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EXISTENCE OF GLOBAL SOLUTIONS FOR REACTION
DIFFUSION SYSTEMS MODELING THE ELECTRODEPOSITION

OF ALLOYS WITH INITIAL DATA MEASURES

NOUREDDINE ALAA, FATIMA AQEL

Abstract. In this work, we are interested in the mathematical model of re-
action diffusion systems. The originality of our study is to work with concen-

trations appearing in reactors together with measure initial data. To validate
this model, we prove the existence of global weak solutions. The “j” technique

introduced by Pierre and Martin [18] is suitable for this type of solutions.

However, its adaptation has some new technical difficulties that we have to
overcome.

1. Introduction

A reaction diffusion system is a set of partial differential equations that can be
understood to represent molecules reacting and diffusing over some space. They
arise quite naturally in systems consisting of many chemical reactions or interacting
components and they are widely used to describe some chemical, physical and
biological systems where the principal ingredients of all these models are the second
Fick’s law and rate equation. In this paper we discuss the existence of global
solutions for a reaction diffusion system modeling electrodeposition process with
initial data measures.

We start by a simple history about this model problem. Electrodeposition is an
attractive method for the fabrication of thin metal films and layered structures [14].
Structures with a wide range of compositions, morphologies, and functionalities can
be deposited by varying the large number of experimental parameters available in
electrochemical methods. In addition, electrochemistry offers a low-cost alternative
to more involved deposition techniques. Also, electrodeposition is an alternative
method for fabricating nanoengineered materials.

In general, electropolating is both an art and a science. Although based on sev-
eral technologies and sciences, including chemistry, physics, chemical and electrical
engineering. So the purposes of electropolating for which articles are electropo-
lated are the appearence, protection, special surface properties and engineering or
mechanical properties.

To understand this process, we will begin by a brief definition of this model,
where we include some previous researches obtained by [3, 10, 12, 13, 17, 19, 20]
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where the discussion in the following will be limited to one group of alloy codepo-
sition.

The classification of alloy codeposition systems developed by Brenner [10], in-
cluding normal, anomalous, and induced codeposition. In our work, we will be
interested in the second group. The next paragraph is devoted to explain why
most of researchers have classified the Nickel-Iron electrodeposition as anomalous
codeposition.

Fe-Ni deposition is classified as anomalous codeposition [10] because the dis-
charge rate of the more noble compenent Ni inhibited, causing of the less noble
metal Fe at a higher deposition rate than nickel. According to Dahms [12] and
Dahms and Croll [13], Fe-Ni anomalous codeposition is due to the local pH rise at
the interface due to the parallel parasitic hydrogen evolution reaction.

There are also some recent mathematical models that have been proposed for
expalining this phenomena, include those by Hessami and Tobias[15], Grande and
Talbot [14] and Matlosz [19], the mechanism of single-metal deposition of iron
suggested by Bockris and Al [8] and of nickel suggested by Matulis and Slizys [20].

Hessami and Tobias [15] assumed that the electrodeposition of Fe-Ni occurs as a
result of the reduction of both the bivalent metal ions, Ni2+ and Fe2+, the mono-
hydroxide ions Fe(OH)+ and Ni(OH)+. According to this model, the dominant
mechanism in the electrodeposition process was the reduction of divalent or bivalent
ions rather than monohydroxide species. In this work, the ionic species of interest
are: H+, OH−, Fe2+, Ni2+, FeOH+ and NiOH+ where the following homogeneous
reactions are considered

H2O 
 H++OH−

FeOH+ 
 Fe2++OH−

NiOH+ 
 Ni2++OH−

Then, we have Grande and Talbot [14] who proposed a one dimensionnel diffusion
model, where they determined the effect of buffuring and the hydrolysis reactions on
predicted surface PH and deposit composition. Their model includes the assump-
tion that anomalous deposition of nickel and iron occurs due to the electrodeposition
of their respective monohydroxide species.

On the other hand, we have the study of Alaa et al. [2] who studied the ex-
istence of global solutions for a Model of Nickel Iron alloy electrodeposition on
rotating disk with quadratic nonlinearities in one dimension space. There Model
addresses dissociation, diffusion, electomigration, convection and deposition of mul-
tiple ion species, where they have presented a generalization of [3] to ensure the
global existence of classical solutions and their positivity, where in [3], the same
researchers proved the existence and the positivity of weak solutions for their model
problem without no restriction of growth on the nonlinear terms.

