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Abstract. In this note we study the elliptic system

−∆u = zp + f(x) in Ω,

−∆z = |∇u|q + g(x) in Ω,

z, u > 0 in Ω,

z = u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain, p > 0, 0 < q ≤ 2 with pq < 1 and f, g
are two nonnegative measurable functions. The main result of this work is to

analyze the interaction between the potential and the gradient terms in order

to get the existence of a positive solution.

1. Introduction

In this work we study the elliptic system

−∆u = zp + f(x) in Ω,

−∆z = |∇u|q + g(x) in Ω,
z, u > 0 in Ω,

z = u = 0 on ∂Ω,

(1.1)

where p > 0, 0 < q ≤ 2 and f, g are non negative measurable functions. Our goal
is to prove the existence of a positive solution under some suitable hypotheses on
the data.

Elliptic systems with gradient appear when dealing of the modeling of an elec-
trochemical engineering problem, see [11]. We refer also to [10] and [7] for other
applications of these class of systems.

Recently, in [5], the authors consider the system

−div(b(x, z)∇u) = f(x) in Ω,

−div(a(x, z)∇z) = b(x, z)|∇u|2 in Ω,
z = u = 0 on ∂Ω,
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where a(x, s), b(x, s) are positive and coercive Caratheodory functions. Under the
hypothesis that f ∈ Lm(Ω) with m ≥ 2N

N+2 , they proved the existence and regularity
of a positive solution.

When the gradient appears as an absorption term, the system becomes

−div(a(x, z)∇u) = f in Ω,

−div(b(x, z)∇z) +K(x, z)|∇u|2 = g in Ω,
z = u = 0 on ∂Ω.

This system was studied in [6]. It is clear that in this case a priori estimate can be
obtained easily and existence is allowed for L1 data.

In [1] the authors deal with the so-quoted “elliptic system with triangular struc-
ture”, namely they consider the system

−∆ui = fi(x, u,∇u) + Fi(x) in Ω,
ui = 0 on ∂Ω,

(1.2)

where
∑

1≤j≤i fj ≤ 0 and 1 ≤ i ≤ m. It is clear that under the above condition
on {fi}i, the gradient terms in (1.2) have an absorption effect and then a priori
estimates can be inferred directly. We refer also to [13] where a variation of the
system (1.2) is studied in a radial domain with blow-up boundary conditions.

In the case where p = 1, q = 2, g = f = 0 and Ω = BR(0), the system is reduced
to

−∆u = z,−∆z = |∇u|2 in BR(0). (1.3)

Using the radial structure of the previous system, the authors in [7] were able to
reduce (1.3) to the study of first-order ODEs and then they proved existence and
uniqueness of a nonnegative large radial solution to (1.3).

The parabolic version of problem (1.3) is studied as a modification of the classi-
cal Boussinesq approximation for buoyancy-driven flows of viscous incompressible
fluids, see [8, 9] for more details in this direction.

In our case the situation is quite different and we need to analyze the approxi-
mated system to get a priori estimates. This note is organized as follows, in Section
2 we introduce some preliminaries results, like the functional setting and some other
useful tools. Section 3 is dedicated to prove our main existence result. Notice that,
as a consequence of the existence results we will be able to show an existence result
for the Bi-Laplacian operator with gradient term |∇u|q under suitable hypothesis
on q.

In Section 4 we give some optimal conditions and we collet some open problems.
In the first subsection we prove non existence results, that, in some sense, justify
the conditions imposed on p and q to get the existence of positive solution for all
f, g ∈ L2(Ω). Some interesting open problems related to (1.1) are given in the last
subsection.

2. Preliminaries

In this section, we begin by recalling some useful results. Since we are considering
problems with general datum, we will use the concept of weak solution.

