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CRITICAL EXPONENT FOR THE ASYMPTOTIC BEHAVIOR
OF RESCALED SOLUTIONS TO THE POROUS MEDIUM

EQUATION

LIANGWEI WANG, JINGXUE YIN

Abstract. In this article, we find that µc ≡ 2N/(N(m−1)+2) is the critical

exponent for the asymptotic behavior of rescaled solutions tµ/2u(tβx, t) for

the porous medium equation.

1. Introduction

In this article, we consider the asymptotic behavior of solutions to the Cauchy
problem of the porous medium equation

∂u

∂t
−∆um = 0 in RN × (0,∞), (1.1)

u(x, t) = u0(x) in RN . (1.2)

Here the initial value satisfies

u0 ∈ C+
0 (RN ) ≡ {ϕ ∈ C(RN ); lim

|x|→∞
ϕ(x) = 0 and ϕ(x) ≥ 0}

and m > 1 is a physical constant.
Asymptotic behavior of solutions for the porous medium equation has attracted

much attention of mathematicians for a long time and many interesting results have
been obtained, see [2, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21].

Friedman and Kamin [9] first revealed the fact that if the nonnegative initial
value u0 ∈ L1(RN ), then the solution u(x, t) of problem (1.1)–(1.2) satisfies

lim
t→∞

t
N

N(m−1)+2 ‖u(·, t)− UM (·, t)‖L∞(RN ) = 0,

where UM (x, t) is the source-type solution with the same mass M as that of u0; see
also [10, 13].

This result means that if 0 ≤ u0 ∈ L1(RN ), then the ω-limit set of rescaled solu-
tions tµ/2u(tβx, t) with µ = 2N

N(m−1)+2 and β = 1
N(m−1)+2 contains one point; that

is, the rescaled solutions t
N

N(m−1)+2u(t
1

N(m−1)+2x, t) possess the simple asymptotic
behavior (KV point in Figure 1). However, for u0 ∈ L∞(RN ), in 2002, Vázquez
and Zuazua [14] found that the ω-limit set of the rescaled solutions tµ/2u(tβx, t)
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of problem (1.1)–(1.2) with µ = 0 and β = 1/2 may contain infinite points, i.e.,
u(t1/2·, t) (VZ point in Figure 1) possess complicated asymptotic behavior.

Such phenomena that the different exponents of rescaled solutions tµ/2u(tβx, t)
show different asymptotic behaviors for the porous medium equation have been
studied in [2, 14, 15, 20, 21], for other evolution equations, one can see [3, 4, 5, 6,
7, 11].

For the ω-limit set of the rescaled solutions tµ/2u(tβ ·, t) of problem (1.1)–(1.2) in
C0(RN ), we showed in our previous paper [20] that if (µ, β) ∈ I ( 0 < µ < 2N

N(m−1)+2

and β > β(µ) = 2−µ(m−1)
4 , then there exists u0 ∈ C+

0 (RN ) such that this ω-limit
set contains infinite points; see Figure 1). In another paper [21], we revealed that
if µ and β in the line segment β(µ) = 2−µ(m−1)

4 (0 < µ < 2N
N(m−1)+2 , see Figure

1), then there also exists u0 ∈ C+
0 (RN ) such that this ω-limit set contains infinite

points. While in this paper, we will reveal the different fact that if (µ, β) ∈ II
(µ ≥ 2N

N(m−1)+2 , β > 0, then for any u0 ∈ C+
0 (RN ), this ω-limit set contains at

most one point, see Figure 1), i.e., the complicated asymptotic behavior of the
rescaled solutions cannot happen.

