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Abstract. In this article we show the existence and multiplicity of positive
solutions for the nonlocal problem with a sign-changing weight function,

−(a− b

Z
Ω
|∇u|2dx)∆u = fλ(x)|u|q−2u, in Ω,

u = 0, on ∂Ω,

where Ω is a smooth bounded domain in R3, a, b > 0, 1 < q < 2. Our technical
approach is based on the variational method.

1. Introduction and statement of main results

In this article, we are interested in finding the existence of positive solutions to
the nonlocal problem

−M(
∫

Ω

|∇u|2dx)∆u = λf(x, u) in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a bounded domain in RN with N ≥ 3. When the continuous function
M : R+ → R+ satisfies certain conditions, (1.1) has been investigated by many
researchers by imposing different types of hypotheses on f(x, u); see for example
[3, 7, 8, 6, 5, 9, 10, 12, 15, 11, 14]. However, observing the all above studies, we
see that the function M is assumed to be bounded from below. Recently, Yin and
Liu [13] investigated the existence and multiplicity of nontrivial solutions for the a
nonlocal problem

−(a− b
∫

Ω

|∇u|2dx)∆u = |u|p−2u, in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω is a smooth bounded domain in RN and N ≥ 1, a, b > 0 are constants
and 2 < p < p∗. They obtained a nontrivial non-negative solution and a nontrivial
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non-positive solution by using the mountain-pass lemma. Motivated by their work,
we consider the equation

−(a− b
∫

Ω

|∇u|2dx)∆u = fλ(x)|u|q−2u, in Ω,

u = 0, on ∂Ω,
(1.3)

where Ω is a smooth bounded domain in R3, a, b > 0, 1 < q < 2, the weight function
fλ ∈ L∞(Ω), defined by fλ = λf+ + f−, λ > 0, with f± = ±max{±f, 0} 6≡ 0. An
interesting question is whether multiplicity of positive solutions can be established
for (1.3). We shall give a positive answer to this question.

Our main existence and multiplicity results for (1.3) can be stated as follows.

Theorem 1.1. Assume that a, b > 0, 1 < q < 2 and f ∈ L∞(Ω). Then there
exists λ∗ > 0, such that for any λ ∈ (0, λ∗), problem (1.3) has at least two positive
solutions.

In this article, we use the following notation: The space H1
0 (Ω) is equipped with

the norm ‖u‖2 =
∫

Ω
|∇u|2dx, the norm in Lp(Ω) is denoted by ‖ · ‖p. C,C1, C2, . . .

denote various positive constants, which may vary from line to line. We denote by
Br (respectively, ∂Br) the closed ball (respectively, the sphere) of center zero and
radius r, i.e. Br = {u ∈ H1

0 (Ω) : ‖u‖ ≤ r}, ∂Br = {u ∈ H1
0 (Ω) : ‖u‖ = r}. Let

S be the best Sobolev embedding constant for the embedding H1
0 (Ω) ↪→ L6(Ω),

namely

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx

(
∫

Ω
|u|6dx)

2
3
.

2. Proof of main theorem

2.1. Existence of a first positive solution of (1.3). We define the functional

Iλ(u) =
a

2
‖u‖2 − b

4
‖u‖4 − 1

q

∫
Ω

fλ(x)|u|qdx.

A function u is called a solution of (1.3) if u ∈ H1
0 (Ω) and for all v ∈ H1

0 (Ω) it
holds

(a− b‖u‖2)
∫

Ω

(∇u,∇v)dx−
∫

Ω

fλ(x)|u|q−2uv dx = 0.

To prove our main theorem, some preliminary results are needed. We first recall
the following lemma from [4].

Lemma 2.1. Let r, s > 1, ψ ∈ Ls(Ω) and ψ+ = max{ψ, 0} 6= 0. Then there exists
ϕ0 ∈ C∞0 (Ω) such that

∫
Ω
ψ(x)|ϕ0|rdx > 0.

Lemma 2.2. Assume a, b > 0, 1 < q < 2 and f ∈ L∞(Ω), then Iλ satisfies the
(PS)c condition with c < a2

4b −Dλ, where

D =
(1
q
− 1

4
)
|f+|S−q/2|Ω|(6−q)/6mq.

