Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 09, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

MULTIPLE POSITIVE SOLUTIONS FOR NONLOCAL PROBLEMS INVOLVING A SIGN-CHANGING POTENTIAL

CHUN-YU LEI, JIA-FENG LIAO, HONG-MIN SUO

Communicated by Paul Rabinowitz

ABSTRACT. In this article we show the existence and multiplicity of positive solutions for the nonlocal problem with a sign-changing weight function,

$$-(a-b\int_{\Omega}|\nabla u|^{2}dx)\Delta u = f_{\lambda}(x)|u|^{q-2}u, \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega.$$

where Ω is a smooth bounded domain in \mathbb{R}^3 , a, b > 0, 1 < q < 2. Our technical approach is based on the variational method.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this article, we are interested in finding the existence of positive solutions to the nonlocal problem

$$-M(\int_{\Omega} |\nabla u|^2 dx) \Delta u = \lambda f(x, u) \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial\Omega,$$

(1.1)

where Ω is a bounded domain in \mathbb{R}^N with $N \geq 3$. When the continuous function $M : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies certain conditions, (1.1) has been investigated by many researchers by imposing different types of hypotheses on f(x, u); see for example [3, 7, 8, 6, 5, 9, 10, 12, 15, 11, 14]. However, observing the all above studies, we see that the function M is assumed to be bounded from below. Recently, Yin and Liu [13] investigated the existence and multiplicity of nontrivial solutions for the a nonlocal problem

$$-(a-b\int_{\Omega} |\nabla u|^2 dx) \Delta u = |u|^{p-2}u, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial\Omega,$$

(1.2)

where Ω is a smooth bounded domain in \mathbb{R}^N and $N \ge 1, a, b > 0$ are constants and 2 . They obtained a nontrivial non-negative solution and a nontrivial

²⁰¹⁰ Mathematics Subject Classification. 35J20, 35J30, 35J66.

Key words and phrases. Nonlocal problem; variational method; sign-changing potential; positive solution.

^{©2017} Texas State University.

Submitted October 28, 2016. Published January 10, 2017.

non-positive solution by using the mountain-pass lemma. Motivated by their work, we consider the equation

$$-(a-b\int_{\Omega} |\nabla u|^2 dx)\Delta u = f_{\lambda}(x)|u|^{q-2}u, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial\Omega,$$

(1.3)

where Ω is a smooth bounded domain in \mathbb{R}^3 , a, b > 0, 1 < q < 2, the weight function $f_{\lambda} \in L^{\infty}(\Omega)$, defined by $f_{\lambda} = \lambda f_+ + f_-, \lambda > 0$, with $f_{\pm} = \pm \max\{\pm f, 0\} \neq 0$. An interesting question is whether multiplicity of positive solutions can be established for (1.3). We shall give a positive answer to this question.

Our main existence and multiplicity results for (1.3) can be stated as follows.

Theorem 1.1. Assume that a, b > 0, 1 < q < 2 and $f \in L^{\infty}(\Omega)$. Then there exists $\lambda_* > 0$, such that for any $\lambda \in (0, \lambda_*)$, problem (1.3) has at least two positive solutions.

In this article, we use the following notation: The space $H_0^1(\Omega)$ is equipped with the norm $||u||^2 = \int_{\Omega} |\nabla u|^2 dx$, the norm in $L^p(\Omega)$ is denoted by $|| \cdot ||_p$. C, C_1, C_2, \ldots denote various positive constants, which may vary from line to line. We denote by B_r (respectively, ∂B_r) the closed ball (respectively, the sphere) of center zero and radius r, i.e. $B_r = \{u \in H_0^1(\Omega) : ||u|| \le r\}, \ \partial B_r = \{u \in H_0^1(\Omega) : ||u|| = r\}$. Let S be the best Sobolev embedding constant for the embedding $H_0^1(\Omega) \hookrightarrow L^6(\Omega)$, namely

$$S = \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\left(\int_{\Omega} |u|^6 dx\right)^{\frac{2}{3}}}$$

2. Proof of main theorem

2.1. Existence of a first positive solution of (1.3). We define the functional

$$I_{\lambda}(u) = \frac{a}{2} \|u\|^2 - \frac{b}{4} \|u\|^4 - \frac{1}{q} \int_{\Omega} f_{\lambda}(x) |u|^q dx.$$

A function u is called a solution of (1.3) if $u\in H^1_0(\Omega)$ and for all $v\in H^1_0(\Omega)$ it holds

$$(a-b||u||^2)\int_{\Omega} (\nabla u, \nabla v)dx - \int_{\Omega} f_{\lambda}(x)|u|^{q-2}uv\,dx = 0.$$

To prove our main theorem, some preliminary results are needed. We first recall the following lemma from [4].