O
µ

β

W
ith

Complexity

(KV)

β(µ) = 2−µ(m−1)4

µc = 2N
N(m−1)+2

(0, 1
2
)

1
N(m−1)+2

(VZ)

Without ComplexityRemain Problems

III

III

∂u
∂t
−∆(um) = 0

u(x, 0) = u0(x)

Figure 1. The µ-β Parameters Plane

Remark 1.1. From the above results, we can find that µc = 2N/(N(m− 1) + 2)
is the critical exponent of µ on the asymptotic behavior of the rescaled solu-
tions tµ/2u(tβx, t). It is not clear whether the rescaled solutions tµ/2u(tβx, t) with
(µ, β) ∈ III (0 < µ < 2N/(N(m − 1) + 2) and 0 < β < (2 − µ(m − 1))/4, see
Figure 1) possess complicated asymptotic behavior, so the problem of the critical
exponent for β still has not been solved.

The rest of this article is organized as following. In the next section, we introduce
some definitions and concepts to give a series of lemmas. In the last of this paper,
we give and prove our results.



EJDE-2017/10 CRITICAL EXPONENT FOR ASYMPTOTIC BEHAVIOR 3

2. Preliminaries

Before introducing the main results of this paper, we give some concepts as in
[1, 16, 17]. For f ∈ L1

loc(RN ) and r > 0, let

‖|f‖|r = sup
R≥r

R−
N(m−1)+2

m−1

∫
|x|≤R

|f(x)|dx.

Then we define the space X = X(RN ) by

X ≡ {f ∈ L1
loc(RN ); ‖|f‖|1 <∞},

and equip this space with the norm ‖| · ‖|1. Hence it is a Banach space, and any
norm ‖| · ‖|r, r > 0, is an equivalent norm. For f ∈ X, we define

`(f) = lim
r→∞

|‖f‖|r.
The space X0 = X0(RN ) is defined by

X0 ≡ {f ∈ X; `(f) = 0}.
Notice that L1(RN ) ⊂ X0 ⊂ X ⊂ L1

loc(RN ) with continuous inclusions. Similarly,
L∞(RN ) ⊂ X0 with continuous inclusion. We now give the definition of solutions
for problem (1.1)–(1.2) with the initial value u0 ∈ X0.

Definition 2.1. A nonnegative measurable function u = u(x, t) defined in ST =
[0, T )× RN , T > 0, is a solution of (1.1)–(1.2) if

(I) u ∈ C([0, T );L1
loc(RN ))

⋂
L∞(0, T ;X);

(II) um ∈ L1((0, T )×Br(0)) for any Br(0) ≡ {x ∈ RN ; |x| < r, r > 0};
(III) for every test function φ ∈ C2,1

c (ST ), it holds∫∫
ST

(uφt + um∆φ) dx dt+
∫

RN
u0(x)φ(x, 0)dx = 0.

For any u0 ∈ X0, the existence and uniqueness of the solution is well estab-
lished in [1, 16, 17]. Moreover, problem (1.1)–(1.2) generates a bounded continuous
semigroup in the space X0 given by

S(t) : u0 → u(x, t); (2.1)

that is, S(t)u0 ∈ C([0,∞);X0), see [16, 17]. We now introduce the definitions of
scalings and present the commutative relations between the semigroup operators
and the dilation operators as in [20, 21]. For λ, µ, β > 0 and u0 ∈ X0, the
space-time dilation Γµ,βλ is defined as following:

Γµ,βλ [u0](x) ≡ Dµ,β
λ [S(λ2t)u0(x)] = λµu(λ2βx, λ2t),

where the dilation Dµ,β
λ is defined as

Dµ,β
λ w(x) ≡ λµw(λ2βx)

and S(t) is the PME semigroup given by (2.1). From the definitions of Dµ,β
λ and

S(t), we can get the following commutative relations between the semigroup oper-
ators S(t) and the dilation operators Dµ,β

λ ,

Γµ,βλ u0(x) = Dµ,β
λ [S(λ2t)u0(x)] = S(λ2−4β−µ(m−1)t)[Dµ,β

λ u0](x).