In this work, we study the existence of global solutions in more general case. So,
instead of studying the problem of electrodeposition of Nickel-Iron alloy, we will
consider that our model is composed of NS different species. We are interested in
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particular to the study of the following reaction diffusion systems of the type
∂ωi
∂t
− di∆ωi −mi div(ωi∇φ) = Si(ω) in QT ,

−∆φ = F (ω) in QT ,

−di
∂ωi
∂υ
−miωi

∂φ

∂υ
= 0 on ΣT ,

φ(t, x) = 0 on ΣT ,

φ(0, x) = φ0(x) in Ω,

ωi(0, .) = µi in Ω,

(1.1)

Where Ω denotes an open and bounded subset of RN , with smooth boundary ∂Ω.
The normal exterior derivative on ∂Ω is denoted by ∂υ and we have QT =]0, T [×Ω,
ΣT =]0, T [×∂Ω with T is a nonnegative constant.

The components ωi’s represent the concentrations of NS species considered dur-
ing the electrodeposition, zi are the charges and mi is the electrical mobility, di is
the diffusion coefficients associated to each one of our species and φ designates the
electric potential, Si are the reaction terms or production rate and F is a bounded
function in L∞(QT ) which depends on the concentrations ω = (ω1, ω2, . . . , ωNS)
and also on the fixed charge concentration. We suppose that Si depends contin-
uously on the ωi’s. We also assume that di are nonnegative constants for each
i = 1, . . . , NS.

The layout of this work is as follows. We begin in the second section by defining
notation and essential concepts, after that we consider our problem and we expose
the principal result. The third paragraph is devoted to the proof of the principal
result by passing through an approximate problem then obtaining the appropriate
estimations of ωi, φ and Si to pass to the limit and prove that the solution of
truncated system converges to the solution of our model problem (1.1).

1.1. Notion of weak solution. Throughout this paper we make the following
assumptions: for all i = 1, . . . , NS,

µi ∈M+
b (Ω), (1.2)

and
φ0 ∈ L∞(Ω). (1.3)

There exists Θ ∈ L∞(QT ), such that

|F (t, x, r)| ≤ Θ(t, x) a.e. (t, x) ∈ QT ,
∀r ∈ [0,+∞)NS .

(1.4)

The total mass control is preserved on time if for all r ∈ [0,+∞)NS

NS∑
i=1

Si(r) ≤ K
( NS∑
i=1

ri

)
+N where K,N ≥ 0 . (1.5)

The nonnegativity of solutions is preserved if and only if the quasi-positivity con-
dition is satisfied

Si(r1, . . . , ri−1, 0, ri+1, . . . , rNS) ≥ 0. (1.6)
After all, to expect the existence of global solutions in time, more structure

must be required on Si. Additional assumptions usually come from the underlying
model.
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We assume the existence of a lower triangular invertible matrixQ = (qij)1≤i,j≤NS
with nonnegative coefficients, such that

∃L,M ∈ (0,+∞)NS , ∀(t, x, r) ∈ (0, T )× Ω× [0,+∞)NS ,

QS(t, x, r) ≤ L
( ∑

1≤i≤NS

ri

)
+M , (1.7)

where S(r) = (S1(r), S2(r), . . . , SNS(r)). To finish this paragraph, we recall the
following notation and definitions:

C∞0 (QT ) = {ϕ : QT → R indefinitely derivable with compact support in QT },
Cb(Ω) = {ϕ : Ω→ R a continuous and bounded function in Ω},

Mb(Ω) = {µi bounded Radon measure in Ω},
M+
b (Ω) = {µi bounded nonnegative Radon measure in Ω}.

Definition 1.1. Let ωi ∈ C(]0, T [;L1(Ω)) and µi ∈Mb(Ω). We say that ωi(0, .) =
µi in Mb(Ω) if for every ϕ ∈ Cb(Ω),

lim
t→0

∫
Ω

ωi(t, x)ϕdx = 〈µi, ϕ〉,

Now, we introduce the notion of weak solution that we will use in this work.

