−1(s)h−2(s)|h′(s)|2−p ds and q is the conjugate exponent of p.

Note that the previous proposition is proved in [7] under the assumption h′(t) >
0, but a straightforward modification of the proof shows that it extends also to the
case when h′(t) < 0 for large t.

The energy functional on an interval [T,∞) associated with (3.4) is∫ ∞
T

[r(t)|y′|p + (c(t) + d(t))|y|p] dt

and this functional is positive for every 0 6≡ y ∈ W 1,p
0 [T,∞) if and only if (3.4) is

nonoscillatory and T is sufficiently large, see [9].
In the next theorem we use the notation

γn,p,α :=
n∏
j=1

( |jp− 1− α|
p

)p
and we investigate (1.1) as a perturbation of the Euler type half-linear differential
equation

(−1)n
(
tαΦ(y(n))

)(n)

− γn,p,α
tnp−α

Φ(y) = 0.

Theorem 3.4. Suppose that α 6∈ {p− 1, 2p− 1, . . . , np− 1} and the integral∫ ∞ (
c(t) +

γn,p,α
tα−np

)
tnp−1−α dt

is convergent. Equation (1.1) is nonoscillatory provided

lim inf
t→∞

log t
∫ ∞
t

[
c(s) +

γn,p,α
snp−α

]
snp−1−α ds > − p(p− 1)

2(np− 1− α)2
γn,p,α, (3.7)

lim sup
t→∞

log t
∫ ∞
t

[
c(s) +

γn,p,α
snp−α

]
snp−1−α ds <

3p(p− 1)
2(np− 1− α)2

γn,p,α. (3.8)

Proof. Denote d0(t) := (c(t) + γn,p,αt
α−np). The energy functional on [T,∞) asso-

ciated with (1.1) is

F(y) =
∫ ∞
T

[
tα|y(n)|p + c(t)|y|p

]
dt

=
∫ ∞
T

(
tα|y(n)|p − γn,p,αtα−np|y|p

)
dt+

∫ ∞
T

d0(t)|y|p dt.
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The first term in the first integral on the previous line can be estimated using the
Wirtinger inequality as follows∫ ∞

T

tα|y(n)|p dt ≥ γn−1,p,α

∫ ∞
T

tα−(n−1)p|y′|p dt.

Using this inequality,

F(y) = γn−1,p,α

{∫ ∞
T

[ tα

γn−1,p,α
|y(n)|p +

( d0(t)
γn−1,p,α

− γn,p,αt
α−np

γn−1,p,α

)
|y|p
]
dt
}

≥ γn−1,p,α

{∫ ∞
T

[ |y′|p

t(n−1)p−α +
( d0(t)
γn−1,p,α

−
( |np− 1− α|

p

)p 1
tnp−α

)
|y|p
]
dt
}
.

The last integral is the energy functional associated with the second order half-linear
differential equation

−
(
tα−(n−1)pΦ(x′)

)′
+
[
−
( |np− 1− α|

p

)p
tα−np +

d0(t)
γn−1,p,α

]
Φ(x) = 0 (3.9)

and this functional is positive for every 0 6≡ y ∈ W 1,p
0 [T,∞) if and only if (3.9) is

nonoscillatory and T is sufficiently large.
Next, we apply Proposition 3.3 to (3.9) with

r(t) = tα−(n−1)p, c(t) = −
( |np− 1− α|

p

)p
tα−np and d(t) =

d0(t)
γn−1,p,α

.

The equation

−
(
tα−(n−1)pΦ(x′)

)′
−
( |np− 1− α|

p

)p
tα−npΦ(x) = 0

has a solution h(t) = t(np−1−α)/p (i.e. nonoscillatory) for which h′(t) 6= 0 for t > 0.
By a direct computation we have

r(t)h(t)Φ(h′(t)) = Φ
(np− 1− α

p

)
6= 0,

r(t)h2(t)|h′(t)|p−2 =
( |np− 1− α|

p

)p−2

t,

hence (ii) and (iii) of Proposition 3.3 are satisfied. Moreover,

G(t) =
∫ t

r−1(s)h−2(s)|h′(s)|2−p ds =
( p

|np− 1− α|

)p−2

log t.