In particular,
Γµ,β√

t
u0(x) = S(t

2−4β−µ(m−1)
2 )[Dµ,β√

t
u0](x), (2.2)
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see details in [20, 21]. The set of functions

ωµ,β(u0) ≡ {f ∈ C+
0 (RN );∃tn →∞ s.t. Dµ,β√

tn
[S(tn)u0](·) tn→∞−−−−→ f in L∞(RN )}

is called Ω-limit set. We also introduce the following symbol to denote the positive
set of u(x, t) at time t,

Ω(t) ≡ {x ∈ RN ; u(x, t) > 0}.
The ρ-neighborhood of the set Ω(t) is defined as

Ωρ(t) ≡ {x ∈ RN ; d(x,Ω(t)) ≤ ρ},
where d(x,Ω(t)) is the distance from x to Ω(t). We now list some important prop-
erties of the solutions.

Lemma 2.2 ([16]). If 0 ≤ u0 ∈ L1(RN ), then the solution u(x, t) satisfies the
L1-L∞ smoothing effect: for every t > 0,

‖u(·, t)‖L∞(RN ) ≤ C1‖u0‖
2

N(m−1)+2

L1(RN )
t−

N
N(m−1)+2 ,

where C1 is a constant dependent on m and N .

The following lemma was proved in [20], we give here a different proof for the
sake of completeness.

Lemma 2.3 ([20]). Let u(x, t) be a nonnegative solution of (1.1)–(1.2) with the
initial value u0 such that 0 ≤ u0 ∈ L1(RN ). Then for any 0 ≤ t1 < t2 <∞,

Ω(t2) ⊂ Ωρ(t2−t1)(t1),

where

ρ(t2 − t1) = C2(t2 − t1)
1

N(m−1)+2 ‖u0‖
m−1

N(m−1)+2

L1(RN )

and C2 is a constant dependent on m and N .

Proof. To prove this lemma, we need the fact that if u(x, t) is a nonnegative solution
of (1.1)–(1.2) with the initial data u0 satisfying

0 ≤ u0 ∈ L∞(RN ),

then

Ω(t2) ⊂ Ωρ(t2−t1)(t1) for 0 ≤ t1 < t2 <∞, (2.3)

where
ρ(t2 − t1) = C(t2 − t1)1/2‖u0‖

m−1
2

L∞(RN )
.

In fact, for any given x0 ∈ RN with d(x0) > 0, if R ≥ d(x0), then

R−
N(m−1)+2

m−1

∫
BR(x0)

u0(y)dy ≤ C‖u0‖L∞(RN )R
−N(m−1)+2

m−1 RN

= C‖u0‖L∞(RN )R
− 2
m−1

≤ C‖u0‖L∞(RN )d(x0)−
2

m−1 ;

or if R < d(x0), then ∫
BR(x0)

u0(y)dy = 0,
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where BR(x0) = {y; |x0 − y| < R}. So

B(x0) ≡ sup
R≥d(x0)

R−
N(m−1)+2

m−1

∫
BR(x0)

u0(y)dy ≤ C‖u0‖L∞(RN )d(x0)−
2

m−1 . (2.4)

The condition 0 ≤ u0 ∈ L∞(RN ) ⊂ X0 implies that if |x| ≤ R and r ≤ R, then

u(x, t) ≤ Ct− N
N(m−1)+2R

2
m−1 ‖|u0‖|

2
N(m−1)+2
r for 0 < t <∞,

see [1, 16]. This result and (2.4) imply that

u(x0, t) = 0 for all 0 ≤ t ≤ C‖u0‖−(m−1)

L∞(RN )
d(x0)2.

This implies Ω(t) ⊂ Ωρ(t)(0), where

ρ(t) = C‖u0‖
m−1

2
L∞(RN )

t1/2.

From this, we can get the desired result.
We now discuss the case that 0 ≤ u0 ∈ L1(RN ) to complete the proof. Without

loss of generality, we can restrict our consideration to the case of t1 = 0. For any
0 < t <∞, we select a sequence of times

tk = 2−kt→ 0 as k →∞.
We then consider the evolution in the time intervals Ik = [tk, tk−1]; that is, we
will estimate the increase of the support in these time intervals. From the L1-L∞

smoothing effect, at each initial time t = tk, we have

‖u(tk)‖L∞(RN ) ≤ C(p,N)‖u0‖
2

N(m−1)+2

L1(RN )
t
− N
N(m−1)+2

k . (2.5)

