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POSITIVE ALMOST PERIODIC SOLUTIONS TO INTEGRAL
EQUATIONS WITH SUPERLINEAR PERTURBATIONS VIA A

NEW FIXED POINT THEOREM IN CONES

JING-YUN ZHAO, HUI-SHENG DING, GASTON M. N’GUÉRÉKATA

Abstract. In this article, we establish a new fixed point theorem for nonlinear

operators with superlinear perturbations in partially ordered Banach spaces,

Then we use the fixed point theorem to prove the existence of positive almost
periodic solutions to some integral equations with superlinear perturbations.

Also, a concrete example is given to illustrate our results.

1. Introduction

Cooke and Kaplan [6] initiated the study on the nonlinear delay integral equation

x(t) =
∫ t

t−τ
f(s, x(s))ds, (1.1)

which is a model for the spread of some infectious diseases. Afterwards, Fink
and Gatica [12] firstly studied the existence of positive almost periodic solution
to equation (1.1). Since the work of Fink and Gatica, there has been of great
interest for many mathematicians to study the existence of positive almost periodic
type solutions to (1.1). There is a large body of literature on this topic (see, e.g.,
[1, 2, 3, 4, 5, 8, 10, 13, 14, 16] and references therein).

Among the above references on almost periodic type solutions to (1.1), there are
several interesting works on generalized variants of equation (1.1). For example,
Ait Dads and Ezzinbi [1] considered the neutral integral equation

x(t) = γx(t− τ) + (1− γ)
∫ t

t−τ
f(s, x(s))ds, (1.2)

Ait Dads and Ezzinbi [2] studied the infinite delay integral equation

x(t) =
∫ t

−∞
a(t− s)f(s, x(s))ds, (1.3)

and Ait Dads et al [4] generalized equation (1.3), i.e., they discussed the more
general infinite delay integral equation

x(t) =
∫ t

−∞
a(t, t− s)f(s, x(s))ds. (1.4)
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In fact, (1.1) is also a special case of equation (1.4). This is so because if

a(t, s) =

{
1 s ∈ [0, τ ], t ∈ R,
0 s > τ, t ∈ R,

then (1.4) becomes (1.1).
Motivated by the ideas in [1] and [4], Ding, Chen, and N’Guérékata [8] studied

the integral equation

x(t) = α(t)x(t− β) +
∫ t

−∞
a(t, t− s)f(s, x(s))ds+ h(t, x(t)), (1.5)

which unifies (1.1)-(1.4). Recently, Bellour and Ait Dads [5] studied the nonlinear
integro-differential equation with neutral delay

x(t) = γx(t− σ(t)) + (1− γ)
∫ t

t−σ(t)

f(s, x(s), x′(s))ds. (1.6)

As noted in [4] and [5], the above variants of (1.1) include many important integral
and functional equations that arise in biomathematics.

Very recently, the authors of this paper [16] studied the existence of S-asymptotically
periodic solutions for the delay integral equation with superlinear perturbations

x(t) = α(t)xn(t− β) +
∫ t

t−τ(t)

f(s, x(s))ds, (1.7)

where n ≥ 1. We aim is to make further study on this direction, i.e., we aim to in-
vestigate the existence of positive almost periodic solution to the integral equations
with superlinear perturbations,

x(t) = α(t)xn(t− β) +
∫ t

−∞
a(t, t− s)f(s, x(s))ds+ h(t, x(t)), (1.8)

where n ≥ 1. We will use a different method from [16]. In fact, we will first establish
a new fixed point theorem for nonlinear operators with superlinear perturbations in
partially ordered Banach spaces, and then apply the obtained fixed point theorem
to equation (1.8).

2. Preliminaries

Throughout the rest of this paper, we denote by N the set of positive integers,
by R the set of all real numbers, by R+ the set of nonnegative real numbers, by X
a real Banach space with the norm ‖ · ‖, by Ω a subset of X, by L1(R+) the set of
all Lebesgue measurable functions f : R→ R+ with

∫
R |f(t)|dt < +∞ and denote

‖f‖L1(R+) =
∫

R
|f(t)|dt.