Proof. Let {un} ⊂ H1
0 (Ω) be a (PS)c sequence for Iλ, i. e.,

Iλ(un)→ c, I ′λ(un)→ 0, as n→∞. (2.1)
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From (2.1) it follows that

b‖un‖4 = a‖un‖2 −
∫

Ω

fλ(x)|un|qdx

≤ a‖un‖2 −
∫

Ω

f−(x)|un|qdx

≤ a‖un‖2 + |f−|S−q/2|Ω|(6−q)/6‖un‖q,
so that

b‖un‖4−q ≤ a‖un‖2 + |f−|S−q/2|Ω|(6−q)/6,
which implies that {un} is bounded in H1

0 (Ω); that is, there is m > 0 (independent
of λ) such that ‖un‖ ≤ m for every n. Moreover, there exist a subsequence (still
denoted by {un}) and u∗ ∈ H1

0 (Ω) such that

un ⇀ u∗ weakly in H1
0 (Ω),

un → u∗ strongly in Lp(Ω) (1 ≤ p < 6),

un(x)→ u∗(x) a.e. in Ω

as n→∞. It follows easily from Vitali Convergence Theorem that

lim
n→∞

∫
Ω

fλ(x)|un|qdx =
∫

Ω

fλ(x)|u∗|qdx.

Set wn = un − u∗, then ‖wn‖ → 0. Otherwise, there exists a subsequence (still
denoted by wn) such that

lim
n→∞

‖wn‖ = l > 0.

From (2.1), for every φ ∈ H1
0 (Ω), it holds

(a− b‖un‖2)
∫

Ω

(∇un,∇φ)dx−
∫

Ω

fλ(x)|un|q−2unφdx = o(1).

Letting n→∞, by using the Brézis-Lieb’s lemma (see [2]), it holds

(a− bl2 − b‖u∗‖2)
∫

Ω

(∇u∗,∇φ)dx−
∫

Ω

fλ(x)|u∗|q−2u∗φdx = 0. (2.2)

Taking the test function φ = u∗ in (2.2), it holds

(a− bl2 − b‖u∗‖2)‖u∗‖2 −
∫

Ω

fλ(x)|u∗|qdx = 0. (2.3)

Note that 〈I ′λ(un), un〉 → 0 as n→∞, it holds

a‖wn‖2 + a‖u∗‖2− b‖wn‖4− 2b‖wn‖2‖u∗‖2− b‖u∗‖4−
∫

Ω

fλ|u∗|qdx = o(1). (2.4)

It follows from (2.3) and (2.4) that

a‖wn‖2 − b‖wn‖4 − b‖wn‖2‖u∗‖2 = o(1). (2.5)

Consequently l2(a− b‖u∗‖2 − bl2) = 0, l > 0, so that

l2 =
a

b
− ‖u∗‖2.

On the one hand, recalling that ‖un‖ ≤ m and using (2.3), it follows

Iλ(u∗) =
a

2
‖u∗‖2 −

b

4
‖u∗‖4 −

1
q

∫
Ω

fλ(x)|u∗|qdx
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=
a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 −

(1
q
− 1

4
) ∫

Ω

fλ(x)|u∗|qdx

≥ a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 − λ

(1
q
− 1

4
)
|f+|S−q/2|Ω|(6−q)/6‖u∗‖q

≥ a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 − λ

(1
q
− 1

4
)
|f+|S−q/2|Ω|(6−q)/6mq

=
a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 −Dλ,

where D =
(

1
q −

1
4

)
|f+|S−q/2|Ω|(6−q)/6mq.

On the other hand, by (2.1) and (2.5), it holds

Iλ(u∗)

= Iλ(un)− a

2
‖wn‖2 +

b

4
‖wn‖4 +

b

2
‖wn‖2‖u∗‖2 + o(1)

≤ Iλ(un)− a

2
‖wn‖2 +

1
4
(
a‖wn‖2 − b‖wn‖2‖u∗‖2

)
+
b

2
‖wn‖2‖u∗‖2 + o(1)

= c− a

4
‖wn‖2 +

b

4
‖wn‖2‖u∗‖2 + o(1)

<
a2

4b
−Dλ− a

4

(a
b
− ‖u∗‖2

)
+
b

4
l2‖u∗‖2

=
a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 −Dλ.

This is a contradiction. Therefore, l = 0, it implies that un → u∗ in H1
0 (Ω). The

proof is complete. �

Lemma 2.3. There exist R, ρ,Λ0 > 0, such that for each λ ∈ (0,Λ0), we have

inf
u∈BR(0)

Iλ(u) < 0 and Iλ|u∈∂BR(0)
> ρ.

Proof. For u ∈ H1
0 (Ω), it holds

Iλ(u) =
a

2
‖u‖2 − b

4
‖u‖4 − 1

q

∫
Ω

fλ(x)|u|qdx

≥ a

2
‖u‖2 − b

4
‖u‖4 − λ

q

∫
Ω

f+|u|qdx

≥ a

2
‖u‖2 − b

4
‖u‖4 − λ

q
|f+|S−q/2|Ω|(6−q)/6‖u‖q

= ‖u‖q
{a

2
‖u‖2−q − b

4
‖u‖4−q − λ

q
|f+|S−q/2|Ω|(6−q)/6

}
.