Then (3.5) reads as follows (note that q = p/(p− 1))

lim inf
t→∞

( p

|np− 1− α|

)2−p
log t

∫ ∞
t

d0(s)
γn−1,p,α

snp−1−α ds > −1
2
(p− 1

p

)
and substituting for d0(s) we have

lim inf
t→∞

log t
∫ ∞
t

(
c(s) +

γn,p,α
snp−α

)
snp−1−α ds > −p− 1

2p

( |np− 1− α|
p

)p−2

γn−1,p,α

= − p(p− 1)γn,p,α
2(np− 1− α)2

.

Similarly, (3.6) reduces to

lim sup
t→∞

log t
∫ ∞
t

(
c(s) +

γn,p,α
snp−α

)
snp−1−α ds <

3p(p− 1)γn,p,α
2(np− 1− α)2

.



EJDE-2016/95 HALF-LINEAR EULER EQUATION 9

Hence, if (3.7), (3.8) hold, equation (3.9) is nonoscillatory and the functional∫ ∞
T

[ |y′|p

t(n−1)p−α −
( |np− 1− α|

p

)p |y|p
tnp−α

+
d0(t)

γn−1,p,α
|y|p
]
dt > 0

if T is sufficiently large what we needed to prove. �

Remark 3.5. If d(t) ≤ 0 in (3.4), then, of course, condition (3.6) is redundant. If
d(t) ≥ 0, then (3.4) is a minorant to (3.3) and its nonoscillation follows from the
half-linear Sturmian theory, see [9].

Corollary 3.6. Consider the higher order Riemann-Weber type half-linear differ-
ential equation

(−1)n
(
tαΦ(y(n))

)(n) −
[γn,p,α
tnp−α

+
µ

tnp−α log2 t

]
Φ(y) = 0 (3.10)

with α 6∈ Mp. Then (3.10) is nonoscillatory if

µ <
p(p− 1)γn,p,α
2(np− 1− α)2

. (3.11)

Proof. We denote c(t) = −[γn,p,αtnp−α + µ
tnp−α log2 t

] and we show that assumptions of
Theorem 3.4 are satisfied. We have∫ ∞

t

(
c(s) +

γn,p,α
sα−np

)
snp−1−α ds = −

∫ ∞
t

µ

s log2 s
ds = − µ

log t
.

Condition (3.8) is obvious (see proof of Theorem 3.4 and Remark 1) and condition
(3.7) is reduced to the condition

µ <
p(p− 1)γn,p,α
2(np− 1− α)2

.

�

Example 3.7. Consider the case n = 1 in the previous corollary. Then equation
(3.10) reduces to the second order Riemann-Weber type equation(

tαΦ(y′)
)′ + [( |p− 1− α|

p

)p
tα−p +

µ

tp−α log2 t

]
Φ(y) = 0. (3.12)

It is known, see [11], that this equation is nonoscillatory if

µ ≤ µp,α, µp,α :=
p− 1

2p

( |p− 1− α|
p

)p−2

and oscillatory in the opposite case. This result shows that inequality in (3.11) is
exact since in the case n = 1

p(p− 1)γn,p,α
2(np− 1− α)2

=
p(p− 1)

2(p− 1− α)2

( |p− 1− α|
p

)p
= µp,α.

This result also shows that the constant in the right-hand side of inequality (3.7)
cannot be improved.
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4. Negativity of the energy functional

As a motivation, let us consider the second order half-linear differential equation

−
(
r(t)Φ(y′)

)′ + c(t)Φ(x) = 0 (4.1)

with continuous functions c, r and r(t) > 0. It was proved in [5] that if∫
−∞

r1−q(t) dt =∞ =
∫ ∞

r1−q(t) dt,
1
p

+
1
q

= 1,

and ∫ ∞
−∞

c(t) dt ≤ 0, c(t) 6≡ 0,

then (4.1) is conjugate on R, i.e., there exists a nontrivial solution with at least two
different zeros on R. Conjugacy of (4.1) is equivalent to the existence of a nontrivial
function y ∈W 1,p

0 (R) for which the energy functional associated with (4.1)

F(y; R) =
∫ ∞
−∞

[r(t)|y′|p + c(t)|y|p] dt (4.2)

attains a negative value. In the terminology of linear equations, see [15], a differen-
tial operator with the property that there exists a function from a suitable Sobolev
space for which the associated energy functional is negative is called supercritical.