Next, let us recall some definitions, notation and basic results about almost periodic
functions. For more details, we refer the reader to [11, 15].

Definition 2.1. A continuous function f : R → X is called almost periodic if for
every ε > 0 there exists l(ε) > 0 such that every interval I of length l(ε) contains
a number τ with the property that

sup
t∈R
‖f(t+ τ)− f(t)‖ < ε.

We denote by AP (X) the set of all such functions.
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Definition 2.2. A continuous function f : R×Ω→ X is called almost periodic in
t uniformly for x ∈ Ω if for every ε > 0 and for every compact subset K ⊂ Ω there
exists l(ε,K) > 0 such that every interval I of length l(ε,K) contains a number τ
with the property that

sup
t∈R,x∈K

‖f(t+ τ, x)− f(t, x)‖ < ε.

We denote by AP (R× Ω, X) the set of all such functions.

Lemma 2.3 ([15]). The following assertions hold:
(a) AP(X) is a Banach space equipped with the supremum norm.
(b) f, g ∈ AP (R) implies that f · g ∈ AP (R) .
(c) f ∈ AP (X) implies that f(· − c) ∈ AP (X) for every c ∈ R.

Lemma 2.4 ([15]). Let f ∈ AP (R × Ω, X), g ∈ AP (X) and g(R) ⊂ Ω. Then
f(·, g(·)) ∈ AP (X).

Lemma 2.5 ([4]). Let f ∈ AP (R) and a : R × R+ → R+ satisfying t 7→ a(t, ·)
being in AP (L1(R+)). Then, F ∈ AP (R), where F (t) =

∫ t
−∞ a(t, t− s)f(s)ds for

all t ∈ R.

We also need to recall some basic notation about cones (for more details, we
refer the reader to [7]). Let X be a real Banach space, and θ be the zero element in
X. A closed and convex set K in X is called a cone if the following two conditions
are satisfied:

(i) if x ∈ K, then λx ∈ K for every λ ≥ 0;
(ii) if x ∈ K and −x ∈ K, then x = θ.

A cone K induces a partial ordering ≤ in X by

x ≤ y if and only if y − x ∈ K.

For any given u, v ∈ K with u ≤ v,

[u, v] := {x ∈ X|u ≤ x ≤ v}.

A cone K is called normal if there exists a constant k > 0 such that

θ ≤ x ≤ y implies ‖x‖ ≤ k‖y‖.

We denote by Ko the interior of K. A cone K is called a solid cone if Ko 6= ∅.
An operator T : K → K is called increasing if θ ≤ x ≤ y implies Tx ≤ Ty, and

is called decreasing if θ ≤ x ≤ y implies Tx ≥ Ty.

3. Main results

The following theorem is a generalization of [8, Theorem 3.1] and [9, Theorem
2.1]. As one will see, although the organization of the proof is more or less similar
to that of [8, Theorem 3.1], the proof is more tricky and more delicate.

Theorem 3.1. Let n ≥ 1 be a constant, K be a normal solid cone in a real Banach
space X, and A be an operator defined on K ×K ×K by

A(x, y, z) = B(x, y, z) +D(x), x, y, z ∈ K,

where B : K ×K ×K → K and D : K → K. Assume that the following conditions
hold:
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(H1) For every x, y, z ∈ Ko, B(·, y, z) is increasing in Ko, B(x, ·, z) is decreasing
in Ko, and B(x, y, ·) is decreasing in Ko. Moreover, D : Ko → Ko is an
increasing operator and D(tx) = tnD(x) for every x ∈ Ko and t > 0.

(H2) There exist x0, y0 ∈ Ko with x0 ≤ y0, A(x0, y0, x0) ≥ x0 and A(y0, x0, y0) ≤
y0.