Lemma 2.1. Let r, s > 1, $\psi \in L^s(\Omega)$ and $\psi^+ = \max\{\psi, 0\} \neq 0$. Then there exists $\varphi_0 \in C_0^\infty(\Omega)$ such that $\int_{\Omega} \psi(x) |\varphi_0|^r dx > 0$.

Lemma 2.2. Assume a, b > 0, 1 < q < 2 and $f \in L^{\infty}(\Omega)$, then I_{λ} satisfies the $(PS)_c$ condition with $c < \frac{a^2}{4b} - D\lambda$, where

$$D = \left(\frac{1}{q} - \frac{1}{4}\right)|f_+|S^{-q/2}|\Omega|^{(6-q)/6}m^q.$$

Proof. Let $\{u_n\} \subset H_0^1(\Omega)$ be a $(PS)_c$ sequence for I_{λ} , i. e.,

$$I_{\lambda}(u_n) \to c, \quad I'_{\lambda}(u_n) \to 0, \quad \text{as } n \to \infty.$$
 (2.1)

EJDE-2017/09

From (2.1) it follows that

$$\begin{split} b \|u_n\|^4 &= a \|u_n\|^2 - \int_{\Omega} f_{\lambda}(x) |u_n|^q dx \\ &\leq a \|u_n\|^2 - \int_{\Omega} f_{-}(x) |u_n|^q dx \\ &\leq a \|u_n\|^2 + |f_{-}|S^{-q/2}|\Omega|^{(6-q)/6} \|u_n\|^q, \end{split}$$

so that

$$b||u_n||^{4-q} \le a||u_n||^2 + |f_-|S^{-q/2}|\Omega|^{(6-q)/6},$$

which implies that $\{u_n\}$ is bounded in $H_0^1(\Omega)$; that is, there is m > 0 (independent of λ) such that $||u_n|| \leq m$ for every n. Moreover, there exist a subsequence (still denoted by $\{u_n\}$) and $u_* \in H_0^1(\Omega)$ such that

$$\begin{aligned} u_n &\rightharpoonup u_* \quad \text{weakly in } H^1_0(\Omega), \\ u_n &\to u_* \quad \text{strongly in } L^p(\Omega) \ (1 \le p < 6), \\ u_n(x) &\to u_*(x) \quad \text{a.e. in } \Omega \end{aligned}$$

as $n \to \infty$. It follows easily from Vitali Convergence Theorem that

$$\lim_{n \to \infty} \int_{\Omega} f_{\lambda}(x) |u_n|^q dx = \int_{\Omega} f_{\lambda}(x) |u_*|^q dx.$$

Set $w_n = u_n - u_*$, then $||w_n|| \to 0$. Otherwise, there exists a subsequence (still denoted by w_n) such that

$$\lim_{n \to \infty} \|w_n\| = l > 0.$$

From (2.1), for every $\phi \in H_0^1(\Omega)$, it holds

$$(a-b||u_n||^2)\int_{\Omega} (\nabla u_n, \nabla \phi) dx - \int_{\Omega} f_{\lambda}(x)|u_n|^{q-2}u_n \phi dx = o(1).$$

Letting $n \to \infty$, by using the Brézis-Lieb's lemma (see [2]), it holds

$$(a - bl^2 - b||u_*||^2) \int_{\Omega} (\nabla u_*, \nabla \phi) dx - \int_{\Omega} f_{\lambda}(x) |u_*|^{q-2} u_* \phi dx = 0.$$
(2.2)

Taking the test function $\phi = u_*$ in (2.2), it holds

$$(a - bl^{2} - b||u_{*}||^{2})||u_{*}||^{2} - \int_{\Omega} f_{\lambda}(x)|u_{*}|^{q} dx = 0.$$
(2.3)