Definition 2.1. Let f, g ∈ L1(Ω) be nonnegative functions. Assume that p > 0
and 0 < q ≤ 2, we say that (u, z) ∈ L1(Ω) × L1(Ω) is a weak solution of (1.1), if
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|∇u|q ∈ L1(Ω), zp ∈ L1(Ω) and for all ϕ ∈ C∞0 (Ω), we have∫
Ω

(−∆ϕ)u =
∫

Ω

zpϕ+
∫

Ω

fϕ, and
∫

Ω

(−∆ϕ)z =
∫

Ω

|∇u|qϕ+
∫

Ω

gϕ. (2.1)

Notice that, since (zp + f) ∈ L1(Ω), then we can see u as a weak solution of the
problem

−∆u = zp + f(x) in Ω, u = 0 on ∂Ω.

Therefore, by a result in [3] we know that u ∈ W 1,σ
0 (Ω) for all σ < N

N−1 , more
precisely we will use the following result proved in the appendix of [2].

Lemma 2.2. Assume that u ∈ L1
loc(Ω) is such that ∆u ∈ L1

loc(Ω), then for all
p ∈ [0, N

N−1 ), and for any open sets Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω, there exists a positive
constant C ≡ C(p,Ω1,Ω2, N) such that

‖u‖W 1,p(Ω1) ≤ C
∫

Ω2

(|u|+ |∆u|) dx. (2.2)

Moreover if u ∈ L1(Ω) and ∆u ∈ L1(Ω), then the above estimate holds globally in
the domain Ω.

To prove the main existence result, we use the next Schauder fixed point Theo-
rem.

Theorem 2.3. Let T be a continuous and compact mapping of a Banach space
into itself, such that the set

{x ∈ X : x = λTx for some 0 ≤ λ ≤ 1}
is bounded. Then T has a fixed point.

3. Existence results

We begin by considering an approximating problem with regular data. More
precisely we have the next existence result.

Theorem 3.1. Let Ω ⊂ RN be a bounded domain and suppose that f, g ∈ L∞(Ω)
are nonnegative functions. Then for all p > 0, 0 < q ≤ 2 and for all ε > 0, the
system

−∆u =
zp

1 + εzp
+ f(x) in Ω,

−∆z =
|∇u|q

1 + ε|∇u|q
+ g(x) in Ω,

z = u = 0 on ∂Ω,

(3.1)

has a positive solution (u, z) ∈ (W 1,2
0 (Ω))2 ∩ (L∞(Ω))2.

Proof. We will use a fixed point argument. Let u ∈ L1(Ω) be fixed and define (ϕ, z)
to be the unique solution of the system

−∆ϕ = hε(x, u) =
up+

1 + εup+
+ f(x) in Ω,

−∆z =
|∇ϕ|q

1 + ε|∇ϕ|q
+ g(x) in Ω,

ϕ = z = 0 on ∂Ω.

(3.2)
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It is clear that hε ∈ L∞(Ω), thus ϕ ∈ X(Ω) ≡ C1,σ(Ω) ∩ L∞(Ω) ∩W 1,2
0 (Ω). Thus z

is well defined and z ∈ X(Ω). Hence we can define the operator T : L1(Ω)→ L1(Ω),
T (u) = z. We claim that T satisfies the conditions of Schauder fixed point Theorem.
The proof of the claim will be done in several steps.
Step I: T is continuous. Let {un}n ⊂ L1(Ω) be such that un → u strongly in
L1(Ω). We set zn = T (un) and z = T (u), then (ϕn, zn) and (ϕ, z) satisfy

−∆ϕn = hε(x, un) in Ω,

−∆zn =
|∇ϕn|q

1 + ε|∇ϕn|q
+ g(x) in Ω,

ϕn = zn = 0 on ∂Ω,

(3.3)

and
−∆ϕ = hε(x, u) in Ω,

−∆z =
|∇ϕ|q

1 + ε|∇ϕ|q
+ g(x) in Ω,

ϕ = z = 0 on ∂Ω,

(3.4)

Notice that
−∆(ϕn − ϕ) = hε(x, un)− hε(x, u).

Taking into account that |hε(x, s)| ≤ C(ε) and since un → u strongly in L1(Ω), it
holds hε(., un) → hε(., u) strongly in La(Ω) for all a > 0. Moreover, using Hölder
and Poincaré inequalities, it follows that∫

Ω

|∇(ϕn − ϕ)|2 dx ≤
∫

Ω

(hε(x, un)− hε(x, u))2 dx→ 0 as n→∞.