(H3) For every x, y, z ∈ [t0x0, t
−1
0 y0], B(x, y, z) ∈ Ko, where t0 = sup{t > 0 :

x0 ≥ ty0}.
(H4) There exists a function ϕ : (0, 1)×Ko×Ko → (0,+∞) such that for every

t ∈ (0, 1) and x, y, z ∈ [t0x0, t
−1
0 y0],

B(tx, t−1y, z) ≥ ϕ(t, x, y)B(x, y, z) and ϕ(t, x, y) > εt0(t− tn) + t,

where ελ = inf{t > 0 : D(λ−1y0) ≤ tB(λx0, λ
−1y0, λ

−1y0)} for every λ ∈
[t0, 1]. Moreover, it holds

inf
x,y∈[x0,y0]

ϕ(t, x, y) > εt0(t− tn) + t, t ∈ (0, 1). (3.1)

(H5) There exists a constant L > 0 such that for all x, y, z1, z2 ∈ Ko with z1 ≥ z2,

B(x, y, z1)−B(x, y, z2) ≥ −L(z1 − z2). (3.2)

Then A has a unique fixed point x∗ in [x0, y0], i.e., A(x∗, x∗, x∗) = x∗.

Proof. It is easy to see that for every x, y, z ∈ Ko, A(·, y, z) is increasing in Ko,
A(x, ·, z) is decreasing in Ko, and A(x, y, ·) is decreasing in Ko. Note that

ελ = inf{t > 0 : D(λ−1y0) ≤ tB(λx0, λ
−1y0, λ

−1y0)}, λ ∈ [t0, 1],

it is easy to see that

D(λ−1y0) ≤ ελB(λx0, λ
−1y0, λ

−1y0).

Then, for every x, y, z ∈ [λx0, λ
−1y0], we have

D(x) ≤ D(λ−1y0) ≤ ελB(λx0, λ
−1y0, λ

−1y0) ≤ ελB(x, y, z),

Thus, it holds
A(x, y, z) ≤ (1 + ελ)B(x, y, z)

i.e.,

B(x, y, z) ≥ 1
1 + ελ

A(x, y, z), λ ∈ [t0, 1], x, y, z ∈ [λx0, λ
−1y0].

In addition, it follows from the definition of ελ that ελ is decreasing in λ. We divide
the remaining proof by three steps.
Step 1. In view of the above observations and (H4), for every λ ∈ [t0, 1], x, y, z ∈
[λx0, λ

−1y0] and t ∈ (0, 1), we have

A(tx, t−1y, z) = B(tx, t−1y, z) +D(tx)

≥ ϕ(t, x, y)B(x, y, z) + tnD(x)

= tA(x, y, z) + [ϕ(t, x, y)− t]B(x, y, z) + (tn − t)D(x)

≥ tA(x, y, z) + [ϕ(t, x, y)− t]B(x, y, z)− ελ(t− tn)B(x, y, z)

= tA(x, y, z) + [ϕ(t, x, y)− t− ελ(t− tn)]B(x, y, z)

≥ tA(x, y, z) +
ϕ(t, x, y)− t− ελ(t− tn)

1 + ελ
A(x, y, z)

= φλ(t, x, y)A(x, y, z),

(3.3)
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where for every λ ∈ [t0, 1], φλ is defined by

φλ(t, x, y) = t+
ϕ(t, x, y)− t− ελ(t− tn)

1 + ελ
, t ∈ (0, 1), x, y ∈ [λx0, λ

−1y0].

By (H4), for every λ ∈ [t0, 1], x, y ∈ [λx0, λ
−1y0] and t ∈ (0, 1), it holds

ϕ(t, x, y) > εt0(t− tn) + t ≥ ελ(t− tn) + t,

which means that
φλ(t, x, y) > t. (3.4)

Moreover, by (3.1),

inf
x,y∈[x0,y0]

φ1(t, x, y) > t, t ∈ (0, 1). (3.5)

Step 2. By using (H5) and a similar proof to [9, Theorem 2.1], one can show that
for every x, y ∈ [t0x0, t

−1
0 y0], there exists a unique point in [t0x0, t

−1
0 y0], which we

denote by Ψ(x, y), such that

A(x, y,Ψ(x, y)) = Ψ(x, y).