Note that $\langle I'_{\lambda}(u_n), u_n \rangle \to 0$ as $n \to \infty$, it holds

$$a\|w_n\|^2 + a\|u_*\|^2 - b\|w_n\|^4 - 2b\|w_n\|^2\|u_*\|^2 - b\|u_*\|^4 - \int_{\Omega} f_{\lambda}|u_*|^q dx = o(1).$$
(2.4)

It follows from (2.3) and (2.4) that

$$a||w_n||^2 - b||w_n||^4 - b||w_n||^2 ||u_*||^2 = o(1).$$
(2.5)

Consequently $l^2(a - b \|u_*\|^2 - b l^2) = 0$, l > 0, so that

$$l^2 = \frac{a}{b} - \|u_*\|^2.$$

On the one hand, recalling that $||u_n|| \leq m$ and using (2.3), it follows

$$I_{\lambda}(u_{*}) = \frac{a}{2} \|u_{*}\|^{2} - \frac{b}{4} \|u_{*}\|^{4} - \frac{1}{q} \int_{\Omega} f_{\lambda}(x) |u_{*}|^{q} dx$$

$$\begin{split} &= \frac{a}{4} \|u_*\|^2 + \frac{b}{4} l^2 \|u_*\|^2 - \left(\frac{1}{q} - \frac{1}{4}\right) \int_{\Omega} f_{\lambda}(x) |u_*|^q dx \\ &\geq \frac{a}{4} \|u_*\|^2 + \frac{b}{4} l^2 \|u_*\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{4}\right) |f_+|S^{-q/2}|\Omega|^{(6-q)/6} \|u_*\|^q \\ &\geq \frac{a}{4} \|u_*\|^2 + \frac{b}{4} l^2 \|u_*\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{4}\right) |f_+|S^{-q/2}|\Omega|^{(6-q)/6} m^q \\ &= \frac{a}{4} \|u_*\|^2 + \frac{b}{4} l^2 \|u_*\|^2 - D\lambda, \end{split}$$

where $D = (\frac{1}{q} - \frac{1}{4})|f_+|S^{-q/2}|\Omega|^{(6-q)/6}m^q$. On the other hand, by (2.1) and (2.5), it holds

$$\begin{split} &I_{\lambda}(u_{*})\\ &=I_{\lambda}(u_{n})-\frac{a}{2}\|w_{n}\|^{2}+\frac{b}{4}\|w_{n}\|^{4}+\frac{b}{2}\|w_{n}\|^{2}\|u_{*}\|^{2}+o(1)\\ &\leq I_{\lambda}(u_{n})-\frac{a}{2}\|w_{n}\|^{2}+\frac{1}{4}\left(a\|w_{n}\|^{2}-b\|w_{n}\|^{2}\|u_{*}\|^{2}\right)+\frac{b}{2}\|w_{n}\|^{2}\|u_{*}\|^{2}+o(1)\\ &=c-\frac{a}{4}\|w_{n}\|^{2}+\frac{b}{4}\|w_{n}\|^{2}\|u_{*}\|^{2}+o(1)\\ &<\frac{a^{2}}{4b}-D\lambda-\frac{a}{4}\left(\frac{a}{b}-\|u_{*}\|^{2}\right)+\frac{b}{4}l^{2}\|u_{*}\|^{2}\\ &=\frac{a}{4}\|u_{*}\|^{2}+\frac{b}{4}l^{2}\|u_{*}\|^{2}-D\lambda. \end{split}$$

This is a contradiction. Therefore, l = 0, it implies that $u_n \to u_*$ in $H_0^1(\Omega)$. The proof is complete.

Lemma 2.3. There exist $R, \rho, \Lambda_0 > 0$, such that for each $\lambda \in (0, \Lambda_0)$, we have

$$\inf_{u\in\overline{B_R(0)}} I_\lambda(u) < 0 \quad and \quad I_\lambda|_{u\in\overline{\partial B_R(0)}} > \rho.$$

Proof. For $u \in H_0^1(\Omega)$, it holds

$$\begin{split} I_{\lambda}(u) &= \frac{a}{2} \|u\|^{2} - \frac{b}{4} \|u\|^{4} - \frac{1}{q} \int_{\Omega} f_{\lambda}(x) |u|^{q} dx \\ &\geq \frac{a}{2} \|u\|^{2} - \frac{b}{4} \|u\|^{4} - \frac{\lambda}{q} \int_{\Omega} f_{+} |u|^{q} dx \\ &\geq \frac{a}{2} \|u\|^{2} - \frac{b}{4} \|u\|^{4} - \frac{\lambda}{q} |f_{+}|S^{-q/2}|\Omega|^{(6-q)/6} \|u\|^{q} \\ &= \|u\|^{q} \Big\{ \frac{a}{2} \|u\|^{2-q} - \frac{b}{4} \|u\|^{4-q} - \frac{\lambda}{q} |f_{+}|S^{-q/2}|\Omega|^{(6-q)/6} \Big\}. \end{split}$$