Hence ϕn → ϕ strongly in W 1,2
0 (Ω). Now going back to the problems of zn and z

and since
|∇ϕn|q

1 + ε|∇ϕn|q
→ |∇ϕ|q

1 + ε|∇ϕ|q
strongly in La(Ω) for all a > 1,

it follows that zn → z strongly in W 1,2
0 (Ω). Hence zn → z strongly in L1(Ω). Then

T is continuous.
Step II: T is compact. Consider now a sequence {un}n such that ‖un‖L1(Ω) ≤ C.
As above we set zn = T (un) and define ϕn as the unique solution of the first
problem in (3.3). It is clear that {ϕn}n is bounded in L∞(Ω) ∩W 1,2

0 (Ω). Then up
to a subsequence not relabeled, ϕn ⇀ ϕ weakly in W 1,2

0 (Ω) and strongly in La(Ω)
for all a < 2∗. Thus ϕ ∈ W 1,2

0 (Ω) ∩ L∞(Ω). Using (ϕn − ϕ) as a test function in
the equation of ϕn, there results that∫

Ω

|∇(ϕn − ϕ)|2 dx ≤
∫

Ω

∇ϕ∇(ϕ− ϕn) dx+ o(1).

Since ϕn ⇀ ϕ weakly in W 1,2
0 (Ω), it follows that ϕn → ϕ strongly in W 1,2

0 (Ω).
Hence up to a subsequence, we reach that zn → z strongly in W 1,2

0 (Ω) and in
particular in L1(Ω). Hence T is a compact operator.

To complete the proof of the claim we just have to show that T (BR(0)) ⊂ BR(0)
for some ball BR(0) ⊂ L1(Ω). Notice that by using ϕn as test function in the
first equation of (3.3), it follows that ‖ϕn‖W 1,2

0 (Ω) < C(ε,Ω). On the other hand,
using zn as a test function in the second equation of (3.3), we obtain ‖zn‖W 1,2

0 (Ω) <
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C1(ε,Ω). Thus ‖zn‖L1(Ω) < C2(ε,Ω). Hence choosing R > C2(ε,Ω), we conclude
that if ‖u‖L1(Ω) ≤ R, then ‖z‖L1(Ω) ≤ R. Hence the claim follows.

Therefore, by Schauder fixed point Theorem, we obtain the existence of u such
that T (u) = u. It is clear that u > 0 in Ω, hence (u, z) solves the system (3.1).
Now, by classical regularity results and the previous a priori estimates we obtain
easily that (u, z) ∈ (W 1,2

0 (Ω))2 ∩ (L∞(Ω))2. �

Now, we are able to state the main result in this note.

Theorem 3.2. Let Ω ⊂ RN be a bounded domain. Suppose that p > 0, 0 < q < 2
with pq < 1, then for all f, g ∈ L2(Ω), then system (1.1) has a positive solution
(u, z) such that (u, z

α+1
2 ) ∈W 1,2

0 (Ω)
timesW 1,2

0 (Ω) where α > 0 satisfies p < α+1
2 < 1

q .

Proof. We proceed by approximation. Let {fn}n, {gn}n ⊂ L∞(Ω) be such that
fn ↑ f and gn ↑ g strongly in L2(Ω). Let (un, zn) ∈ [W 1,2

0 (Ω) ∩ L∞(Ω)]2 be the
unique positive solution to the approximate system

−∆zn =
|∇un|q

1 + 1
n |∇un|q

+ gn(x) in Ω, (3.5)

zn = 0 on ∂Ω;

−∆un =
zpn

1 + zpn
+ fn(x) in Ω,

un = 0 on ∂Ω.

(3.6)

Notice that the existence of (un, zn) follows by using Theorem 3.1.
Fix α > 0 such that the above condition on α holds. Using zαn as a test function

in (3.5), it follows that

−
∫

Ω

∆znzαn dx =
∫

Ω

|∇un|q

1 + 1
n |∇un|q

zαn dx+
∫

Ω

gnz
α
n dx.