Also, Ψ(·, y) is increasing, and Ψ(x, ·) is decreasing. Moreover, for every λ ∈ [t0, 1]
and x, y ∈ [λx0, λ

−1y0], it holds

Ψ(x, y) ∈ [λx0, λ
−1y0].

Then, combining (3.3) with the fact that A is decreasing for the third argument,
for every λ ∈ (t0, 1], it holds

Ψ(tx, t−1y) = A(tx, t−1y,Ψ(tx, t−1y))

≥ A(tx, t−1y,Ψ(x, y))

≥ φλ(t, x, y)A(x, y,Ψ(x, y))

= φλ(t, x, y)Ψ(x, y),

(3.6)

for all t ∈ [ t0λ , 1) and x, y ∈ [λx0, λ
−1y0]. Moreover, denoting φt0(1, x, y) = 1, (3.6)

holds for λ ∈ [t0, 1], t ∈ [ t0λ , 1] and x, y ∈ [λx0, λ
−1y0].

Step 3. Let u0 = x0, v0 = y0 and

un = Ψ(un−1, vn−1), vn = Ψ(vn−1, un−1), n ∈ N.

It follows from Step 2 that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.

Let tn = sup{t > 0 : un ≥ tvn}, n ∈ N. Then, un ≥ tnvn, n ∈ N, and

0 < t0 ≤ t1 ≤ · · · ≤ tn ≤ · · · ≤ 1.

Let ξ = limn→∞ tn. Next, we prove ξ = 1 by contradiction, i.e., we assume that
ξ ∈ (0, 1). Noting that ξ ≥ t0, ξvn, un

ξ ∈ [ξx0, ξ
−1y0] and tn

ξ ∈ [ t0ξ , 1], by using
(3.6), we obtain

un+1 = Ψ(un, vn)

≥ Ψ(tnvn, t−1
n un)

≥ Ψ
( tn
ξ
· ξvn,

ξ

tn
· un
ξ

)
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≥ φξ
( tn
ξ
, ξvn,

un
ξ

)
Ψ
(
ξvn,

un
ξ

)
≥ tn

ξ
Ψ
(
ξvn,

un
ξ

)
.

Again by using (3.6), we have

Ψ(ξvn, ξ−1un) ≥ φ1(ξ, vn, un)Ψ(vn, un) = φ1(ξ, vn, un)vn+1.

Then, we have un+1 ≥ tn
ξ φ1(ξ, vn, un)vn+1, and thus

tn+1 ≥
φ1(ξ, vn, un)

ξ
tn ≥

infx,y∈[x0,y0] φ1(ξ, x, y)
ξ

tn,

which contradicts with limn→∞ tn = ξ since infx,y∈[x0,y0] φ1(ξ,x,y)

ξ > 1 by (3.5).
In view of

0 ≤ un+p − un ≤ vn − un ≤ vn − tnvn ≤ (1− tn)v0, n, p ∈ N,

we conclude that un is convergent in X, and we denote limn→∞ un = x∗. In
addition, noting that un ≤ x∗ for all n ∈ N, we have

0 ≤ vn − x∗ ≤ vn − un ≤ (1− tn)v0, n ∈ N,

which means that limn→∞ vn = x∗. Moreover, by the monotonicity of Ψ, it is not
difficult to show that Ψ(x∗, x∗) = x∗, and x∗ is a unique fixed point of Ψ in [x0, y0].

Combining Step 2 and Step 3, one obtains

x∗ = Ψ(x∗, x∗) = A(x∗, x∗,Ψ(x∗, x∗)) = A(x∗, x∗, x∗).

Also, x∗ is the unique fixed point of A in [x0, y0]. �

Now, we are ready to establish our existence result for equation (1.8), i.e.,

x(t) = α(t)xn(t− β)) +
∫ t

−∞
a(t, t− s)f(s, x(s))ds+ h(t, x(t)), t ∈ R.

For convenience, we denote by AP (R×R+,R+) the set of all nonnegative functions
in AP (R× R+,R).

