
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 98, pp. 1–15.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

OPTIMIZATION PROBLEMS INVOLVING THE
FRACTIONAL LAPLACIAN

CHONG QIU, YISHENG HUANG, YUYING ZHOU

Abstract. In this article we study rearrangement optimization problems re-
lated to boundary-value problems involving the fractional Laplacian. We es-

tablish the existence and uniqueness of a solution under suitable assumptions.

1. Introduction

A rearrangement optimization problem is referred to an optimization problem
in which the admissible set consists of functions that are rearrangements of a pre-
scribed function. The theory of rearrangement optimizations has been established
by Burton [5, 6]. Since then, this topic has been widely studied by many authors in
different aspects, see for example [7, 10, 11, 12, 16, 17, 18, 19]. Burton [6] proved
that both the minimization and maximization problems for the boundary value
problem involving the Laplacian have solutions. However, the results obtained in
[6] can not be directly applied to the optimization problems for the boundary value
problem involving p-Laplacian(1 < p < ∞). So by using a new approach, Cuccu
et al [10] proved that the minimization problem has a solution for 1 < p < ∞.
But their approach is not efficient for the maximization problem. Marras [17] ob-
tained the solvability of the maximization for 1 < p <∞ by using another method.
While Cuccu et al [12] obtained a result of uniqueness for a class of p-Laplace
equations under non-standard assumptions. Recently, Qiu et al [19] considered a
rearrangement optimization problem related to the quasilinear elliptic boundary
value problem, where under suitable assumptions, it is shown that both the min-
imization and maximization problems are solvable, which extends the results in
[6, 10, 17].

It is worth to note that most of the rearrangement optimization problems con-
sidered in the above papers are related to boundary value problems involving the
Laplacian or p-Laplacian. In recent years, fractional and nonlocal operators of
elliptic type have been attracted a lot of interests since these operators appear in
concrete applications in fields such as minimal surface [9], thin obstacle problem [8],
anomalous diffusion [1], phase transition [21], hemivariational inequality [23, 25],
shape optimization [13], optimal transportation theory [14] and so on. Interesting
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studies involving nonlocal fractional problems by variational methods can be found
in [2, 3] and the references therein.

In this article, we study several rearrangement optimization problems related to
a class of boundary value problems involving the fractional Laplacian. We need
to overcome the difficulties coming from both the fractional Laplacian and the
rearrangement optimization problem. As our knowledge, this kind of problems has
not been considered in literature.

Let Ω be a smooth bounded domain of RN (N ≥ 2) and let k ∈ Lq(Ω) with
1 ≤ q ≤ ∞. We recall that a rearrangement of k is an element of the set R(k) of
all measurable functions g on Ω satisfying

meas({x ∈ Ω : g(x) ≥ a}) = meas({x ∈ Ω : k(x) ≥ a}), ∀a ∈ R.

It is easy to prove that if g ∈ R(k), then g ∈ Lq(Ω) and ‖g‖Lq = ‖k‖Lq (cf. [6,
Lemma 2.1]).

Let h(x, t) : Ω × R → R be a Carathéodory function and f ∈ L∞(Ω). Under
suitable assumptions we can show that the boundary value problem

−Lsθu+ h(x, u) = f(x) in Ω,

u = 0 in RN\Ω
(1.1)

has a unique solution uf ∈ Hs(Ω) (cf. Proposition 3.1), where Lsθ is the fractional
Laplace type operator defined as

Lsθu(x) =
∫

Rn

u(x+ y) + u(x− y)− 2u(x)
|y|N+2s

θ(y)dy, x ∈ RN (1.2)

with 0 < s < 1 and θ : RN → (0,+∞).
In particular, if h ≡ 0, then the boundary value problem (1.1) becomes

−Lsθu = f(x) in Ω,

u = 0 in RN\Ω,
(1.3)

and it obviously has a unique solution uf (cf. Proposition 4.1), thus it deduces that
(cf. Remark 4.2),

sup
v∈Hs(Ω)

(∫
Ω

2fvdx−
∫

RN

∫
RN

(v(x)− v(y))2

|x− y|N+2s
θ(x− y) dx dy

)
=
∫

Ω

2fuf dx−
∫

RN

∫
RN

(uf (x)− uf (y))2

|x− y|N+2s
θ(x− y) dx dy

=
∫

RN

∫
RN

(uf (x)− uf (y))2

|x− y|N+2s
θ(x− y) dx dy =

∫
Ω

fuf dx.