Thus by Young and Hölder inequalities we obtain
4α

(α+ 1)2

∫
Ω

∣∣∇z α+1
2

n

∣∣2 dx
≤ q

2

∫
Ω

|∇un|2 dx+
2− q

2

∫
Ω

z
α 2

2−q
n dx+ ‖gn‖L2(Ω)

(∫
Ω

z2α
n dx

)1/2

.

Let us estimate each term in the left hand side of the previous inequality.
Using Sobolev and Young inequalities we easily reach(∫

Ω

z2α
n dx

)1/2

≤ ε
∫

Ω

|∇z
α+1

2
n |2 dx+ c(ε).

Furthermore, by the fact that α < 2−q
q , it follows that 2α

2−q < 2∗ α+1
2 . Hence∫

Ω

z
α 2

2−q
n dx ≤ C(Ω)

(∫
Ω

z
2∗ α+1

2
n dx

)1/β

≤ C(Ω)
(∫

Ω

|∇z
α+1

2
n |2 dx

) 2∗
2β
,

where β = 2∗(α+1)(2−q)
4α . It is clear that 2∗

2β < 1. Therefore, combining the above
estimates we have ∫

Ω

|∇z
α+1

2
n |2 dx ≤ C1

∫
Ω

|∇un|2 dx+ C2. (3.7)
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Thus
‖z

α+1
2

n ‖2L2∗ (Ω) ≤ C1‖un‖2W 1,2
0 (Ω)

+ C3. (3.8)

Let us choose un as a test function in (3.6), we obtain∫
Ω

|∇un|2 dx =
∫

Ω

(zpn + fn)un dx. (3.9)

It is clear that ∫
Ω

fnun dx ≤ C‖f‖L2(Ω)‖un‖W 1,2
0 (Ω).

Now, using Hölder inequality and taking into consideration the estimate (3.8), we
obtain ∫

Ω

zpnun dx ≤
(∫

Ω

z
2∗ α+1

2
n dx

) 2p
2∗(α+1)

(∫
Ω

u
2∗(α+1)

2∗(α+1)−2p
n dx

) 2∗(α+1)−2p
2∗(α+1)

≤ C2

(∫
Ω

|∇un|2 dx
) p
α+1
(∫

Ω

u2∗

n dx
) 1

2∗
,

this is true because 2∗(α+1)
2∗(α+1)−2p ≤ 2∗. Hence∫

Ω

zpnun dx ≤ C
(∫

Ω

|∇un|2 dx
) p
α+1 + 1

2
+ C1(Ω).

Going back to (3.9) and taking into consideration that p
α+1 + 1

2 < 1. We conclude
that ∫

Ω

|∇un|2 dx ≤ C for all n.

Hence we obtain the existence of u ∈ W 1,2
0 (Ω) such that, up to subsequences not

relabeled, un ⇀ u weakly in W 1,2
0 (Ω) and un → u strongly in Lσ(Ω) for all σ < 2∗.

Now, by (3.7) we conclude that

‖z
α+1

2
n ‖W 1,2

0 (Ω) ≤ C1 for all n.

Hence we obtain the existence of a measurable function z such that z
α+1

2 ∈W 1,2
0 (Ω)

and, up to subsequences not relabeled, z
α+1

2
n ⇀ z

α+1
2 weakly in W 1,2

0 (Ω) and zn → z

strongly in Lσ(Ω) for all σ < 2∗(α+1)
2 .

Since p < α+1
2 , then 2∗p

2∗−1 <
2∗(α+1)

2 . Thus zpn → zp strongly in L
2∗p

2∗−1 (Ω). Hence
classical results for elliptic problem allows us to conclude that

un → u strongly in W 1,2
0 (Ω).

As a conclusion we obtain that (u, z) is a solution to system (1.1) in the sense of
Definition 2.1 with (u, z

α+1
2 ) ∈ (W 1,2

0 (Ω))2. �

As a direct application of the Theorem 3.2, we obtain the next existence result
for the Bi-Laplacian problem with gradient term.