Definition 1.2. A weak solution of problem (1.1), is a couple of functions (ω, φ) =
(ω1, ω2, . . . , ωNS , φ) such that ω ∈ C(]0, T [;L1(Ω)NS) ∩ L1(0, T ;W 1,1(Ω)NS), φ ∈
L∞(0, T ;W 1,∞

0 (Ω)) and Si(ω) ∈ L1(QT ). For all 1 ≤ i ≤ NS, the couple (ω, φ)
satisfies
∂ωi
∂t
− di∆ωi −mi div(ωi∇φ) = Si(ω) in D′(QT ),−∆φ = F (ω) in D′(QT )

φ(0, x) = φ0(x) in Ω

ωi(0, .) = µi in Mb(Ω)
(1.8)

We mention here that if µ = (µ1, µ2, . . . , µNS) belongs to L2(Ω)NS . Then, we
could talk about a strong solution which is defined in the following sense.

Definition 1.3. A strong solution of problem (1.1) is a couple of functions (ω, φ) =
(ω1, ω2, . . . , ωNS , φ) such that µ ∈ L2(Ω)NS , µi ≥ 0, ω ∈ C([0, T ];L2(Ω)NS) ∩
L2(0, T ;H1(Ω)NS), φ ∈ L∞(0, T ;W 1,∞

0 (Ω)) and Si(ω) ∈ L1(QT ) for all 1 ≤ i ≤ NS
and satisfying:

for all v ∈ C1(QT ) such that v(T, .) = 0,

−
∫
QT

ωi
∂v

∂t
+ di

∫
QT

∇ωi∇v +mi

∫
QT

ωi∇φ∇v − 〈µi, v(0, x)〉

=
∫
QT

Si(ω)v for all θ ∈ D(Ω) and t ∈]0, T [∫
Ω

∇φ∇θ =
∫

Ω

F (ω)θ

φ(0, x) = φ0(x) in Ω,

ωi(0, x) = µi(x) in Ω .

(1.9)
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2. Main results

Theorem 2.1. We assume that (1.2), (1.3), (1.4), (1.5), (1.6) and (1.7) hold.
Then the problem (1.1) has a weak solution (ω, φ) satisfying ωi ≥ 0 in QT , for all
i = 1, . . . , NS.

2.1. Proof of main result.

Approximating scheme. To approximate our problem, we truncate the initial data
(µi)1≤i≤NS as follows

µni ∈ C∞0 (Ω) such that µni ≥ 0, ‖µni ‖L1(Ω) ≤ ‖µi‖Mb(Ω), µ
n
i → µi (2.1)

in Mb(Ω). To each nonlinearity Si we associate the function Ŝi such that

Ŝi(r) = Ŝi(r1, r2, . . . , rNS)

=

{
Si(r1, r2, . . . , rNS) if (r1, r2, . . . , rNS) ∈ [0,+∞)NS

Si(r1, . . . , rj−1, 0, rj+1, . . . , rm) if rj ≤ 0 .

(2.2)

Also we consider the truncated function ηn ∈ C∞0 (RNS), satisfying

0 ≤ ηn ≤ 1,

ηn(r) =

{
1 if |r| ≤ n
0 if |r| ≥ n+ 1.

Then for r ∈ RNS we define

Sni (r) = ηn(r)Ŝi(r) for all n ≥ 1 (2.3)

Proposition 2.2 ([4]). We assume that (1.1), (1.2), (1.3), (1.4), (1.5) and (1.6)
are satisfied. Then for each n there exists a strong solution (ωn, φn) of

∂ωi,n
∂t
− di∆ωi,n −mi div(ωi,n∇φn) = Sni (ωn) in QT ,

−∆φn = F (ωn) in QT ,

−di
∂ωi,n
∂υ

−miωi,n
∂φn
∂υ

= 0 in ΣT ,

φn(t, x) = 0 in ΣT ,

φn(0, x) = φ0(x) in Ω,

ωi,n(0, .) = µni in Ω.

(2.4)

Here the solutions ωi,n are nonnegative.

3. A priori estimate

In the following section, we give some a priori estimates for proving that under
suitable additional assumptions, the solution of (2.4) converges to a solution of (1.1)
as n tends to ∞. To ensure the existence of solution, we use the main structural
assumptions on the nonlinearities. First we need to prove the following lemma.