Concerning the 2n-order linear differential equation

(−1)n
(
r(t)y(n)

)(n)

+ c(t)y = 0 (4.3)

a similar statement was proved first in [18] for a fourth order linear equation and
later it was extended to general 2n-order equation (4.3) in [1]. This result says that
if there exists an integer m, 0 ≤ m ≤ n− 1, such that∫

−∞
t2mr−1(t)dt =∞ =

∫ ∞
t2mr−1(t)dt

and there exists a polynomial Q(t) = akt
k + · · · + a1t + a0 of the degree 0 ≤ k ≤

n−m− 1 such that ∫ ∞
−∞

Q2(t)c(t) dt < 0,

then (4.3) is conjugate on R, i.e., there exists a nontrivial solution of (4.3) having
two different zeros of multiplicity n in R. Again, this statement is equivalent to the
fact that the associated energy functional∫ ∞

−∞

[
r(t)|y(n)|2 + c(t)|y|2

]
dt

attains a negative value for some y ∈ Wn,p
0 (R). In the next theorem we present a

partial extension of these results to (1.1) with α = 0.

Theorem 4.1. Suppose that ∫ ∞
−∞

c(t) dt < 0 (4.4)

and c(t) ≤ 0 for t close to −∞ and ∞. Then the energy functional

Fn(y; R) =
∫ ∞
−∞

[
|y(n)|p + c(t)|y|p

]
dt (4.5)
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associated with the equation

(−1)n
(
Φ(y(n))

)(n) + c(t)Φ(y) = 0 (4.6)

attains a negative value over Wn,p
0 (R).

Proof. According to (4.4), there exist t1 < t2 such that∫ t2

t1

c(t) dt =: −ε < 0 and c(t) ≤ 0, t ∈ (−∞, t1] ∪ [t2,∞).

Let t0 < t1 < t2 < t3 (the values t0, t3 will be specified later) and define the test
function as follows

y(t) =



0 t ∈ (−∞, t0],
f(t) t ∈ [t0, t1],
1 t ∈ [t1, t2],
g(t) t ∈ [t2, t3],
0 t ∈ [t3,∞).

The function f is defined using the following construction (the construction of g
will be specified later). To simplify the notation, we denote δ := q − 1 (q is the
conjugate exponent of p). Let

y1(t) = (t− t0)n, y2(t) = (t− t0)δ+n, . . . , yn(t) = (t− t0)(n−1)δ+n.

These functions are solutions of Φ(y(n)) = Ck(t− t0)k, k = 0, . . . , n− 1 for suitable
constants Ck (i.e., of

(
Φ(y(n))

)(n)
= 0) for t ≥ t0. We define f as a linear combina-

tion f = c1y1 + · · · + cnyn where the constants c1, . . . , cn we define in such a way
that f satisfies the conditions

f(t1) = 1, f (i)(t1) = 0, i = 1, . . . , n− 1,

(because we need y ∈ Wn,p
0 (R)). This means that the constants c1, . . . , cn form a

solution of the linear system (where we denote T := t1 − t0)

1 = Tnc1 + T δ+nc2 + · · ·+ T (n−1)δ+ncn,

0 = nTn−1c1 + (δ + n)T δ+n−1c2 + · · ·+ [(n− 1)δ + n]T (n−1)δ+n−1cn,

. . .

0 = ∆i,1T
n−ic1 + ∆i,2T

δ+n−ic2 + · · ·+ ∆i,nT
(n−1)δ+n−icn,

. . .

0 = n!Tc1 + ∆n,2T
δ+1c2 + · · ·+ ∆n,nT

(n−1)δ+1cn,

where we have used the notation ∆i,j := [(j− 1)δ+n] . . . [(j− 1)δ+n− i+ 2]. The
determinant of the matrix of this linear system can be expressed as follows. We
factor out T (j−1)δ from the j-th column and then Tn−i+1 from the i-th row. Then
it remains to calculate the determinant (where we explicitly write the quantities
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∆i,j) det ∆n, where

∆n :=



1 1 . . . 1
n (δ + n) . . . (n− 1)δ + n

n(n− 1) (δ+n)(δ+n−1) . . . [(n−1)δ+n][(n−1)δ+n−1]
...∏i

l=1(n−l+1)
∏i
l=1(δ+n−l+1) . . .

∏i
l=1[(n−1)δ+n−l+1]

...
n! (δ+n) · · · (δ+2) . . . [(n−1)δ+n] · · · [(n−1)δ+2]


.