Set h(t) = a
2 t

2−q− b
4 t

4−q, we see that there exists a constant R =
(

2a(2−q)
b(4−q)

)1/2

> 0

such that maxt>0 h(t) = h(R) > 0. Letting Λ0 = qSq/2h(R)
2|f+||Ω|(6−q)/6 , it follows that

Iλ|‖u‖=R > 0 for each λ ∈ (0,Λ0).
By Lemma 2.1, there exists ϕ0 ∈ C∞0 (Ω) ⊂ H1

0 (Ω) such that∫
Ω

fλ(x)|ϕ0|qdx > 0.
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Applying the result, it holds

lim
t→0+

Iλ(tϕ0)
tq

= −1
q

∫
Ω

fλ(x)|ϕ0|qdx < 0.

therefore, when t is enough small, we have Iλ(tϕ0) < 0. Thus there exists u small
enough such that Iλ(u) < 0. Then we deduce that

d = inf
u∈BR(0)

Iλ(u) < 0 < inf
u∈∂BR(0)

Iλ(u). (2.6)

�

Theorem 2.4. Assume a, b > 0, 1 < q < 2 and f ∈ L∞(Ω), problem (1.3) has a
positive solution uλ with Iλ(uλ) < 0.

Proof. From (2.6), by applying Ekeland’s variational principle in BR(0), there exists
a minimizing sequence {un} ⊂ BR(0) such that

Iλ(un) ≤ inf
u∈BR(0)

Iλ(u) +
1
n
, Iλ(v) ≥ Iλ(un)− 1

n
‖v − un‖, v ∈ BR(0).

Therefore,
I ′λ(un)→ 0 and Iλ(un)→ d.

Since {un} is bounded and BR(0) is a closed convex set, there exist uλ ∈ BR(0) ⊂
H1

0 (Ω) and a subsequence still denoted by {un}, such that un ⇀ uλ in H1
0 (Ω) as

n→∞.
Note that Iλ(|un|) = Iλ(un), by Lemma 2.2, we can obtain un → uλ in H1

0 (Ω)
and d = limn→∞ Iλ(un) = Iλ(uλ) < 0, which suggests that uλ ≥ 0 and uλ 6≡ 0.
Since uλ ∈ H1

0 (Ω), by the embedding theorem we get uλ ∈ L6(Ω). Besides, as
fλ ∈ L∞(∞), by the regularity of weak solutions, it holds uλ ∈ W 2, 6q (Ω). By the
embedding theorem again, it holds that uλ ∈ C1,α(Ω). Therefore, by the Harnack
inequality, we obtain uλ > 0 a.e. in Ω. The proof is complete. �

2.2. Existence of a second positive solution of (1.3).

Lemma 2.5. Assume that λ ∈ (0,Λ0), for given R, the functional Iλ satisfies the
following conditions:

(i) Iλ(u) > 0 if u ∈ SR,
(ii) there exists e ∈ H1

0 (Ω) such that Iλ(e) < 0 when ‖e‖ > R.

Proof. (i) The conclusion follows from Lemma 2.3 when λ < Λ0.
(ii) For u ∈ H1

0 (Ω)\{0}, it holds

Iλ(tu) =
at2

2
‖u‖2 − bt4

4
‖u‖4 − tq

q

∫
Ω

fλ(x)|u|qdx

≤ at2

2
‖u‖2 − bt4

4
‖u‖4 +

tq

q

∫
Ω

|fλ(x)||u|qdx→ −∞

as t → +∞. Therefore we can find e ∈ H1
0 (Ω) such that Iλ(e) < 0 when ‖e‖ > R.

The proof is complete. �

It is well known that the function

Uε(x) =
(3ε2)1/4

(ε2 + |x|2)1/2
, x ∈ R3, ε > 0
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satisfies

−∆Uε = U5
ε in R3,∫

R3
|Uε|6 =

∫
R3
|∇Uε|2 = S3/2.

Let η ∈ C∞0 (Ω) be a cut-off function such that 0 ≤ η ≤ 1, |∇η| ≤ C and η(x) = 1
for |x| < R0 and η(x) = 0 for |x| > 2R0, we set uε(x) = η(x)Uε(x). Then it holds

‖uε‖2 = S3/2 +O(ε),

|uε|66 = S3/2 +O(ε3).