Lemma 3.1. Under the assumptions of Proposition 2.2 we have∫
Ω

NS∑
i=1

|ωi,n(t)| ≤ etK [
NS∑
i=1

‖µi‖Mb(Ω) +NK−1(1− e−tK)] (3.1)
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Proof. We have

∂

∂t

( NS∑
i=1

ωi,n

)
−

NS∑
i=1

di∆ωi,n − div
( NS∑
i=1

miωi,n∇φn
)

=
NS∑
i=1

Sni (ωn)

from (1.5), we there exist K,N ≥ 0 such that

∂

∂t

( NS∑
i=1

ωi,n

)
−

NS∑
i=1

di∆ωi,n − div
( NS∑
i=1

miωi,n∇φn
)
≤ K

( NS∑
i=1

ωi,n

)
+N. (3.2)

Integrating over Ω and using the boundary conditions, we obtain

∂t

∫
Ω

Wn(t) ≤
∫

Ω

[K(Wn) +N ],

where Wn =
∑NS
i=1 ωi,n. Hence∫

Ω

∂(Wne
−sK)

∂t
≤
∫

Ω

Ne−sK .

Integrating the previous inequality on [0, t], for all 0 < t < T , we obtain∫
Ω

Wn(t)etL −
∫

Ω

Wn(0, x) ≤
∫

Ω

NK−1(1− e−tK),

hence ∫
Ω

Wn(t) ≤ etK [
NS∑
i=1

∫
Ω

µni +NK−1(1− e−tK)]

By using the fact that for every i = 1, . . . , NS ‖µni ‖L1(Ω) ≤ ‖µi‖Mb(Ω). Then the
proof is complete. �

Here, we note that (Sni )1≤i≤NS satisfies the same assumptions as (Si)1≤i≤NS ,
and especially the structure (1.7) that we use in the following lemma.

Lemma 3.2. Let the assumptions of Proposition 2.2 are satisfied and (1.7) be
satisfied. Then, for each T > 0, there exists a constant C depending on T , Li, Mi,
qij and ‖µi‖Mb(Ω) for all 1 ≤ j ≤ i ≤ NS such that∫

QT

∑
1≤i≤NS

|Sni (ωn)| dt dx ≤ C.

Proof. We denote by C0 any constant depending only on the initial data and T .
Then for all t ∈ [0, T ], we have

∫
Ω

(ωi,n)(t) ≤ C0 for all 1≤ i ≤ NS. Now, we take
the equation satisfied by ωi,n and we sum the NS equations to obtain that, for
1 ≤ i ≤ NS and for 1 ≤ j ≤ i, we have

i∑
j=1

qij
∂(ωj,n)
∂t

−
i∑

j=1

qijdj∆ωj,n − div
( i∑
j=1

qijmjωj,n∇φn
)

=
i∑

j=1

qijS
n
j (ωn)

Integrating on QT , we have
i∑

j=1

qi,j

∫
QT

∂(ωj,n)
∂t

−
i∑

j=1

qij

∫
ΣT

(dj
∂ωj,n
∂υ

+mjωj,n
∂φn
∂υ

) =
i∑

j=1

qij

∫
QT

Snj (ωn) .
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Then using the boundary conditions, we obtain∫
QT

i∑
j=1

qij
∂(ωj,n)
∂t

=
∫
QT

i∑
j=1

qijS
n
j (ωn);

therefore,
i∑

j=1

qij

∫
Ω

ωj,n(T ) =
i∑

j=1

qij

∫
QT

Snj (ωn) +
i∑

j=1

qij

∫
Ω

ωj,n(0, x) .

The nonnegativity of solutions yields

−
i∑

j=1

qij

∫
QT

Snj (ωn) ≤
i∑

j=1

qij

∫
Ω

µnj ≤
i∑

j=1

qij‖µj‖Mb(Ω) (3.3)

This leads us to the estimate∫
QT

hi(ωn) ≤
i∑

j=1

qij‖µj‖Mb(Ω) +
∫
QT

Mi + Li

( NS∑
l=1

ωl,n

)
, (3.4)

where

hi(ωn) = −
i∑

j=1

qijS
n
j (ωn) +Mi + Li

( NS∑
l=1

ωl,n

)
From the above, we have

i∑
j=1

qijS
n
j (ωn) = −hi(ωn) +Mi + Li(

NS∑
l=1

ωl,n).

By using (3.3), (3.4) and the previous equality, we obtain

‖
i∑

j=1

qijS
n
j (ωn)‖L1(QT ) ≤ C;

therefore, for 1 ≤ i ≤ NS, we have ‖Sni (ωn)‖L1(QT ) ≤ C. �

Let φn be the unique solution of the elliptic problem
−∆φn = F (ωn) on QT = (0, T )× Ω,

φn(t, x) = 0 on ΣT = (0, T )× ∂Ω,

φn(0, x) = φ0(x) on Ω,
(3.5)

where F (ω) is a bounded function in L∞(QT ), φ0 is also bounded in L∞(Ω) and
φn is the solution of equation (3.5).