Set $h(t) = \frac{a}{2}t^{2-q} - \frac{b}{4}t^{4-q}$, we see that there exists a constant $R = \left(\frac{2a(2-q)}{b(4-q)}\right)^{1/2} > 0$ such that $\max_{t>0} h(t) = h(R) > 0$. Letting $\Lambda_0 = \frac{qS^{q/2}h(R)}{2|f_+||\Omega|^{(6-q)/6}}$, it follows that $I_{\lambda}|_{\|u\|=R}>0 \text{ for each } \lambda\in(0,\Lambda_0).$

By Lemma 2.1, there exists $\varphi_0 \in C_0^{\infty}(\Omega) \subset H_0^1(\Omega)$ such that

$$\int_{\Omega} f_{\lambda}(x) |\varphi_0|^q dx > 0.$$

EJDE-2017/09

Applying the result, it holds

$$\lim_{t\to 0^+} \frac{I_{\lambda}(t\varphi_0)}{t^q} = -\frac{1}{q} \int_{\Omega} f_{\lambda}(x) |\varphi_0|^q dx < 0.$$

therefore, when t is enough small, we have $I_{\lambda}(t\varphi_0) < 0$. Thus there exists u small enough such that $I_{\lambda}(u) < 0$. Then we deduce that

$$d = \inf_{u \in \overline{B_R(0)}} I_{\lambda}(u) < 0 < \inf_{u \in \overline{\partial B_R(0)}} I_{\lambda}(u).$$
(2.6)

Theorem 2.4. Assume a, b > 0, 1 < q < 2 and $f \in L^{\infty}(\Omega)$, problem (1.3) has a positive solution u_{λ} with $I_{\lambda}(u_{\lambda}) < 0$.

Proof. From (2.6), by applying Ekeland's variational principle in $B_R(0)$, there exists a minimizing sequence $\{u_n\} \subset \overline{B_R(0)}$ such that

$$I_{\lambda}(u_n) \leq \inf_{u \in \overline{B_R(0)}} I_{\lambda}(u) + \frac{1}{n}, \quad I_{\lambda}(v) \geq I_{\lambda}(u_n) - \frac{1}{n} \|v - u_n\|, \quad v \in \overline{B_R(0)}.$$

Therefore,

 $I'_{\lambda}(u_n) \to 0 \quad \text{and} \quad I_{\lambda}(u_n) \to d.$

Since $\{u_n\}$ is bounded and $\overline{B_R(0)}$ is a closed convex set, there exist $u_{\lambda} \in \overline{B_R(0)} \subset H_0^1(\Omega)$ and a subsequence still denoted by $\{u_n\}$, such that $u_n \rightharpoonup u_{\lambda}$ in $H_0^1(\Omega)$ as $n \rightarrow \infty$.

Note that $I_{\lambda}(|u_n|) = I_{\lambda}(u_n)$, by Lemma 2.2, we can obtain $u_n \to u_{\lambda}$ in $H_0^1(\Omega)$ and $d = \lim_{n \to \infty} I_{\lambda}(u_n) = I_{\lambda}(u_{\lambda}) < 0$, which suggests that $u_{\lambda} \ge 0$ and $u_{\lambda} \ne 0$. Since $u_{\lambda} \in H_0^1(\Omega)$, by the embedding theorem we get $u_{\lambda} \in L^6(\Omega)$. Besides, as $f_{\lambda} \in L^{\infty}(\infty)$, by the regularity of weak solutions, it holds $u_{\lambda} \in W^{2,\frac{6}{q}}(\Omega)$. By the embedding theorem again, it holds that $u_{\lambda} \in C^{1,\alpha}(\Omega)$. Therefore, by the Harnack inequality, we obtain $u_{\lambda} > 0$ a.e. in Ω . The proof is complete.