Therefore, we can deduce from (2.3) that

Ω(tk−1) ⊂ Ωρ(tk−1−tk)(tk),

where ρ(tk−1 − tk) = C‖u(tk)‖
m−1

2
L∞(RN )

(tk−1 − tk)1/2. Iterating, we have

Ω(t) ⊂ Ωρ(t)(0),

where

ρ(t) = C

∞∑
k=1

‖u(tk)‖
m−1

2
L∞(RN )

(tk−1 − tk)1/2 ≤ C
∞∑
k=1

‖u0‖
m−1

N(m−1)+2

L1(RN )
t

1
N(m−1)+2

k

= C‖u0‖
m−1

N(m−1)+2

L1(RN )
t

1
N(m−1)+2

∞∑
k=1

2−
k

N(m−1)+2 ≤ C‖u0‖
m−1

N(m−1)+2

L1(RN )
t

1
N(m−1)+2 .

Here we have used the estimates (2.5). The proof is complete. �

The next lemma is called Aleksandrov’s reflection (see [16]). We introduce some
notation to give this principle. Any H, hyperplane of RN , divides RN into two half
spaces Ω1(H) and Ω2(H). We denote by π = πH the specular symmetry that maps
a point x ∈ Ω1(H) into its symmetric image with respect to H, πH(x) ∈ Ω2(H).

Lemma 2.4 (Aleksandrov’s Reflection Principle [16]). Let u ≥ 0 be a solution of
problem (1.1)–(1.2) with initial value u0 ∈ X0. Suppose that for a given hyperplane
H and all x ∈ Ω1(H),

u0(πH(x)) ≤ u0(x).
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Then, for all times 0 ≤ t <∞,

u(πH(x), t) ≤ u(x, t), x ∈ Ω1(H).

The following lemma depends on Lemma 2.3 and 2.4.

Lemma 2.5. Suppose u(x, t) is a non-negative solution of (1.1)–(1.2) with initial-
value u0 ∈ C+

0 (RN ) and u0 6≡ 0. Let

M(t) =
∫
|x|≤t

1
2N(m−1)+4

u0(x)dx.

Then there exists a 0 < t0 <∞ such that for t ≥ t0,

u(0, t) ≥ Ct− N
N(m−1)+2M(t)

2
N(m−1)+2 .

Proof. Since the nonnegative initial value u0 6≡ 0 and u0 ∈ C(RN ), then there exist
constants t1, C3 > 0 such that ∫

Bt1

u0(x)dx ≥ C3.

Now let

t2 = C
− 2
N(m−1)+2

2 C−2m+2
3 ,

t3 = (2N+1C1|B1|)
2N(m−1)+4

N C−2m+2
3

where C1, C2 are the constants given in Lemma 2.2 and Lemma 2.3 respectively.
Let t0 = max (t1, t2, t3). Then for any t ≥ t0, using comparison principle, we can
suppose that u0 is supported in the ball Bt = {x; |x| ≤ t

1
2N(m−1)+4 }. In fact, for

general u0, suppose ηt(x) is a cut-off function compactly supported in Bt and less
than one with ∫

Bt

ηt(x)u0(x)dx ≥ 1
2
M(t),

then u0ηt is lesser than u0. Therefore, if v is the solution with initial data u0ηt,
then

v(x, s) ≤ u(x, s) for all s > 0.

Hence, if this lemma holds for v(x, t), then

u(0, t) ≥ v(0, t) ≥ C(
1
2
M(t))

2
N(m−1)+2 t−

N
N(m−1)+2 .

Therefore, in the next part of this proof, we assume that suppu0 ⊂ Bt. So,

M(t) =
∫

RN
u0(x)dx ≥ C3.

The L1-L∞ smoothing effect implies that for any s > 0,

0 ≤ u(x, s) ≤ C1M(t)
2

N(m−1)+2 s−
N

N(m−1)+2 .