(1.4)

Therefore, we can define the functional Φ on L∞(Ω) as

Φ(f) =
∫

Ω

fuf dx (1.5)

and we are able to consider the following two optimization problems:
(Opt1) Find f1 ∈ R(f0) such that Φ(f1) = supf∈R(f0) Φ(f),
(Opt2) Find f2 ∈ R(f0) such that Φ(f2) = inff∈R(f0) Φ(f),
where f0 ∈ L∞(Ω) is a given function and R(f0) is the set of all rearrangement of
f0.
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If h 6≡ 0, then it is difficult to consider the above optimization problems related to
the boundary value problem (1.1) since the functional Ψ on L∞(Ω), corresponding
to the optimization problems, defined by

Ψ(f) =
1
2

(∫
RN

∫
RN

(uf (x)− uf (y))2

|x− y|N+2s
θ(x− y) dx dy

)
+
∫

Ω

H(x, uf ) dx−
∫

Ω

fuf dx

(1.6)

is hard to be reduced to a simple formula like (1.5). However, in the case of h 6≡ 0,
we can consider the following minimization optimization problem related to (1.1):
(Opt*) Find f∗ ∈ R(f0) such that Ψ(f∗) = inff∈R(f0) Ψ(f),
where f0 ∈ L∞(Ω) is a given function and R(f0) is the set of all rearrangement of
f0.

This article is organized as follows. In Section 2, we give some preliminaries.
Section 3 is devoted to discussing the minimization problem (Opt*) in detail. After
establishing the uniqueness result of solutions for the problem (1.1), we show that
the minimization problem (Opt*) is solvable. In Section 4, we prove that both
the maximization and minimization optimization problems (Opt1) and (Opt2) are
solvable. To our best of knowledge, the results of this paper are new and nontrivial.

2. Preliminaries

Given 0 < s < 1, we define the fractional Sobolev space

Hs(Ω) =
{
u ∈ L2(RN ) : u ≡ 0 in RN\Ω,

∫
RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
dx dy <∞

}
with the inner product

〈u, v〉 =
∫

RN

∫
RN

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

dx dy ∀u, v ∈ Hs(Ω).

Then the norm of u is

‖u‖ =
(∫

RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
dx dy

)1/2

.

Throughout this article, we denote by ‖u‖ and ‖u‖p the usual norm in spaces
Hs(Ω) and Lp(Ω) (1 ≤ p ≤ ∞), respectively. As usual, “→” and “⇀” denote the
strong and weak convergence.

We now list some lemmas which are useful in the proof of our main results.

Lemma 2.1 ([20, Lemma 8]). Hs(Ω) ↪→ Lr(RN ), for 1 ≤ r ≤ 2N
N−2s , and the

embedding is compact if 1 ≤ r < 2N
N−2s .

Lemma 2.2 ([6, Lemma 2.2]). Assume that 1 ≤ r <∞ and for f ∈ Lr(Ω) denote
by R(f) the weak closure of R(f) in Lr(Ω). Then R(f) is convex and weakly
compact in Lr(Ω).

Lemma 2.3 ([6, Lemma 2.9] or [11, Lemma 2.1])). Let f, g : Ω→ R be measurable
functions and suppose that for each t ∈ R, the level set of g at t, i.e., {x ∈ Ω :
g(x) = t}, has zero measure. Then there exists an increasing (decreasing) function
ϕ such that ϕ ◦ g is a rearrangement of f where ϕ ◦ g denotes a composite function
defined by

(ϕ ◦ g)(x) = ϕ(g(x)),∀x ∈ Ω.
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Lemma 2.4 ([6, Lemma 2.4] or [11, Lemma 2.2]). For any 1 ≤ r < ∞ define
r′ = r

r−1 if r > 1 and r′ =∞ if r = 1. Let f ∈ Lr(Ω) and g ∈ Lr′(Ω). Suppose that
there exists an increasing (decreasing) function ϕ : R→ R such that ϕ ◦ g ∈ R(f).
Then ϕ ◦ g is the unique maximizer (minimizer) of the linear functional

∫
Ω
hg dx,

relative to h ∈ R(f).

Lemma 2.5 ([15, Lemma 2.3]). Suppose that f ∈ Lr(Ω) and g ∈ Lr′(Ω). Then
there exists f̂ ∈ R(f) which maximizes (minimizes) the linear functional

∫
Ω
hgdx,

relative to h ∈ R(f).

As in the proof of [22, Lemma 2.1] we have the following result.