2.2. Existence of a second positive solution of (1.3).

Lemma 2.5. Assume that $\lambda \in (0, \Lambda_0)$, for given R, the functional I_{λ} satisfies the following conditions:

- (i) $I_{\lambda}(u) > 0$ if $u \in S_R$,
- (ii) there exists $e \in H_0^1(\Omega)$ such that $I_{\lambda}(e) < 0$ when ||e|| > R.

Proof. (i) The conclusion follows from Lemma 2.3 when $\lambda < \Lambda_0$. (ii) For $u \in H^1_0(\Omega) \setminus \{0\}$, it holds

$$I_{\lambda}(tu) = \frac{at^2}{2} \|u\|^2 - \frac{bt^4}{4} \|u\|^4 - \frac{t^q}{q} \int_{\Omega} f_{\lambda}(x) |u|^q dx$$

$$\leq \frac{at^2}{2} \|u\|^2 - \frac{bt^4}{4} \|u\|^4 + \frac{t^q}{q} \int_{\Omega} |f_{\lambda}(x)| |u|^q dx \to -\infty$$

as $t \to +\infty$. Therefore we can find $e \in H_0^1(\Omega)$ such that $I_{\lambda}(e) < 0$ when ||e|| > R. The proof is complete.

It is well known that the function

$$U_{\varepsilon}(x) = \frac{(3\varepsilon^2)^{1/4}}{(\varepsilon^2 + |x|^2)^{1/2}}, \quad x \in \mathbb{R}^3, \ \varepsilon > 0$$

satisfies

$$-\Delta U_{\varepsilon} = U_{\varepsilon}^{5} \quad \text{in } \mathbb{R}^{3},$$
$$\int_{\mathbb{R}^{3}} |U_{\varepsilon}|^{6} = \int_{\mathbb{R}^{3}} |\nabla U_{\varepsilon}|^{2} = S^{3/2}.$$

Let $\eta \in C_0^{\infty}(\Omega)$ be a cut-off function such that $0 \leq \eta \leq 1$, $|\nabla \eta| \leq C$ and $\eta(x) = 1$ for $|x| < R_0$ and $\eta(x) = 0$ for $|x| > 2R_0$, we set $u_{\varepsilon}(x) = \eta(x)U_{\varepsilon}(x)$. Then it holds $||u_{\varepsilon}||^2 = S^{3/2} + O(\varepsilon).$

$$|u_{\varepsilon}|_{6}^{6} = S^{3/2} + O(\varepsilon^{3})$$

Lemma 2.6. Assume a, b > 0, 1 < q < 2 and $f \in L^{\infty}(\Omega)$, it holds

$$\sup_{t\geq 0} I_{\lambda}(u_{\lambda} + tu_{\varepsilon}) < \frac{a^2}{4b} - D\lambda$$

Proof. Since u_{λ} is a positive solution of (1.3) and $I_{\lambda}(u_{\lambda}) < 0$, it holds