Lemma 3.3. There exists a constant C depending on T and on the L∞ norm of
φ0, such that

‖φn‖L∞(0,T ;W 1,∞
0 (Ω)) ≤ C.

Proof. We have that for all t ∈]0, T [, the function φn is the unique solution of the
elliptic problem (3.5), where

φn(t, x) =
∫

Ω

G(s, x)θn(t, s)ds,

θn(t, s) = F (t, s, ωn), s ∈ Ω
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where G denotes the Green’s function associated to the Poisson equation. Then we
have

‖F (t, s, ωn)‖L∞(QT ) ≤ C,
hence

‖φn‖L∞(0,T ;W 1,∞
0 (Ω)) ≤ C.

�

Lemma 3.4. Let ωi,n be a solution of (2.4). Then, for every T > 0, the mapping

(µni , S
n
i ) ∈ L1(Ω)× L1(QT ) 7→ ωi,n ∈ L1(QT ) (3.6)

is compact. Moreover, it is continuous from L1(Ω) × L1(QT ) to C(]0, T [;L1(Ω)).
Moreover, (ωi,n)1≤i≤NS is compact in L1(0, T ;W 1,1(Ω)) and for the trace compact-
ness, we use the continuity of the trace operator from W 1,1(Ω) to L1(∂Ω), then the
trace mapping is also compact in L1(ΣT ).

For more details, we refer the readers to [23, Lemma 5.6].

Proposition 3.5. Under the hypothesis of Lemme 3.2, there exists (ωi)1≤i≤NS
in L1(QT ) with ∇ωi ∈ [L1(QT )N ]NS such that, up to a subsequence, we have the
following convergence

ωi,n → ωi in L1(QT ) and a.e. in QT ,

∇ωi,n → ∇ωi in [L1(QT )N ]NS and a.e. in QT .

4. Convergence

Now, we show that (ω, φ) is a solution of (1.1). From Proposition 3.5, for i =
1, . . . , N , we have

ωi,n → ωi in L1(QT ),

∇ωi,n → ∇ωi in [L1(QT )N ]NS
(4.1)

and if we extract a new subsequence, then we can assume that it converges

ωi,n → ωi almost everywhere in QT , (4.2)

and
µni → µi in Mb(Ω) (4.3)

Since Si is continuous with respect to ω and by construction of Sni , we have

Sni (ωn)→ Si(ω) almost everywhere in QT (4.4)

For the proof of Theorem 2.1, we pass to the limit in the approximate problem
when n tends to infinity. In fact, we need to prove that the convergence in (4.4)
holds in L1(QT ). To fill up the gap between those two kinds of convergence, we
state the following lemma.

Lemma 4.1. Let σn be a sequence in L1(QT ) and σ ∈ L1(QT ) such that

σn → σ almost everywhere in QT , (4.5)

σn is uniformly integrable in QT . (4.6)

Then σn → σ in L1(QT ).
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Proof. Condition (4.6) is implied by: for each ε > 0, there exists θ > 0 such that

(K ⊂ QT measurable, meas(K) < θ) =⇒
∫
K

|σn| < ε ∀n

In this proof, we have to show that Sni (ωn) are not only bounded in L1(QT ) but
uniformly integrable. We can not realize this without an extra assumption on (Si)
which is (1.7), which we assume in the first section. �

Theorem 4.2. Assume the conditions in Proposition 2.2 and (1.7) are satisfied.
Then, for all (µi)1≤i≤NS in Mb(Ω) and φ0 ∈ L∞(Ω), there exists a weak solution
(ω, φ) to problem (1.1).

Lemma 4.3 ([16]). Let σn be a sequence in L1(QT ). Then the following instruc-
tions are equivalent

(i) σn is uniformly bounded in L1(QT );
(ii) there exists a function J : (0,∞)→ (0,∞) with J(0+) = 0 and

(a) J is convex, J ′ is concave, J ′ ≥ 0;
(b) limr→+∞

J(r)
r = +∞;

(c) supn
∫
QT

J(|σn|) <∞.