Lemma 2.6. Assume a, b > 0, 1 < q < 2 and f ∈ L∞(Ω), it holds

sup
t≥0

Iλ(uλ + tuε) <
a2

4b
−Dλ.

Proof. Since uλ is a positive solution of (1.3) and Iλ(uλ) < 0, it holds

Iλ(uλ + tuε)

=
a

2
‖uλ + tuε‖2 −

b

4
‖uλ + tuε‖4 −

1
q

∫
Ω

fλ(x)|uλ + tuε|qdx

=
a

2
‖uλ‖2 + at

∫
Ω

(∇uλ,∇uε)dx+
at2

2
‖uε‖2 −

b

4
‖uλ‖4 −

bt4

4
‖uε‖4

− bt‖uλ‖2
∫

Ω

(∇uλ,∇uε)dx− bt2
(∫

Ω

(∇uλ,∇uε)dx
)2

− bt2

2
‖uλ‖2‖uε‖2 − bt3‖uε‖2

∫
Ω

(∇uλ,∇uε)dx−
1
q

∫
Ω

fλ|uλ + tuε|qdx

≤ Iλ(uλ) +
at2

2
‖uε‖2 −

bt4

4
‖uε‖4 −

bt2

2
‖uλ‖2‖uε‖2

+
∫

Ω

|f−|
{∫ tuε

0

[(uλ + η)q−1 − uq−1
λ ]dη

}
dx

≤ at2

2
‖uε‖2 −

bt4

4
‖uε‖4 −

bt2

2
‖uλ‖2‖uε‖2 +

∫
Ω

|f−|
{∫ tuε

0

ηq−1dη
}
dx

≤ at2

2
‖uε‖2 −

bt4

4
‖uε‖4 −

bt2

2
‖uλ‖2‖uε‖2 + Ctq

∫
Ω

uqεdx.

Set

g(t) =
at2

2
‖uε‖2 −

bt4

4
‖uε‖4 −

bt2

2
‖uλ‖2‖uε‖2 + Ctq

∫
Ω

uqεdx.

We prove that there exist tε > 0 and positive constants t1, t2 independent of ε, λ,
such that supt≥0 g(t) = g(tε) and

0 < t1 ≤ tε ≤ t2 <∞. (2.7)

In deed, since limt→0+ g(t) > 0, limt→+∞ g(t) = −∞, there exists tε > 0 such that

g(tε) = sup
t≥0

g(t) and
dg

dt
|t=tε = 0.

As in [9] it follows that (2.7) holds. Note that
∫

Ω
uqεdx ≤ cεq/2, then it holds that

sup
t≥0

Iλ(uλ + tuε) ≤ sup
t≥0

g(t)
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≤ sup
t≥0

{at2
2
‖uε‖2 −

bt4

4
‖uε‖4

}
− C1‖uε‖2 + C2ε

q/2

≤ a2

4b
+ C3ε− C1S

3/2 + C2ε
q/2

≤ a2

4b
+ (C2 + C3)εq/2 − C1S

3/2,

where Ci > 0, i = 1, 2, 3. Let ε = λ
2
q , when 0 < λ < Λ1 := C1S

3/2

C2+C3+D , it holds

(C2 + C3)λ− C1S
3/2 < (C2 + C3)λ− (C2 + C3 +D)λ = −Dλ.

Consequently, supt≥0 Iλ(uλ + tuε) < a2

4b −Dλ. The proof is complete. �

Theorem 2.7. Assume that b > 0, 1 < q < 2 and f ∈ L∞(Ω), there exists λ∗ > 0
such that for each λ ∈ (0, λ∗), problem (1.3) admits a positive solution vλ with
Iλ(vλ) > 0.

Proof. Let λ∗ = min{Λ0,Λ1,
a2

4bD}, then Lemmas 2.1, 2.2, 2.3 2.5, and 2.6 hold for
λ < λ∗. Applying the mountain-pass lemma [1], there is a sequence {un} ⊂ H1

0 (Ω)
such that

Iλ(un)→ c > 0 and I ′λ(un)→ 0,
where

c = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

Γ =
{
γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = uλ, γ(1) = e
}
.

From Lemma 2.2, {un} has a convergent subsequence (still denoted by {un}) and
there exists vλ ∈ H1

0 (Ω) such that un → vλ in H1
0 (Ω). Moreover, we can obtain vλ

is a non-negative weak solution of (1.3) and

Iλ(vλ) = lim
n→∞

Iλ(un) = c > 0.

Therefore, we infer that vλ 6≡ 0. It is similar to Theorem 2.4 that vλ > 0 a.e. in Ω.
The proof is complete. �
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