$$\begin{split} &I_{\lambda}(u_{\lambda} + tu_{\varepsilon}) \\ &= \frac{a}{2} \|u_{\lambda} + tu_{\varepsilon}\|^{2} - \frac{b}{4} \|u_{\lambda} + tu_{\varepsilon}\|^{4} - \frac{1}{q} \int_{\Omega} f_{\lambda}(x) |u_{\lambda} + tu_{\varepsilon}|^{q} dx \\ &= \frac{a}{2} \|u_{\lambda}\|^{2} + at \int_{\Omega} (\nabla u_{\lambda}, \nabla u_{\varepsilon}) dx + \frac{at^{2}}{2} \|u_{\varepsilon}\|^{2} - \frac{b}{4} \|u_{\lambda}\|^{4} - \frac{bt^{4}}{4} \|u_{\varepsilon}\|^{4} \\ &- bt \|u_{\lambda}\|^{2} \int_{\Omega} (\nabla u_{\lambda}, \nabla u_{\varepsilon}) dx - bt^{2} \Big(\int_{\Omega} (\nabla u_{\lambda}, \nabla u_{\varepsilon}) dx \Big)^{2} \\ &- \frac{bt^{2}}{2} \|u_{\lambda}\|^{2} \|u_{\varepsilon}\|^{2} - bt^{3} \|u_{\varepsilon}\|^{2} \int_{\Omega} (\nabla u_{\lambda}, \nabla u_{\varepsilon}) dx - \frac{1}{q} \int_{\Omega} f_{\lambda} |u_{\lambda} + tu_{\varepsilon}|^{q} dx \\ &\leq I_{\lambda}(u_{\lambda}) + \frac{at^{2}}{2} \|u_{\varepsilon}\|^{2} - \frac{bt^{4}}{4} \|u_{\varepsilon}\|^{4} - \frac{bt^{2}}{2} \|u_{\lambda}\|^{2} \|u_{\varepsilon}\|^{2} \\ &+ \int_{\Omega} |f_{-}| \Big\{ \int_{0}^{tu_{\varepsilon}} [(u_{\lambda} + \eta)^{q-1} - u_{\lambda}^{q-1}] d\eta \Big\} dx \\ &\leq \frac{at^{2}}{2} \|u_{\varepsilon}\|^{2} - \frac{bt^{4}}{4} \|u_{\varepsilon}\|^{4} - \frac{bt^{2}}{2} \|u_{\lambda}\|^{2} \|u_{\varepsilon}\|^{2} + \int_{\Omega} |f_{-}| \Big\{ \int_{0}^{tu_{\varepsilon}} \eta^{q-1} d\eta \Big\} dx \\ &\leq \frac{at^{2}}{2} \|u_{\varepsilon}\|^{2} - \frac{bt^{4}}{4} \|u_{\varepsilon}\|^{4} - \frac{bt^{2}}{2} \|u_{\lambda}\|^{2} \|u_{\varepsilon}\|^{2} + Ct^{q} \int_{\Omega} u_{\varepsilon}^{q} dx. \end{split}$$

 Set

$$g(t) = \frac{at^2}{2} \|u_{\varepsilon}\|^2 - \frac{bt^4}{4} \|u_{\varepsilon}\|^4 - \frac{bt^2}{2} \|u_{\lambda}\|^2 \|u_{\varepsilon}\|^2 + Ct^q \int_{\Omega} u_{\varepsilon}^q dx.$$

We prove that there exist $t_{\varepsilon} > 0$ and positive constants t_1, t_2 independent of ε, λ , such that $\sup_{t \ge 0} g(t) = g(t_{\varepsilon})$ and

$$0 < t_1 \le t_{\varepsilon} \le t_2 < \infty. \tag{2.7}$$

In deed, since $\lim_{t\to 0^+} g(t) > 0$, $\lim_{t\to +\infty} g(t) = -\infty$, there exists $t_{\varepsilon} > 0$ such that

$$g(t_{\varepsilon}) = \sup_{t \ge 0} g(t)$$
 and $\frac{dg}{dt}|_{t=t_{\varepsilon}} = 0.$

As in [9] it follows that (2.7) holds. Note that $\int_{\Omega} u_{\varepsilon}^{q} dx \leq c \varepsilon^{q/2}$, then it holds that $\sup_{t\geq 0} I_{\lambda}(u_{\lambda} + tu_{\varepsilon}) \leq \sup_{t\geq 0} g(t)$

6

EJDE-2017/09

$$\leq \sup_{t \geq 0} \left\{ \frac{at^2}{2} \|u_{\varepsilon}\|^2 - \frac{bt^4}{4} \|u_{\varepsilon}\|^4 \right\} - C_1 \|u_{\varepsilon}\|^2 + C_2 \varepsilon^{q/2}$$

$$\leq \frac{a^2}{4b} + C_3 \varepsilon - C_1 S^{3/2} + C_2 \varepsilon^{q/2}$$

$$\leq \frac{a^2}{4b} + (C_2 + C_3) \varepsilon^{q/2} - C_1 S^{3/2},$$

where $C_i > 0, i = 1, 2, 3$. Let $\varepsilon = \lambda^{\frac{2}{q}}$, when $0 < \lambda < \Lambda_1 := \frac{C_1 S^{3/2}}{C_2 + C_3 + D}$, it holds

$$(C_2 + C_3)\lambda - C_1S^{3/2} < (C_2 + C_3)\lambda - (C_2 + C_3 + D)\lambda = -D\lambda.$$

Consequently, $\sup_{t\geq 0} I_{\lambda}(u_{\lambda} + tu_{\varepsilon}) < \frac{a^2}{4b} - D\lambda$. The proof is complete.