Lemma 2.6. Given u ∈ H1/2(Ω), there exists a unique extension v ∈ H1(RN+1
+ )

of u such that

−∆v(x, y) = 0, for x ∈ RN , y > 0,

v(x, 0) = u(x), for x ∈ RN .

Moreover,
−∂yv(x, 0) = (−∆)1/2u(x)

in the sense that

−
∫

RN×{0}

∂v

∂y
ϕdx =

∫
RN

ϕ(−∆)1/2udx

for every ϕ ∈ H1/2(RN ).

3. Minimization related to (1.1)

Recall that the energy functional I : Hs(Ω)→ R corresponding to (1.1) is

I(u) =
1
2

∫
RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy +

∫
Ω

H(x, u)dx−
∫

Ω

fudx, (3.1)

where H(x, u) =
∫ u

0
h(x, t)dt.

We use the following hypotheses on the functions h : Ω× R→ R and θ : RN →
(0,+∞):

(H1) h(x, t) is Carathéodory and is non-decreasing with respect to the second
variable for almost all x ∈ Ω.

(H2) There exist a(x), b(x) ∈ L∞(Ω), 0 < l < 1, such that |h(x, t)| ≤ a(x) +
b(x)|t|l, for all t ∈ R, a.e. x ∈ Ω.

(H3) θ(x) = θ(−x) for any x ∈ RN\{0};
(H4) θ ∈ L∞(RN ) and there exists θ0 ∈ R+ such that θ(x) ≥ θ0, for any x ∈ RN .

Proposition 3.1. Suppose that (H1)–(H4) hold. Then (1.1) has a unique solution
uf ∈ Hs(Ω) and I(uf ) = infv∈Hs(Ω) I(v).

Proof. First, we show that the problem (1.1) has a solution. Let C be a positive
constant. From (H2), (H4), and the Sobolev embedding inequality it follows that∣∣ ∫

Ω

H(x, u)dx
∣∣ ≤ ∫

Ω

∣∣ ∫ u

0

h(x, v) dv
∣∣ dx ≤ C‖u‖+ C‖u‖l+1, (3.2)∣∣ ∫

Ω

fu dx
∣∣ ≤ ‖f‖∞‖u‖1 ≤ C‖u‖, (3.3)
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θ0‖u‖2 ≤
∫

RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy, ∀u ∈ Hs(Ω). (3.4)

Hence we deduce from (3.1), (3.2), (3.3) and (3.4) that

I(u) ≥ θ0

2
‖u‖2 − C‖u‖l+1 − C‖u‖ → ∞

as ‖u‖ → ∞, which shows that the functional I is coercive. We will prove that
the functional I is weakly lower semi-continuous. To do this, let vn ⇀ v in Hs(Ω)
as n → ∞, noting both the embeddings Hs(Ω) ↪→ L1(Ω) and Hs(Ω) ↪→ Ll+1(Ω)
are compact, we see that vn → v in Ll+1(Ω) and L1(Ω) as n → ∞. Therefore,
H(x, vn) → H(x, v) in L1(Ω) as n → ∞ by the continuity of the operator u 7→
H(x, u) from Ll+1(Ω) to L1(Ω), which implies that∫

Ω

H(x, vn)dx→
∫

Ω

H(x, v) dx (3.5)

as n→∞. Then we have

lim inf
n→∞

I(vn)

= lim inf
n→∞

∫
Ω

(1
2

∫
RN

∫
RN

(vn(x)− vn(y))2

|x− y|N+2s
θ(x− y) dx dy +H(x, vn)− fvn

)
dx

≥ 1
2

∫
RN

∫
RN

(v(x)− v(y))2

|x− y|N+2s
θ(x− y) dx dy +

∫
Ω

H(x, v)dx− lim sup
n→∞

∫
Ω

fvndx

≥ I(v)− lim sup
n→∞

‖f‖∞‖vn − v‖1

= I(v).

Thus the functional I is weakly lower semi-continuous (which we will denote by
w.l.s.c for short). So that the functional I has a minimizer uf ∈ Hs(Ω) with I(uf ) =
infv∈Hs(Ω) I(v). By assumptions (H1), (H2), and using a standard argument [24,
Lemma 2.16], we can easily show that I ∈ C1(Hs(Ω),R), therefore uf is a critical
point of I, i.e.,

I ′(uf )v =
∫

RN

∫
RN

(uf (x)− uf (y))(v(x)− v(y))
|x− y|N+2s

θ(x− y) dx dy

+
∫

Ω

(h(x, uf )v − fv)dx = 0, ∀v ∈ Hs(Ω).
(3.6)

By the definition of the fractional Laplace type operator Lsθ (see (1.2)), we have∫
RN

−Lsθu(x)v(x)dx

= −
∫

Rn

∫
Rn

u(x+ y) + u(x− y)− 2u(x)
|y|N+2s

θ(y)v(x) dy dx

= −
∫

Rn

∫
Rn

u(x+ y)− u(x)
|y|N+2s

θ(y)v(x) dy dx

−
∫

Rn

∫
Rn

u(x− y)− u(x)
|y|N+2s

θ(y)v(x) dy dx.