Proof of Theorem 4.2
By Proposition 2.2, we have the existence of the solution (ωn, φn) to the approx-

imate problem (2.4).
Since φn is uniformly bounded in L∞(0, T ;W 1,∞(Ω)), we deduce the existence

of φ ∈ L∞(0, T ;W 1,∞(Ω)), such that

∇φn → ∇φ in the topology of σ(L∞(QT ), L1(QT )) (4.7)

Next we show that
ωi,n∇φn → ωi∇φ in D′(QT )

To this end, we will prove that

ωi,n∇φn → ωi∇φ in the topology of σ(L1(QT ), L∞(QT )) (4.8)

For v ∈ L∞(QT ), we have∫
QT

v(ωi,n∇φn − ωi∇φ) dx dt

=
∫
QT

v∇φn(ωi,n − ωi) dx dt+
∫
QT

vωi(∇φn −∇φ) dx dt

Concerning the first term in this equality, we have∣∣ ∫
QT

v∇φn(ωi,n − ωi) dx dt
∣∣ ≤ ‖v‖L∞(QT )‖∇φn‖L∞(QT )‖ωi,n − ωi‖L1(QT )

and by (4.1), we obtain ∫
QT

v∇φn(ωi,n − ωi) dx dt→ 0.

The second term approcahes zero because ∇φn converges to ∇φ in the topology of
σ(L∞(QT ), L1(QT )) and vωi ∈ L1(QT ). So from the convergence result, we obtain

∂ωi,n
∂t
− di∆ωi,n −mi div(ωi,n∇φn)→ ∂ωi

∂t
− di∆ωi −mi div(ωi∇φ) in D′(QT )
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From (4.2) and (4.7), we have

−∆φn → −∆φ in D′(QT )

Furthermore,
F (t, x, ωn)→ F (t, x, ω) a.e. in QT .

According to (1.4) and by applying the Lebesgue theorem, we obtain

−∆φn(t, .)→ −∆φ(t, .) = F (t, ., ω) strongly in L1(Ω) .

Now, we define J as in the lemma 4.3 where (ii)(c) is replaced by

sup
n

∫
QT

J
( NS∑
i=1

ωi,n

)
<∞, sup

n

∫
Ω

J
( NS∑
i=1

i∑
j=1

qijµ
n
j

)
<∞ . (4.9)

Which is possible by lemma 4.3 since
NS∑
i=1

ωi,n →
NS∑
i=1

ωi in L1(QT )

and
NS∑
i=1

i∑
j=1

qijµ
n
j →

NS∑
i=1

i∑
j=1

qijµj in Mb(Ω) .

Putting

j(r) =
∫ r

0

min(J ′(s), (J∗)−1(s))ds, (4.10)

where J∗ is the conjugate function of J , j satisfies (ii)(a) and (ii)(b) and we have

∀r > 0 j(r) ≤ J(r) J∗(j′(r)) ≤ r . (4.11)

Our goal is to show that

sup
n

∫
QT

j′
( NS∑
i=1

i∑
j=1

qijωj,n

)( NS∑
i=1

|Sni (ωn)|
)
<∞ . (4.12)

First of all, we indicate how the proof of the theorem can be completed. We see
that estimation (4.12) implies the uniform integrability of (Sni (ωn))1≤i≤NS in QT .
Indeed, let ε > 0 and K be a measurable set of QT . Then∫

K

|Sni (ωn)| ≤
∫
K∩[

PNS
i=1

Pi
j=1 qijωj,n<k]

sup
0≤ω1,n,...,ωNS,n≤k

|Sni (ωn)|

+
∫
K∩[

PNS
i=1

Pi
j=1 qijωj,n>k]

|Sni (ωn)|

≤ I1 + I2 .

For I1, we find that

sup
0≤ω1,n,...,ωNS,n≤k

|Sni (t, x, ωn)| ≤ C(k),

where the constant C depends on Li, Mi for all i = 1, . . . , NS and k(ε), conse-
quently

I1 ≤ C(k(ε)) meas(K) <
ε

2
if meas(K) <

ε

2[C(k(ε))]
.
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We estimated the second integral as follows

I2 ≤
1

j′(k)

∫
QT

j′
( NS∑
i=1

i∑
j=1

qijωj,n

)
|Sni (ωn)|

Where we have used the convexity of the function J and (4.10) to obtain the desired
result. Thanks to (4.12), this may be less than ε

2 , by choosing k = k(ε) sufficiently
large and depend only on ε.

This proves the uniform integrability of Sni (ωn). We use now the almost ev-
erywhere convergence of Sni (ωn) in QT , then, we obtain that Sni (ωn) converges in
L1(QT ), which completes the proof of the theorem.