Theorem 2.7. Assume that b > 0, 1 < q < 2 and $f \in L^{\infty}(\Omega)$, there exists $\lambda_* > 0$ such that for each $\lambda \in (0, \lambda_*)$, problem (1.3) admits a positive solution v_{λ} with $I_{\lambda}(v_{\lambda}) > 0$.

Proof. Let $\lambda_* = \min\{\Lambda_0, \Lambda_1, \frac{a^2}{4bD}\}$, then Lemmas 2.1, 2.2, 2.3 2.5, and 2.6 hold for $\lambda < \lambda_*$. Applying the mountain-pass lemma [1], there is a sequence $\{u_n\} \subset H_0^1(\Omega)$ such that

$$I_{\lambda}(u_n) \to c > 0 \quad \text{and} \quad I'_{\lambda}(u_n) \to 0,$$

where

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I_{\lambda}(\gamma(t)),$$

$$\Gamma = \left\{ \gamma \in C([0,1], H_0^1(\Omega)) : \gamma(0) = u_{\lambda}, \gamma(1) = e \right\}$$

From Lemma 2.2, $\{u_n\}$ has a convergent subsequence (still denoted by $\{u_n\}$) and there exists $v_{\lambda} \in H_0^1(\Omega)$ such that $u_n \to v_{\lambda}$ in $H_0^1(\Omega)$. Moreover, we can obtain v_{λ} is a non-negative weak solution of (1.3) and

$$I_{\lambda}(v_{\lambda}) = \lim_{n \to \infty} I_{\lambda}(u_n) = c > 0.$$

Therefore, we infer that $v_{\lambda} \neq 0$. It is similar to Theorem 2.4 that $v_{\lambda} > 0$ a.e. in Ω . The proof is complete.

Acknowledgments. This research was supported by the National Natural Science Foundation of China (No. 11661021), Science and Technology Foundation of Guizhou Province (No. LH[2015]7207), Natural Science Foundation of Education of Guizhou Province (No. KY[2016]046), and Science and Technology Foundation of Guizhou Province (No. LH[2016]7033).

References

- A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381.
- [2] H. Brézis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490.
- [3] B. T. Cheng; New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl., 394 (2012), 488–495.
- [4] C. M. Chu, C. L. Tang; Multiple results for critical quasilinear elliptic systems involving concave-convex nonlinearities and sign-changing weight functions. Bull. Malays. Math. Soc., 36 (2013), 789–805.
- [5] G. M. Figueiredo; Existence of a positive for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706–713.

- [6] G. M. Figueiredo, J. R. S. Junior; Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25 (2012), 853–868.
- [7] A. Fiscella, E. Valdinoci; A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156–170.
- [8] A. Hamydy, M. Massar, N. Tsouli; Existence of solution for p-Kirchhoff type problems with critical exponents, Electron. J. Differential Equations, 105 (2011), 1–8.
- [9] C. Y. Lei, G. S. Liu, L. T. Guo; Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity, Nonlinear Analysis: Real World Applications, 31 (2016), 343–355.
- [10] A. Mao, S. Luan; Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239–243.
- [11] D. Naimen; The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations, 257 (2014), 1168–1193.
- [12] J. Xu; Existence and nonexistence of positive solutions for nonlocal problems with inhomogeneous strong Allee effect, Appl. Math. Comput., 219 (2013), 11029–11035.
- [13] G. Yin, J. Liu; Existence and multiplicity of nontrivial solutions for a nonlocal problem, Bound. Value Probl., 2015 (2015) pp. 1–7.
- [14] Z. Zhang, K. Perera; Sign changing solutions of Kirchhoff type problems via invarint sets of descent flow, J. Math. Anal. Appl., 317 (2) (2006), 456–463.
- [15] Q. Zhang, H. Sun, J. J. Nieto; Positive solution for a superlinear Kirchhoff type problem with a parameter, Nonlinear Anal., 95 (2014), 333–338.

Chun-Yu Lei (corresponding author)

SCHOOL OF SCIENCES, GUI ZHOU MINZU UNIVERSITY, GUIYANG 550025, CHINA *E-mail address*: leichygzu@sina.cn

JIA-FENG LIAO

School of Mathematics and Information, China West Normal University, Nanchong 637002, China

E-mail address: liaojiafeng@163.com

Hong-Min Suo

School of Sciences, Gui Zhou Minzu University, Guiyang 550025, China *E-mail address*: 11394861@qq.com