Theorem 3.2. Assume that the function f in (1.8) admits the decomposition:

f(t, x) =
p∑
i=1

fi(t, x)gi(t, x), t ∈ R, x ∈ R+

for some p ∈ N. Moreover, the following conditions hold:

(H6) α ∈ AP (R) with positive infimum. fi, gi, h ∈ AP (R × R+,R+) (i =
1, 2, . . . , p) satisfy that for every t ∈ R and i ∈ {1, 2, . . . , p}, fi(t, ·) is
increasing in R+, gi(t, ·) is decreasing in R+, and h(t, ·) is decreasing in
R+. In addition, there exists a constant L > 0 such that

h(t, z1)− h(t, z2) ≥ −L(z1 − z2), ∀t ∈ R, ∀z1 ≥ z2 ≥ 0.

(H7) a is a function from R × R+ to R+ and the function t 7→ a(t, ·) is in
AP (L1(R+)).
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(H8) There exist two constants d0 > c0 > 0 such that

inf
t∈R

∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, c0)gi(s, d0)ds ≥ c0,

‖α‖dn0 + sup
t∈R

[ ∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, d0)gi(s, c0)ds+ h(t, d0)
]
≤ d0.

(H9) There exist ϕi, ψi : (0, 1)× (0,+∞)→ (0, 1] such that

fi(t, λx) ≥ ϕi(λ, x)fi(t, x), and gi(t, λ−1y) ≥ ψi(λ, y)gi(t, y),

for all x, y > 0, λ ∈ (0, 1), t ∈ R and i ∈ {1, 2, . . . , p}. Moreover,

inf
x,y∈[

c20
d0
,

d2
0

c0
]

ϕi(λ, x)ψi(λ, y) > γ(λ− λn) + λ, λ ∈ (0, 1), i = 1, 2, . . . , p,

where

γ =
‖α‖(d

2
0
c0

)n

inft∈R
[ ∫ t
−∞ a(t, t− s)

∑p
i=1 fi

(
s,

c20
d0

)
gi
(
s,
d20
c0

)
ds+ h

(
t,
d20
c0

)] .
Then (1.8) has an almost periodic solution with positive infinimum.

Proof. Let K = {x ∈ AP (R) : inft∈R x(t) ≥ 0}. It is easy to verify that K is a
normal and solid cone in AP (R), and Ko = {x ∈ AP (R) : inft∈R x(t) > 0}. For
x, y, z ∈ Ko and t ∈ R, define D(x)(t) = α(t)xn(t− β),

B(x, y, z)(t) =
∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, x(s))gi(s, y(s))ds+ h(t, z(t)),

and A(x, y, z) = B(x, y, z) +D(x).
Next, we verify all the assumptions of Theorem 3.1. By (H6), (H7), Lemmas

2.3–2.5, it is not difficult to show that B is an operator from K ×K ×K to K and
D is an operator from K to K. Also, it follows directly from (H6) that assumptions
(H1) and (H5) hold. In addition, taking x0(t) ≡ c0 and y0(t) ≡ d0, assumption
(H2) follows from (H8).

Let us verify (H3). It is easy to see t0 = c0
d0

. For every x, y, z ∈ [t0x0, t
−1
0 y0], we

have

B(x, y, z)(t) ≥
∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, t0x0)gi(s, t−1
0 y0)ds

=
∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, t0c0)gi(s, t−1
0 d0)ds

≥
∫ t

−∞
a(t, t− s)

p∑
i=1

ϕi(t0, c0)ψi(t0, d0)fi(s, c0)gi(s, d0)ds

≥ t0
∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, c0)gi(s, d0)ds

≥ t0c0 > 0, t ∈ R,

which means that B(x, y, z) ∈ Ko. Thus, assumption (H3) holds.
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It remains to show that (H4) holds. For x, y ∈ Ko, we denote

(x, y)− = min{inf
t∈R

x(t), inf
t∈R

y(t)}, (x, y)+ = max{sup
t∈R

x(t), sup
t∈R

y(t)}.