The conservation of mass means that for all s ≥ 0,∫
RN

u0(x)dx =
∫

RN
u(x, s)dx

=
∫
|x|≥2t

1
2N(m−1)+4

u(x, s)dx+
∫
|x|≤2t

1
2N(m−1)+4

u(x, s)dx,
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the last term can be estimated as∫
|x|≤2t

1
2N(m−1)+4

u(x, s)dx ≤ 2NC1|B1|M(t)
2

N(m−1)+2 s−
N

N(m−1)+2 t
N

2N(m−1)+4 , (2.6)

where |B1| is the measure of the unit ball B1 in RN . Since suppu0 ⊂ Bt, then
Lemma 2.3 indicates that for all s > 0,

suppu(x, s) ⊂ BR1(s),

where R1(s) = t
1

2N(m−1)+4 + C2M(t)
m−1

N(m−1)+2 s
1

N(m−1)+2 . Let s = t and

R(t) = 4C2M(t)
m−1

N(m−1)+2 t
1

N(m−1)+2 .

Notice that t ≥ t0 ≥ t2 = C
− 2
N(m−1)+2

2 C−2m+2
3 and M(t) ≥ C3. So

R(t) > 2R1(t) ≥ 4t
1

2N(m−1)+4 . (2.7)

The hypothesis suppu0 ⊂ Bt implies, via the Aleksandrov reflection principle
(Lemma 2.4), that for all |x| ≥ 2t

1
2N(m−1)+4 and s ≥ 0,

u(0, s) ≥ u(x, s).

So, from (2.7), we have

u(0, t)R(t)N ≥ u(0, t)(R(t)N − 2N t
N

2N(m−1)+4 )

=
1
|B1|

∫
2t

1
2N(m−1)+4≤|x|≤R(t)

u(0, t)dx

≥ 1
|B1|

∫
2t

1
2N(m−1)+4≤|x|≤R(t)

u(x, t)dx

=
1
|B1|

∫
|x|≥2t

1
2N(m−1)+4

u(x, t)dx

=
1
|B1|

∫
RN

u(x, t)dx− 1
|B1|

∫
|x|<2t

1
2N(m−1)+4

u(x, t)dx.

Now using estimate (2.6) and t ≥ t0 ≥ t3, we obtain

u(0, t)R(t)N ≥ 1
|B1| [M(t)− 2NC1|B1|M(t)

2
N(m−1)+2 t−

N
2N(m−1)+4 ] ≥ 1

2|B1|M(t).

It follows from the definition of R(t) that

u(0, t) ≥ Ct− N
N(m−1)+2M(t)

2
N(m−1)+2 .

The proof is complete. �

3. Results and their proofs

Theorem 3.1. Let u0 ∈ C+
0 (RN ), u0 6≡ 0. If there exist 0 6≡ v ∈ C0(RN ),

µ0 ≥ 2N
N(m−1)+2 , β0 > 0 and a sequence {tn}∞n=1 with limn→∞ tn = +∞ such that

Γµ0,β0√
tn

u0 = t
µ0
2
n [S(tn)u0](tβ0

n ·) tn→∞−−−−→ v in C0(RN ), (3.1)

then

u0 ∈ L1(RN ), µ0 =
2N

N(m− 1) + 2
,
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β0 =
2− µ0[m− 1]

4
=

1
N(m− 1) + 2

.

In other words, if µ > 2N
N(m−1)+2 , or if µ = 2N

N(m−1)+2 and β 6= 1
N(m−1)+2 , then

ω(u0) = ∅, or ω(u0) = {0}.
Proof. It follows from (3.1) and Lemma 2.5 that if n sufficiently large, then

v(0) + 1 ≥ [Γµ0,β0√
tn

u0](0) = t
µ0
2
n [S(tn)u0](0) ≥ Ct

µ0−
2N

N(m−1)+2
2

n M(tn)
2

N(m−1)+2 . (3.2)

Here M(t) is given by Lemma 2.5. Letting n→∞, we conclude that

µ0 =
2N

N(m− 1) + 2

and u0 ∈ L1(RN ). Notice also that u0 ≥ 0. This gives

D
2N

N(m−1)+2 ,
1

N(m−1)+2√
t

S(t)u0(x) = t
N

N(m−1)+2u(t
1

N(m−1)+2x, t)→ UM (x, 1) (3.3)

uniformly on RN as t → ∞. Here UM (x, t) is the source-type solution with the
same mass as that of u0, where M =