In the last section we show that this determinant is nonzero, so the determinant
of the linear system for ck is D := T

n(n+1)
2 +

n(n−1)δ
2 det ∆n 6= 0. By the Cramer rule

we find that the coefficients ck = ck(T ) can be expressed as

ck(T ) = hkT
−n−n(n−1)δ

2 T
n(n−1)δ

2 −(k−1)δ = hkT
−n−(k−1)δ (4.7)

the constants hk can be expressed explicitly, but their values are not important for
our computations at this moment. Consequently,

f (n)(t) = c1(T )y(n)(t) + · · ·+ cn(T )y(n)
n (t) = c1(T )n! + c2(T )h̃2(t− t0)δ + . . .

· · ·+ ck(T )h̃k(t− t0)(k−1)δ + · · ·+ cn(T )h̃n(t− t0)(n−1)δ,

where h̃k = [(k−1)δ+n] · · · [(k−1)δ+ 1]. Consequently, in view of (4.7) and using
the Jensen inequality for the function x 7→ |x|p, we have∫ t1

t0

|f (n)(t)|p dt =
∫ t1

t0

∣∣ n∑
k=1

hkh̃kT
−n−(k−1)δ(t− t0)(k−1)δ

∣∣p dt
≤
∫ t1

t0

np−1
n∑
k=1

∣∣hkh̃kT−n−(k−1)δT (k−1)δ
∣∣p dt

= CT−pn+1 → 0 as T →∞, i.e., as t0 → −∞,

where C = np−1
∑n
k=1

∣∣∣hkh̃k∣∣∣p.
The construction of the function g is similar. It is a function satisfying the

boundary condition g(t2) = 1, g(i)(t2) = 0, i = 1, . . . , n − 1, g(i)(t3) = 0, i =
0, . . . , n− 1. This function we construct as a linear combination of the functions

ỹk(t) = (t3 − t)(k−1)δ+n, k = 1, . . . , n.

Similarly as for the function f , we have∫ t3

t2

|g(n)(t)|p dt→ 0 as t3 →∞. (4.8)

Summarizing the previous computations, we see that t0, t3 can be chosen in such
a way that ∫ t1

t0

|f (n)(t)|p dt < ε

4
,

∫ t3

t2

|g(n)(t)|p dt < ε

4
.

Then we have∫ t3

t0

[
|y(n)(t)|p + c(t)|y(t)|p

]
dt =

∫ t1

t0

|f (n)(t)|p dt+
∫ t1

t0

c(t)|f(t)|p dt−
∫ t2

t1

c(t) dt
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+
∫ t3

t2

|g(n)(t)|p dt+
∫ t3

t2

c(t)|g(t)|p dt

<
ε

4
− ε+

ε

4
< 0,

where we have used that c(t) ≤ 0 for t ∈ (−∞, t1] ∪ [t2,∞). �

The formulation of the statement and construction of the test function in the
proof of the next theorem is a modification of Theorem 4.1. The meaning of the this
theorem from the point of view of the oscillation theory of higher order half-linear
differential equations is discussed at the end of this section.

Theorem 4.2. Suppose that c(t) ≤ 0 for large t. If∫ ∞
c(t) dt = −∞, (4.9)

then there exists T ∈ R such that the energy functional∫ ∞
T

[∣∣y(n)
∣∣p + c(t)|y|p

]
dt (4.10)

associated with equation (4.6) attains a negative value over Wn,p
0 [T,∞).

Proof. Let T ∈ R be arbitrarily large and T < t0 < t1 < t2 < t3. Define the
function y essentially in the same way as in the previous proof, only comparing
with that proof, the function f may be arbitrary function satisfying at t0 and t1
the boundary condition f (i)(t0) = 0, i = 0, . . . , n − 1, f(t1) = 1, f (i)(t1) = 0,
i = 1, . . . , n− 1. We denote K =

∫ t1
t0
|f (n)(t)|p dt+

∫ t1
t0
c(t)|fp(t)| dt. Now, we take

t2 so large that c(t) ≤ 0 for t ≥ t2 and∫ t2

t1

c(t) dt < −3K.