(3.7)
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Let z = x+ y, t = x− y. By using (H3) we obtain

−
∫

Rn

∫
Rn

u(x+ y)− u(x)
|y|N+2s

θ(y)v(x) dy dx

=
∫

Rn

∫
Rn

u(x)− u(z)
|x− z|N+2s

θ(x− z)v(x) dz dx,

−
∫

Rn

∫
Rn

u(x− y)− u(x)
|y|N+2s

θ(y)v(x) dy dx

=
∫

Rn

∫
Rn

u(x)− u(t)
|x− t|N+2s

θ(x− t)v(x) dt dx.

(3.8)

Obviously, ∫
Rn

∫
Rn

u(x)− u(z)
|x− z|N+2s

θ(x− z)v(x) dz dx

=
∫

Rn

∫
Rn

u(x)− u(t)
|x− t|N+2s

θ(x− t)v(x) dt dx

=
∫

Rn

∫
Rn

u(x)− u(y)
|x− y|N+2s

θ(x− y)v(x) dy dx

=
∫

Rn

∫
Rn

u(y)− u(x)
|x− y|N+2s

θ(x− y)v(y) dy dx.

(3.9)

It follows from (3.7), (3.8) and (3.9) that∫
RN

−Lsθu(x)v(x)dx

=
∫

Rn

∫
Rn

u(x)− u(y)
|x− y|N+2s

θ(x− y)v(x) dy dx+
∫

Rn

∫
Rn

u(y)− u(x)
|x− y|N+2s

θ(x− y)v(y) dy dx

=
∫

Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

θ(x− y) dy dx.

This, combined with (3.6) yields∫
RN

−Lsθuf (x)v(x)dx+
∫

Ω

(h(x, uf (x))− f(x))v(x)dx = 0, ∀v ∈ Hs(Ω).

Thus, uf is a solution of problem (1.1).
Next, we show that uf is the unique solution of (1.1). Assume that w ∈ Hs(Ω)

is another solution of (1.1) and uf 6= w. Then

‖uf − w‖ > 0. (3.10)

Since h(x, ·) is non-decreasing,∫
Ω

(h(x, uf )− h(x,w))(uf − w)dx ≥ 0. (3.11)

From (3.6) we obtain that for every v ∈ Hs(Ω),∫
RN

∫
RN

(uf (x)− uf (y))(v(x)− v(y))
|x− y|N+2s

θ(x− y) dx dy +
∫

Ω

h(x, uf )vdx =
∫

Ω

fv dx,

(3.12)∫
RN

∫
RN

(w(x)− w(y))(v(x)− v(y))
|x− y|N+2s

θ(x− y) dx dy +
∫

Ω

h(x,w)vdx =
∫

Ω

fv dx.

(3.13)
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From these two equalities, we obtain that for every v ∈ Hs(Ω),∫
Ω

(h(x, uf )− h(x,w))vdx

=
∫

RN

∫
RN

(w(x)− uf (x)− w(y) + uf (y))(v(x)− v(y))
|x− y|N+2s

θ(x− y) dx dy.

Let v = uf − w we have∫
Ω

(h(x, uf )− h(x,w))(uf − w)dx

=
∫

RN

∫
RN

−(v(x)− v(y))2

|x− y|N+2s
θ(x− y) dx dy

≤ −θ0‖v‖2 < 0,

(3.14)

the last inequality above comes from (3.10). So, (3.14) contradicts (3.11). There-
fore, we have proved that uf is the unique solution of (1.1). �

Let uf be the unique solution of (1.1). Recall that Ψ(f) is defined by (1.6).
considering the optimization problem (Opt*), we have the following result.

Theorem 3.2. Suppose that (H1–(H4) hold. Then for a fixed nonnegative function
f0 ∈ L∞(Ω) there exists f∗ ∈ R(f0) which solves the minimization optimization
problem (Opt*), i.e.,

Ψ(f∗) = inf
f∈R(f0)

Ψ(f).