Returning now to the proof of the estimate (4.12). We set

T1,n = M1 + L1

( NS∑
i=1

ωi,n

)
− q1,1S

n
1 (ωn) ≥ 0,

T2,n = M2 + L2

( NS∑
i=1

ωi,n

)
− q2,1S

n
1 (ωn)− q2,2S

n
2 (ωn) ≥ 0,

. . .

TNS,n = MNS + LNS

( NS∑
i=1

ωi,n

)
− qNS,1Sn1 (ωn)− · · · − qNS,NSSnNS(ωn) ≥ 0

(4.13)
which implies

NS∑
i=1

Ti,n =
NS∑
i=1

Mi +
( NS∑
l=1

ωl,n

) NS∑
i=1

Li −
NS∑
i=1

i∑
j=1

qijS
n
j (ωn) ≥ 0 .

For every j = 1, . . . , i and i = 1, . . . , NS we have

∂ωj,n
∂t

= dj∆ωj,n +mj div(ωj,n∇φn) + Snj (ωn) .

We multiply the first equation by (qij)1≤i,j≤NS and we sum the three equations,
so we obtain

∂

∂t

( i∑
j=1

qijωj,n

)
=
( i∑
j=1

qijdj∆ωj,n
)

+ div
(( i∑

j=1

qijmjωj,n

)
∇φn

)

+
i∑

j=1

qijS
n
j (ωn) .

Then, we multiply by j′(
∑NS
i=1

∑i
j=1 qijωj,n) and integrate over QT to obtain∫

Ω

j
( NS∑
i=1

i∑
j=1

qijωj,n
)
(T ) +

∫
QT

j′
( NS∑
i=1

i∑
j=1

qijωj,n

) NS∑
i=1

Ti,n

= J1 + J2 +
∫

Ω

j
( NS∑
i=1

i∑
j=1

qijµ
n
j

) (4.14)
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where

J1 =
∫
QT

j′
( NS∑
i=1

i∑
j=1

qijωj,n

)[( NS∑
i=1

i∑
j=1

qijdj∆ωj,n
)

+div((
NS∑
i=1

i∑
j=1

qijmjωj,n)∇φn)
]

Concerning the term J2, we have

J2 =
∫
QT

j′
( NS∑
i=1

i∑
j=1

qijωj,n

)[ NS∑
i=1

Mi +
NS∑
i=1

Li

( NS∑
l=1

ωl,n

)]
To estimate this term, we use the inequality

j′(r).s ≤ J(s) + J∗(j′(r)) ≤ J(s) + r, (4.15)

so that

J2 ≤
∫
QT

[
J
( NS∑
i=1

Mi

)
+
( NS∑
i=1

i∑
j=1

qijωj,n

)]

+
∫
QT

NS∑
i=1

Li

[
J
( NS∑
l=1

ωl,n

)
+
( NS∑
i=1

i∑
j=1

qijωj,n

)]
By using the Lemma 3.1, the choice of J2 and (4.9), we see that J2 is bounded
independently of n.

On the other hand, if we can control the term J1. Then, from (4.9), (4.14) and
the estimate on J2, we obtain the desired result. By definition of Ti,n we have

Tn = M + L
( NS∑
l=1

ωl,n

)
−QSn(ωn),

where Tn = (T1,n, . . . , TNS,n), L = (L1, . . . , LNS), M = (M1, . . . ,MNS) and
Sn(ωn) = (Sn1 (ωn), . . . , SnNS(ωn)).

Since Q is an invertible matrix, we obtain

Sn(ωn) = Q−1M +
( NS∑
l=1

ωl,n

)
Q−1L−Q−1Tn (4.16)

which gives an estimation on the sum of nonlinearities Si for all i = 1, . . . , NS.
For J1 we have the estimate

J1 =
∫
QT

j′
( NS∑
i=1

i∑
j=1

qijωj,n

)( NS∑
i=1

i∑
j=1

djqij∆ωj,n
)

+
∫
QT

j′
( NS∑
i=1

i∑
j=1

qijωj,n

)
div
( NS∑
i=1

i∑
j=1

mjqijωj,n∇φn
)

= −
∫
QT

j′′
( NS∑
i=1

i∑
j=1

qijωj,n)∇
( NS∑
i=1

i∑
j=1

qijωj,n

)
[
NS∑
i=1

i∑
j=1

djqij∇ωj,n

+
NS∑
i=1

i∑
j=1

mjqijωj,n∇φn].
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We set Wn =
∑NS
i=1

∑i
j=1 qijωj,n and integrate by parts to have

J1 = −
∫
QT

j′′(Wn)∇Wn

[ NS∑
i=1

i∑
j=1

djqij∇ωj,n +
NS∑
i=1

i∑
j=1

mjqijωj,n∇φn
]

Next, we use Hölder’s and Young’s inequalities to obtain

J1 ≤ C̃
∫
QT

j′′(Wn)
( NS∑
i=1

|ωi,n|2 +
NS∑
i=1

|∇ωi,n|2
)
, (4.17)

where the constant C̃ depends on max1≤j≤i(dj), max1≤j≤i(mj), qij , ‖∇φn‖L∞(QT ),
and 1 ≤ j ≤ i ≤ NS.