The function g is then the same as in the previous proof with t3 so large that∫ t3
t2
|g(n)(t)|p dt < K. Then, for the function y constructed in this way, we have∫ ∞

T

[
|y(n)|p dt+ c(t)|y|p

]
dt =

∫ t1

t0

|f (n)(t)|p dt+
∫ t1

t0

c(t)|f(t)|p dt

+
∫ t2

t1

c(t) dt+
∫ t3

t2

|g(n)(t)|p dt+
∫ t3

t2

c(t)|g(t)|p dt

≤ K − 3K +K < 0,

what we needed to prove. �

Remark 4.3. (a) If p = 2 in Lemma 2.1, i.e., we consider linear equation (1.4)
and the associated quadratic functional (1.5), we have equivalence in Lemma 2.1.
This equivalence is based on the so-called Reid Roundabout theorem for associated
linear Hamiltonian differential systems.

An analogue of the Roundabout theorem is missing for half-linear Hamiltonian
type system (1.8), so we only have one implication in Lemma 2.1 at this moment.
Nevertheless, we conjecture that the equivalence holds also in the half-linear case,
this problem is a subject of the present investigation (note that this conjecture
is true for second order equations (3.3), see [9, Chap. 2]). Having proved this
conjecture, the construction of the test function in the proofs of Theorem 4.1 and
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Theorem 4.2 can be used to establish various oscillation criteria for (1.1) similarly
as in the linear case in [3, 4, 8, 17, 19].

(b) Since the energy functionals associated with half-linear equations are homo-
geneous (of degree p), the fact that these functionals attain a negative value also
means that they are unbounded below.

5. A technical result

In this section we prove that the determinant of the matrix ∆n from the previous
section is really nonzero, so the constants ck(T ), k = 1, . . . , n, can be computed
using the Cramer rule. This result may be known for people working in the linear
algebra, but we have not found it in the literature, so we present it here.

Recall that we consider the matrix (with δ > 0)

∆n :=



1 1 . . . 1
n (δ + n) . . . (n− 1)δ + n

n(n− 1) (δ+n)(δ+n−1) . . . [(n−1)δ+n][(n−1)δ+n−1]
...∏i−1

l=1(n−l+1)
∏i−1
l=1(δ+n−l+1) . . .

∏i−1
l=1 [(n−1)δ+n−l+1]

...
n! (δ+n) · · · (δ+2) . . . [(n−1)δ+n] · · · [(n−1)δ+2]


.

Lemma 5.1. Let δ > 0 and n ∈ N. Then

det(∆n) = δ
n(n−1)

2

n∏
k=1

(k − 1)!.

Proof. Let n ∈ N be arbitrary but fixed in the following considerations. Denote
A := ∆n, where A = (ai,j)

n
i,j=1. Hence

ai,j =
i−1∏
l=1

[(j − 1)δ + n− l + 1] .

Using elementary row operations, we will find a triangular matrix with the deter-
minant equal to that of the original matrix A. For this purpose, we will construct a
finite sequence of square matrices A[1], . . . , A[n] such that A[1] = (a[1]

i,j)
n
i,j=1 = A and

the matrix A[k] = (a[k]
i,j)

n
i,j=1 will be obtained from the matrix A[k−1] by applying

n−1−(k−2) elementary row operations for k = 2, . . . , n. More precisely, we obtain
the matrix A[k] by subtracting a suitable multiple of (i − 1)-th row of the matrix
A[k−1] from the i-th row of the matrix A[k−1], and we repeat this for each i ≥ k (for
i < k, the rows (a[k]

i,j)j=1,...,n will be the same as in matrix A[k−1]). As a suitable
multiple of (i− 1)-th row, we consider such multiple, which after subtracting from
i-th row gives the zero on the first nonzero position of this i-th row.

Before constructing such a sequence of matrices, note that the first row of the
matrix A[1] will be the same as first rows of the matrices A[1], . . . , A[n], then, in
particular, we have

a
[m]
1,1 = a

[1]
1,1 = 1

for m = 1, . . . , n.
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Now let us construct the matrix A[2]. Let i ∈ {2, . . . , n} be arbitrary, but fixed
and let us consider the rows (a[1]

i−1,j)j=1,...,n and (a[1]
i,j)j=1,...,n, i.e., the submatrix

written as ∏i−2
l=1 (n− l + 1) . . .

∏i−2
l=1 [(j − 1)δ + n− l + 1] . . .∏i−1

l=1 (n− l + 1) . . .
∏i−1
l=1 [(j − 1)δ + n− l + 1] . . .

 .