Proof. Let A = inff∈R(f0) Ψ(f), then A is well-defined. Indeed, for each f ∈ R(f0),
we have

Ψ(f) =
1
2

(∫
RN

∫
RN

(uf (x)− uf (y))2

|x− y|N+2s
θ(x− y) dx dy

)
+
∫

Ω

H(x, uf )dx−
∫

Ω

fuf dx

≥ θ0

2
‖uf‖2 − C(‖f‖∞‖uf‖+ ‖uf‖l+1).

(3.15)

Noting that ‖f‖∞ = ‖f0‖∞ and l + 1 < 2, we deduce that A must be finite.
Let {fi} ⊂ R(f0) be such that Ψ(fi)→ A as i→∞ and we denote ui = ufi

. It
follows from (3.15) that {ui} is bounded in Hs(Ω), then it has a subsequence (still
denoted {ui}) which converges weakly to u ∈ Hs(Ω) and strongly to u in L2(Ω).
On the other hand, since ‖fi‖L∞ ≡ ‖f0‖L∞ , {fi} is bounded in L2(Ω), it must
contain a subsequence (still denoted {fi}) converging weakly to some f̄ ∈ R(f0),
the weak closure of R(f0) in L2(Ω). Then∣∣ ∫

Ω

(fi − f̄)udx
∣∣→ 0 as i→∞,

since u ∈ L2(Ω). It follows from the Hölder inequality that∣∣ ∫
Ω

(fiui − f̄u)dx
∣∣ ≤ ∣∣ ∫

Ω

fi(ui − u)dx
∣∣+
∣∣ ∫

Ω

(fi − f̄)udx
∣∣

≤ ‖fi‖2‖ui − u‖2 +
∣∣ ∫

Ω

(fi − f̄)u dx
∣∣→ 0

(3.16)
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as i → ∞. By (3.5), (3.16) and the weak lower semi-continuity of the norm in
Hs(Ω), we obtain

A = lim
i→∞

Ψ(fi)

≥ 1
2

(
∫

RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy)

+
∫

Ω

H(x, u)dx−
∫

Ω

f̄udx.

(3.17)

From Lemma 2.5 we infer the existence of f̂ ∈ R(f0) which maximizes the linear
functional

∫
Ω
hudx, relative to h ∈ R(f0). As a consequence,∫

Ω

f̄udx ≤
∫

Ω

f̂udx.

Combining this with (3.17), we obtain

A ≥ 1
2

(
∫

RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy) +

∫
Ω

H(x, u)dx−
∫

Ω

f̂u dx. (3.18)

By Proposition 3.1,

Ψ(f̂) = inf
v∈Hs(Ω)

(1
2

∫
RN

∫
RN

(v(x)− v(y))2

|x− y|N+2s
θ(x− y) dx dy +

∫
Ω

(H(x, v)− f̂v)dx
)

≤ 1
2

∫
RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy +

∫
Ω

(H(x, u)− f̂u)dx.

(3.19)
It follows from (3.18) and (3.19) that Ψ(f̂) ≤ A.

On the other hand, recall that A = inff∈R(f0) Ψ(f) and f̂ ∈ R(f0), we must
have A ≤ Ψ(f̂). So that A = Ψ(f̂). We complete the proof by letting f∗ = f̂ . �

4. Maximization and minimization related to (1.3)

In this section, we consider two optimization problems (Opt1) and (Opt2) related
to (1.3). The energy functional of (1.3) is

J(u) =
1
2

(
∫

RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy)−

∫
Ω

f(x)u(x)dx.

It is easy to see J ∈ C1(Hs(Ω),R) and

J ′(u)v =
∫

RN

∫
RN

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

θ(x− y) dx dy −
∫

Ω

f(x)v(x)dx.

u ∈ Hs(Ω) is a solution of the problem (1.3) if and only if J ′(u)v = 0,∀v ∈ Hs(Ω).
By proposition 3.1, we have the following result.

Proposition 4.1. Assume that θ satisfies (H3) and (H4). Then for each f in
L∞(Ω), (1.3) has a unique solution uf ∈ Hs(Ω), and J(uf ) = infv∈Hs(Ω) J(v).