Since j′ is concave, j′′(r) ≤ j′(r)
r and we have∫

QT

j′′(Wn)
( NS∑
i=1

ω2
i,n

)
≤
∫
QT

j′(Wn)
( NS∑
i=1

ωi,n

)
hence ∫

QT

j′′(Wn)
( NS∑
i=1

ω2
i,n

)
≤
∫
QT

J
( NS∑
i=1

ωi,nBig) +Wn

which allows to say that this term is uniformly bounded. It remains to show that
the first and the second term in (4.17) are also uniformly bounded. First, we have

∂ω1,n

∂t
− d1∆ω1,n −m1 div(ω1,n∇φn) = Sn1 (ωn) .

Then we multiply by q11 to obtain

∂(q11ω1,n)
∂t

− d1∆(q11ω1,n)−m1 div(q11ω1,n∇φn)] = q11S
n
1 (ωn). (4.18)

Now, we multiply by j′(q11ω1,n) and integrate over QT to obtain∫
QT

∂(j(q11ω1,n))
∂t

+ d1

∫
QT

j′′(q11ω1,n)|∇(q11ω1,n)|2

+m1

∫
QT

j′′(q11ω1,n)(q11ω1,n)∇φn∇(q11ω1,n)

=
∫
QT

j′(q11ω1,n)q11S
n
1 (ωn),

which implies∫
Ω

j(q11ω1,n)(T ) + d1

∫
QT

j′′(q11ω1,n)|∇(q11ω1,n)|2

≤
∫

Ω

j(q11µ
n
1 )−m1

∫
QT

j′′(q11ω1,n)(q11ω1,n)∇φn∇(q11ω1,n)

+
∫
QT

j′(q11ω1,n)
[
M1 + L1

( NS∑
l=1

ωl,n

)]
.

Using again Hölder’s and Young’s inequalities, we obtain∫
Ω

j(q11ω1,n)(T ) + d1

∫
QT

j′′(q11ω1,n)|∇(q11ω1,n)|2
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≤
∫

Ω

j(q11µ
n
1 ) + Cε1

∫
QT

j′′(q11ω1,n)(q11ω1,n)2

+ ε1

∫
QT

j′′(q11ω1,n)|∇(q11ω1,n)|2 +
∫
QT

j′(q11ω1,n)
[
M1 + L1

( NS∑
l=1

ωl,n

)]
;

therefore, ∫
Ω

j(q11ω1,n)(T ) + (d1 − ε1)
∫
QT

j′′(q11ω1,n)|∇(q11ω1,n)|2

≤
∫

Ω

j(q11µ
n
1 ) + Cε1

∫
QT

j′′(q11ω1,n)(q11ω1,n)2

+
∫
QT

j′(q11ω1,n)
[
M1 + L1

( NS∑
l=1

ωl,n

)]
.

Then we have∫
QT

j′′(q11ω1,n)(q11ω1,n)2 ≤
∫
QT

j′(q11ω1,n)(q11ω1,n)

≤
∫
QT

J(q11ω1,n) + q11ω1,n .

Finally, we add the condition j′′(q11ω1,n) ≥ j′′(Wn). Then, we deduce easily
that

∫
QT

j′′(Wn)|∇ω1,n|2 is uniformly bounded. Similarly, we show that, for all
i = 2, . . . , NS, the terms

∫
QT

j′′(Wn)|∇ωi,n|2 are uniformly bounded. Then

we conclude that
∫
QT

j′
(∑NS

i=1

∑i
j=1 qijωj,n

)∑NS
i=1 Ti,n is also uniformly bounded.

Then, we use (4.16) and the definition of each term Ti,n for all 1 ≤ i ≤ NS, to obtain
the uniformly bound of the second term I2 and also to deduce the equi-integrability
of Sni which completes the proof.
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