Then, by (H9), for all x, y > 0, λ ∈ (0, 1), t ∈ R and i ∈ {1, 2, . . . , p},

fi(t, λx) ≥ ϕi(λ, x)fi(t, x), and gi(t, λ−1y) ≥ ψi(λ, y)gi(t, y),

which yields that for every t ∈ R, λ ∈ (0, 1) and x, y, z ∈ Ko,

B(λx, λ−1y, z)(t) =
∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, λx(s))gi(s, λ−1y(s))ds+ h(t, z(t))

≥ φ(λ, x, y)B(x, y, z)(t),

where
φ(λ, x, y) := min

1≤i≤p

(
inf

u,v∈[(x,y)−,(x,y)+]
ϕi(λ, u)ψi(λ, v)

)
.

By the definition of γ, for every t ∈ R, we have

D(t−1
0 y0)(t) = D

(d2
0

c0

)
(t)

≤ ‖α‖
(d2

0

c0

)n
≤ γ inf

t∈R

[ ∫ t

−∞
a(t, t− s)

p∑
i=1

fi

(
s,
c20
d0

)
gi

(
s,
d2

0

c0

)
ds+ h

(
t,
d2

0

c0

)]
≤ γB

( c20
d0
,
d2

0

c0
,
d2

0

c0

)
(t) = γB(t0x0, t

−1
0 y0, t

−1
0 y0)(t),

which means that γ ≥ εt0 . Then, by (H9), for every λ ∈ (0, 1) and x, y ∈
[t0x0, t

−1
0 y0] = [ c

2
0
d0
,
d20
c0

], it holds

φ(λ, x, y) = min
1≤i≤p

(
inf

u,v∈[(x,y)−,(x,y)+]
ϕi(λ, u)ψi(λ, v)

)
≥ min

1≤i≤p

(
inf

u,v∈[
c20
d0
,

d2
0

c0
]

ϕi(λ, u)ψi(λ, v)
)

> γ(λ− λn) + λ

≥ εt0(λ− λn) + λ.

Similarly, one can show that

inf
x,y∈[x0,y0]

φ(λ, x, y) > εt0(λ− λn) + λ, λ ∈ (0, 1).

Thus, (H4) holds.
Now, Theorem 3.1 gives that A has a unique fixed point in [c0, d0], and thus

(1.8) has an almost periodic solution with positive infinimum. �

Next, we give a simple example to show that our assumptions on (1.8) can be
satisfied.

Example 3.3. Let α(t) ≡ 1/20, n = 4/3, β = 1, a(t, s) = exp(−s2), p = 1,

f1(t, x) = (1+
| sin t+ sinπt|

30
) 3
√
x2 + x, g1(t, x) ≡ 1, h(t, x) =

sin2 t+ sin2
√

2t
20(1 + x)

.
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It is easy to see that (H6) and (H7) hold. Let c0 = 1 and d0 = 2. We have

inf
t∈R

∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, c0)gi(s, d0)ds ≥
√
π

2
3
√

2 ≥ 1 = c0,

and

‖α‖dn0 + sup
t∈R

[ ∫ t

−∞
a(t, t− s)

p∑
i=1

fi(s, d0)gi(s, c0)ds+ h(t, d0)
]

≤ 24/3

20
+

1 + 16
√
π 3
√

6
30

≤ 2 = d0,

which means that (H8) holds. Moreover, noting that

γ =
‖α‖

(d20
c0

)n
inft∈R

[ ∫ t
−∞ a(t, t− s)

∑p
i=1 fi

(
s,

c20
d0

)
gi
(
s,
d20
c0

)
ds+ h

(
t,
d20
c0

)]
≤

44/3

20
√
π

2
3

√
1
4 + 1

2

<
1
2
,

and for every λ ∈ (0, 1), x > 0, and t ∈ R,

f1(t, λx)
f1(t, x)

≥ λ2/3, λ2/3 > (λ− λ4/3) + λ,

we conclude that (H9) holds with ϕ1(λ, x) ≡ λ2/3 and ψ1(λ, x) ≡ 1.
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