Remark 4.2. Since J ′(uf )uf = 0,∫
RN

∫
RN

(uf (x)− uf (y))2

|x− y|N+2s
θ(x− y) dx dy =

∫
Ω

f(x)uf (x) dx. (4.1)
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Recall that Φ(f) =
∫

Ω
fufdx, we have

Φ(f)

= −2
(1

2

∫
RN

∫
RN

(uf (x)− uf (y))2

|x− y|N+2s
θ(x− y) dx dy −

∫
Ω

f(x)uf (x)dx
)

= −2 inf
v∈Hs(Ω)

(1
2

∫
RN

∫
RN

(v(x)− v(y))2

|x− y|N+2s
θ(x− y) dx dy −

∫
Ω

f(x)v(x)dx
)

= −2J(uf ).

Theorem 4.3. Assume that θ satisfies (H3) and (H4). Then for each non-negative
function f0 ∈ L∞(Ω), there exists f1 ∈ R(f0) which solves the maximization opti-
mization problem (Opt1), i.e.,

Φ(f1) =
∫

Ω

f1u1 dx = sup
f∈R(f0)

∫
Ω

fuf dx= sup
f∈R(f0)

Φ(f)

where u1 = uf1 . Moreover, if s = 1
2 then there exists an increasing function φ such

that f1 = φ(u1) almost everywhere in Ω.

Proof. Let

M = sup
f∈R(f0)

∫
Ω

fuf dx.

We first show that M is finite. Let f ∈ R(f0). From (H4), (4.1) and Hölder’s
inequality we find

θ0‖uf‖2 ≤
∫

RN

∫
RN

(uf (x)− uf (y))2

|x− y|N+2s
θ(x− y) dx dy

=
∫

Ω

fuf dx ≤ ‖f‖∞‖uf‖1.
(4.2)

Since ‖f‖∞ = ‖f0‖∞, it follows from (4.2) and Lemma 2.1 that M is finite.
Let {fi} be a maximizing sequence and let ui = ufi

. From (4.2) it is clear
that {ui} is bounded in Hs(Ω), hence it has a subsequence (still denoted {ui})
that converges weakly to u ∈ Hs(Ω). We also infer that {ui} converges strongly
to u in L2(RN ). On the other hand, since {fi} is bounded in L∞(Ω), it must
contain a subsequence(still denoted {fi}) converging weakly to f̄ ∈ L2(Ω). Note
that f̄ ∈ R(f0), the weak closure of R(f0) in L2(Ω). Thus, using the weak lower
semi-continuity of the Hs(Ω) norm and (3.2) we obtain

M = lim
i→∞

∫
Ω

fiui dx

= lim
i→∞

(
∫

Ω

2fiui dx−
∫

RN

∫
RN

(ui(x)− ui(y))2

|x− y|N+2s
θ(x− y) dx dy)

≤
∫

Ω

2f̄udx−
∫

RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy.

(4.3)

Note that from Lemma 2.5 we infer the existence of f̂ ∈ R(f0) that maximizes the
linear functional

∫
Ω
hu dx, relative to h ∈ R(f0). As a consequence we obtain∫

Ω

f̄u dx ≤
∫

Ω

f̂u dx. (4.4)
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Applying (4.1), (4.3) and (4.4) we find

M ≤
∫

Ω

2f̂udx−
∫

RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
θ(x− y) dx dy

≤
∫

Ω

2f̂ û dx−
∫

RN

∫
RN

(û(x)− û(y))2

|x− y|N+2s
θ(x− y) dx dy

=
∫

Ω

f̂ û dx ≤M

where û = uf̂ . Thus let f1 = f̂ we complete the first part of the proof.
We then show that f1 is also a maximizer of the functional

∫
Ω
hu1dx, relative to

h ∈ R(f0). In fact, we notice that for each g ∈ R(f0),∫
Ω

f1u1dx≥
∫

Ω

gugdx

≥
∫

Ω

2gu1dx−
∫

RN

∫
RN

(u1(x)− u1(y))2

|x− y|N+2s
θ(x− y) dx dy

=
∫

Ω

2gu1dx−
∫

Ω

f1u1dx,

which implies that ∫
Ω

f1u1dx ≥
∫

Ω

gu1dx, ∀g ∈ R(f0). (4.5)

If g ∈ R(f0) then we may choose a sequence {gn} ⊂ R(f0) such that {gn} converge
weakly to g in L2(Ω). By (4.5), we obtain∫