∫
RN u0(x)dx, see [10, 13]. Therefore,

D
2N

N(m−1)+2 ,β0
√
tn

S(tn)u0(x)− UM (xt
β0− 1

N(m−1)+2
n , 1) n→∞−−−−→ 0 (3.4)

uniformly on RN . The expression of the source-type solution clearly means

supp(UM (x, 1)) ⊂ {x; |x| ≤ CM m−1
N(m−1)+2 },

so that if β0 >
1

N(m−1)+2 , then

UM (xt
β0− 1

N(m−1)+2
n , 1)→ 0 for all x 6= 0

as tn →∞. Notice also that v 6≡ 0, so (3.4) is compatible with (3.1) only if

β0 ≤ 1
N(m− 1) + 2

.

On the other hand, from (3.1) and (3.3) we deduce that

D
2N

N(m−1)+2 ,
1

N(m−1)+2√
tn

S(tn)u0(x)− v(t
1

N(m−1)+2−β0
n x)→ 0 (3.5)

uniformly on RN as tn →∞. The hypothesis that v ∈ C0(RN ) clearly implies that
if β0 <

1
N(m−1)+2 , then

v(t
1

N(m−1)+2−β0
n x)→ 0 for all x 6= 0

as tn → ∞. Recall that u0 6≡ 0, so UM 6≡ 0. Therefore, (3.5) is compatible with
(3.3) only if

β0 ≥ 1
N(m− 1) + 2

.

Hence
β0 =

1
N(m− 1) + 2

.

So that ωµ,β(u0) = ∅ if µ > 2N
N(m−1)+2 , or if µ = 2N

N(m−1)+2 and β 6= 1
N(m−1)+2 .

This completes the proof. �
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Theorem 3.2. Let

µ =
2N

N(m− 1) + 2
, and β =

1
N(m− 1) + 2

.

If u0 ∈ C+
0 (RN ), then

ωµ,β(u0) = ∅, or ωµ,β(u0) = {UM (x, 1)},
where UM (x, t) is source-type solution with the same mass M as that of u0.

Proof. If u0 ∈ C+
0 (RN ), then u0 ∈ L1(RN ), or else u0 ∈ L1

loc(RN ) with ‖u0‖L1(RN ) =
∞. If u0 ∈ L1(RN ), then

lim
t→∞

t
N

N(m−1)+2u(t
1

N(m−1)+2x, t) = UM (x, 1) in L∞(RN ). (3.6)

So
ωµ,β(u0) = {UM (x, 1)}.

If u0 ∈ L1
loc(RN ) and ‖u0‖L1(RN ) =∞, approximating u0 by an increasing sequence

of integrable data u0n, applying (3.6) and passing to the limit, we have

lim
t→∞

t
N

N(m−1)+2u(t
1

N(m−1)+2x, t) =∞ in L∞(RN ).

Hence ωµ,β(u0) = ∅. The proof is complete. �

Remark 3.3. As we had showed in [20, 21] that for 0 < µ < 2N/(N(m− 1) + 2),
if β = (2− µ(m− 1))/4, then there exists an initial value u0 ∈ C+

0 (RN ) such that
the Ω-limit set ωµ,β(u0) contains the set

S(1)C+
0 (RN ) ≡ {S(1)ϕ;ϕ ∈ C+

0 (RN )},
or if β > 2−µ(m−1)

4 , then there also exists an initial value u0 ∈ C+
0 (RN ) such that

the Ω-limit set ωµ,β(u0) contains the set

C+,0
0 (RN ) ≡ {ϕ ∈ C+

0 (RN );ϕ(0) = 0}.
Therefore,

µc =
2N

N(m− 1) + 2
is the critical exponent of µ on the asymptotic behavior of the rescaled solutions
tµ/2u(tβ ·, t).
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