After subtracting the (i− 1)-th row multiplied by n− (i− 1) + 1 from the i-th row
of the matrix A[1], we obtain entries of the i-th row of the matrix A[2], i.e.,

a
[2]
i,j =

i−1∏
l=1

[(j − 1)δ + n− l + 1]− (n− i+ 2)
i−2∏
l=1

[(j − 1)δ + n− l + 1]

=
i−2∏
l=1

[(j − 1)δ + n− l + 1] · {(j − 1)δ + n− (i− 1) + 1− (n− i− 2)}

= (j − 1)δ
i−2∏
l=1

[(j − 1)δ + n− l + 1]

for j = 1, . . . , n.
Note that the second row of the matrix A[2] will be again the same as second

rows of the matrices A[3], . . . , A[n], then, in particular, we have

a
[m]
2,2 = a

[2]
2,2 = (2− 1)δ

0∏
l=1

[(2− 1)δ + n− l + 1] = δ

for m = 2, . . . , n.
We obtain similar relations for the i-th row of the matrix A[2], where i ∈

{3, . . . , n}. Then we have

a
[3]
i,j = (j − 2)(j − 1)δ2

i−3∏
l=1

[(j − 1)δ + n− l + 1]

for j = 1, . . . , n.
Now we describe the general procedure of constructing of the matrix A[k] from

the matrix A[k−1]. Again, let i ∈ {k, k+ 1, . . . , n} be arbitrary, but fixed and let us
consider rows (a[k−1]

i−1,j)j=1,...,n, (a[k−1]
i,j )j=1,...,n, which are of the form(

0 . . . 0 (k − 2)(k − 3) · · · · · 2δk−2
∏i−k
l=1 [(k − 2)δ + n− l + 1] . . .

0 . . . 0 (k − 2)(k − 3) · · · · · 2δk−2
∏i−(k−1)
l=1 [(k − 2)δ + n− l + 1] . . .

. . . (j − 1)(j − 2) · · · · · (j − (k − 2))δk−2
∏i−k
l=1 [(j − 1)δ + n− l + 1]

. . . (j − 1)(j − 2) · · · · · (j − (k − 2))δk−2
∏i−(k−1)
l=1 [(j − 1)δ + n− l + 1]

)
,

with the (k − 1)-th column containing first nonzero coefficients. Therefore, we
subtract the (i− 1)-th row multiplied by (k − 2)δ + n− (i− (k − 1)) + 1 from the
i-th row of the matrix A[k−1] to obtain entries of the i-th row of the matrix A[k],
i.e.

a
[k]
i,j = (j − 1)(j − 2) . . . (j − (k − 2))δk−2

i−(k−1)∏
l=1

[(j − 1)δ + n− l + 1]

− {(k − 2)δ + n− (i− (k − 1)) + 1} · (j − 1)(j − 2) · · · · · (j − (k − 2))
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× δk−2
i−k∏
l=1

[(j − 1)δ + n− l + 1]

= (j − 1)(j − 2) . . . (j − (k − 2))δk−2
i−k∏
l=1

[(j − 1)δ + n− l + 1]

× {(j − 1)δ + n− (i− (k − 1)) + 1− ((k − 2)δ + n− (i− (k − 1)) + 1)}

= (j − 1)(j − 2) · · · · · (j − (k − 1))δk−1
i−k∏
l=1

[(j − 1)δ + n− l + 1]

for j = 1, . . . , n. Such a[k]
i,j correspond to the expected form, which had to be proved.

The k-th rows of the matrices A[k], A[k+1], . . . , A[n] are equal, and it follows

a
[m]
k,k = a

[k]
k,k = (k − 1)(k − 2) · · · · · (k − (k − 1))δk−1

0∏
l=1

[(k − 1)δ + n− l + 1]

= (k − 1)!δk−1

for m = k, k + 1 . . . , n.
From this construction, it is clear, that A[n] is an upper triangular matrix and

that the diagonal elements of A[n] are(
a

[n]
1,1, a

[n]
2,2, . . . , a

[n]
n,n

)
=
(
a

[1]
1,1, a

[2]
2,2, . . . , a

[n]
n,n

)
.

Obviously, the determinant of the matrix A has not changed by performed opera-
tions, therefore, it holds

det(A) = det(A[n]) =
n∏
k=1

a
[n]
k,k =

n∏
k=1

[
(k − 1)!δk−1

]
= δ

n(n−1)
2

n∏
k=1

(k − 1)!,

which proves the lemma. �
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