Ω

f1u1 dx ≥
∫

Ω

gnu1dx→
∫

Ω

gu1 dx

as n→∞. So that ∫
Ω

f1u1 dx ≥
∫

Ω

gu1 dx, ∀g ∈ R(f0) (4.6)

and our claim is valid.
Let E = {x ∈ Ω : f1(x) = 0} and define S = supx∈E(u1(x)), we claim that

u1(x) ≥ S on Ec almost everywhere. Arguing by contradiction suppose the claim
is false. Therefore there exists a number S1 < S and a subset A of Ec with |A| > 0
such that u1(x) < S1 on A almost everywhere. Now let S1 < S2 < S. We can
find a set D of positive measure contained in E such that u1(x) > S2 on D almost
everywhere. We can assume |A| = |D|. Next, consider a measure-preserving map
T : A→ D. Using T we define a particular rearrangement of f1, denoted by f , as
follows:

f =


f1(Tx) x ∈ A,
f1(T−1x) x ∈ D,
f1(x) x ∈ Ω\(A ∪D).

Thus ∫
Ω

fu1dx−
∫

Ω

f1u1dx

=
∫
A

S
D

fu1dx−
∫
A∪D

f1u1dx
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=
∫
A

fu1dx+
∫
A

(u1 ◦ T )f1dx−
∫
A

f1u1dx−
∫
A

(u1 ◦ T )fdx

=
∫
A

(u1 ◦ T − u1)(f1 − f)dx > (S2 − S1)
∫
A

f1dx > 0.

Therefore
∫

Ω
fu1dx >

∫
Ω
f1u1dx, which contradicts (4.6).

Since s = 1
2 , by Lemma 2.6 we know that u1 has no level set of positive measure

on Ec, then by Lemma 2.3 we infer the existence of an increasing function φ1 such
that φ1(u1) is a rearrangement of f1 on Ec. Now we define an increasing function
φ2 as

φ2(t) =

{
0 t < S,

φ1(t) t ≥ S.
It is easy to check that φ2(u1) is a rearrangement of f1 on Ω. By (4.6) and Lemma
2.4 we infer that f1 = φ2(u1), so that we complete the proof. �

Theorem 4.4. Suppose that f0 is positive, θ(x) ≡ m ≥ θ0 and s = 1/2. Then there
exists f2 ∈ R(f0) which solves the minimization optimization problem (Opt2), i.e.,

Φ(f2) =
∫

Ω

f2u2 dx = inf
f∈R(f0)

∫
Ω

fuf dx= inf
f∈R(f0)

Φ(f)

where u2 = uf2 .

We need some lemmas before we give the proof of the above theorem.

Lemma 4.5. The functional Φ|R(f0)
is strictly convex.

Proof. Let g, h ∈ R(f0) and v ∈ Hs(Ω), then for all t ∈ (0, 1), we have

2
∫

Ω

(tg + (1− t)h)vdx−m‖v‖2

= t
(∫

Ω

2gvdx−m‖v‖2
)

+ (1− t)
(∫

Ω

2hvdx−m‖v‖2
)
.

By (1.4) and (1.5), and taking the superior relative to v ∈ Hs(Ω) in both sides of
the above equality, we obtain

Φ(tg + (1− t)h) ≤ tΦ(g) + (1− t)Φ(h);

that is, the convexity of Φ has been proved. Now, suppose that equality holds in
the above inequality for some t ∈ (0, 1). Then, denote by ut the solution of the
problem (1.3) corresponding to tg + (1− t)h, we have

t
(∫

Ω

2gut dx−m‖ut‖2
)

+ (1− t)
(∫

Ω

2hut dx−m‖ut‖2
)

= t
(∫

Ω

2gug dx−m‖ug‖2
)

+ (1− t)
(∫

Ω

2huh dx−m‖ug‖2
)
.

It follows that ∫
Ω

2gut dx−m‖ut‖2 =
∫

Ω

2gug dx−m‖ug‖2,∫
Ω

2hut dx−m‖ut‖2 =
∫

Ω

2huh dx−m‖uh‖2.
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By the uniqueness of the minimizer of the functional J , we must have ut = ug = uh.
Moreover, since

m

∫
RN

∫
RN

(ug(x)− ug(y))(v(x)− v(y))
|x− y|N+2s

dx dy =
∫

Ω

g(x)v(x)dx, ∀v ∈ Hs(Ω),

m

∫
RN

∫
RN

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2s

dx dy =
∫

Ω

h(x)v(x)dx, ∀v ∈ Hs(Ω),

if ug = uh, we must have g(x) = h(x) a.e. in Ω, and the strict concavity is
proved. �

Lemma 4.6. The functional Φ|R(f0)
is weakly continuous.

Proof. Suppose {gi} ⊂ R(f0) and gi ⇀ g ∈ R(f0). If ui and ug are the corre-
sponding solutions of (1.3) we have

Φ(g) +
∫

Ω

2(gi − g)ug dx =
∫

Ω

2giugdx−m‖ug‖2

≤ Φ(gi)

=
∫

Ω

2guidx−m‖ui‖2 +
∫

Ω

2(gi − g)ui dx

≤ Φ(g) +
∫

Ω

2(gi − g)ui dx.

We have

lim
i→∞

∫
Ω

(gi − g)ugdx = 0.

We only need to prove that

lim
i→∞

∫
Ω

(gi − g)uidx = 0. (4.7)

Since J(ui) ≤ J(0) = 0 and

J(ui) ≥
m

2
‖ui‖2 − C‖gi‖‖ui‖,

it follows that {ui} is bounded in Hs(Ω). Hence,∣∣ ∫
Ω

(gi − g)ui dx
∣∣ ≤ C‖ui‖ ≤ C.

Now we can choose a subsequence {unj
} such that

lim
j→∞

∣∣ ∫
Ω

(gnj
− g)unj

dx
∣∣ = lim sup

i→∞

∣∣ ∫
Ω

(gi − g)ui dx
∣∣.

Noting that {unj
} is also bounded in Hs(Ω), going if necessary to a subsequence,

we may assume that unj
⇀ u in Hs(Ω) and unj

→ u in L2(Ω) as j → ∞. By the
Hölder inequality, we obtain∣∣ ∫

Ω

(gnj
− g)unj

dx
∣∣ ≤ ∣∣ ∫

Ω

(gnj
− g)(unj

− u)dx
∣∣+
∣∣ ∫

Ω

(gnj
− g)udx

∣∣
≤ ‖gnj − g‖L2‖unj − u‖L2 +

∣∣ ∫
Ω

(gnj − g)udx
∣∣→ 0
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as j →∞. So that

0 ≤ lim inf
i→∞

∣∣ ∫
Ω

(gi − g)ui dx
∣∣ ≤ lim sup

i→∞

∣∣ ∫
Ω

(gi − g)ui dx
∣∣ ≤ 0,

which implies (4.7), and then Φ(gi)→ Φ(g). �

Proof of Theorem 4.4. Denote by R(f0) the weak closure of R(f0) in L2(Ω), then
R(f0) is convex and weakly compact in L2(Ω) by Lemma 2.2. By using Lemma
4.5 and Lemma 4.6, one can prove easily that Φ has a unique minimizer in R(f0).
Let g ∈ R(f0) be the minimizer of Φ. If g ∈ R(f0) and 0 < t < 1 we have
gt = tg + (1− t)g ∈ R(f0). By the minimality condition, we have

Φ(g) ≤ Φ(gt). (4.8)

If ug, ug and ut are solutions of (1.3) corresponding to g, g and gt, respectively, we
have

ut = tug + (1− t)ug.
Therefore, by (1.4) (1.5) and (4.8), we have∫

RN

∫
RN

(ug(x)− ug(y))2

|x− y|N+2s
dx dy

≤
∫

RN

∫
RN

( t(ug(x)− ug(y)) + (1− t)(ug(x)− ug(y))

|x− y|N+2s
2

)2

dx dy.

After simplification, we obtain

(1 + t)
∫

RN

∫
RN

(ug(x)− ug(y))2

|x− y|N+2s
dx dy

≤ 2t
∫

RN

∫
RN

(ug(x)− ug(y))(ug(x)− ug(y))

|x− y|N+2s
dx dy

+ (1− t)
∫

RN

∫
RN

(ug(x)− ug(y))2

|x− y|N+2s
dx dy.

Letting t→ 1, we find∫
RN

∫
RN

(ug(x)− ug(y))2

|x− y|N+2s
dx dy ≤

∫
RN

∫
RN

(ug(x)− ug(y))(ug(x)− ug(y))

|x− y|N+2s
dx dy.

We can rewrite the latter inequality as∫
Ω

gugdx ≤
∫

Ω

gugdx, ∀g ∈ R(f0).

Since f0 is positive it is easy to deduce that g > 0 a.e. x ∈ Ω. By Lemma 2.6
we have that each level set of ug has zero measure. By Lemmas 2.3 and 2.4, there
exists a decreasing function φ such that φ ◦ ug is a rearrangement of g and the
unique minimizer of the linear functional

∫
Ω
gugdx, related to g ∈ R(f0). So that

g = φ ◦ ug ∈ R(f0). We complete the proof by letting f2 = g. �
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