Theorem 3.3. Let Ω ⊂ RN be a bounded domain. Suppose that q < 1 and g ∈
L2(Ω), then the problem

∆2u = |∇u|q + g(x) in Ω,
∆u = u = 0 on ∂Ω,

(3.10)
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has a positive solution u such that u ∈ W 1,2
0 (Ω) and |∆u|α+1

2 ∈ W 1,2
0 (Ω) where α

satisfies 1 < α+1
2 < 1

q .

Proof. Taking into consideration the result of Theorem 3.2 with f ≡ 0 and p = 1,
it follows that the system

−∆u = z in Ω,

−∆z = |∇u|q + g(x) in Ω,
z = u = 0 on ∂Ω,

(3.11)

has a solution (u, z) with (u, z
α+1

2 ) ∈W 1,2
0 (Ω)

timesW 1,2
0 (Ω) and 1 < α+1

2 < 1
q . Hence

∆2u = |∇u|q + g(x) in Ω,

and the result follows. �

Remark 3.4. (1) Following closely the above arguments, we can prove that the

existence result holds for all f ∈ L
2∗

2∗−1 (Ω) and g ∈ L
2∗

2∗−(2−q) (Ω).
(2) The same arguments can be used to treat the quasi-linear system

−∆pu = vr + f(x) in Ω,

−∆pv = |∇u|q + g(x) in Ω,
v, u > 0 in Ω,

v = u = 0 on ∂Ω.

(3.12)

In this case, we have the next existence result.

Theorem 3.5. Assume that r > 0, 0 < q < p with rq < (p− 1)2 then for all f, g ∈
Lp
′
(Ω), then system (3.12) has a positive solution (u, v) such that (u, v

γ+p−1
p ) ∈

W 1,p
0 (Ω)×W 1,p

0 (Ω) where γ > 0 satisfies r < p−1
p (p+ γ − 1) < (p−1)2

q .

4. Optimal results and open problems

4.1. Optimality of the obtained results.

Theorem 4.1. Assume that N > 4 and that q > 2N
N−2 = 2∗, then there exist

f, g ∈ L2(Ω) such that the system (1.1) has no positive solution.

Proof. We set f(x) = 1
|x−x0|2+σ where x0 ∈ Ω and σ > 0 to be chosen later. Since

N > 4 and q > 2N
N−2 , then the interval (N−qq , N−4

2 ) is not empty. Hence we choose
σ ∈ (N−qq , N−4

2 ). It is clear that f ∈ L2(Ω). Now, we argue by contradiction.
Assume that the system (1.1) has a positive solution (u, z) such that |∇u|q ∈ L1(Ω)
and (zp + f) ∈ L1(Ω). Then u ∈W 1,q

0 (Ω). Recall that

−∆u = zp + f ≥ 1
|x− x0|2+σ

in Ω.

Using a simple comparison argument it holds that u(x) ≥ 1
|x−x0|σ in a small ball

Br(x0) ⊂⊂ Ω. Since u ∈ W 1,q
0 (Ω), using Sobolev inequality we conclude that

u ∈ Lq
∗
(Ω). Thus u ∈ Lq

∗
(Br(x0)). As a consequence we reach that 1

|x−x0|σ ∈
Lq
∗
(Br(x0)). Hence σq∗ < N ; which is a contradiction with the choice of σ. �
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Let us begin by showing the optimality of the condition pq < 1. More precisely
we have the next non existence result.

Theorem 4.2. Assume that q = 2, then for all p > 1, there exist f, g ∈ L2(Ω)
such that the system (1.1) has no positive solution.

Proof. Without loss of generality we can assume that f = λf1 and g = µg1 with
f1, g1 ∈ L∞(Ω). We argue by contradiction. Suppose that the system (1.1) has a
positive solution (u, z) such that |∇u|q ∈ L1(Ω) and zp ∈ L1(Ω). Let φ ∈ C∞0 (Ω),
using φ2 as a test function in the equation of u in the system (1.1), it follows that∫

Ω

zpφ2 dx+ λ

∫
Ω

f1φ
2 dx = 2

∫
Ω

φ∇φ∇u dx.

Now by Young inequality, it holds∫
Ω

zpφ2 dx+ λ

∫
Ω

f1 φ
2 dx ≤

∫
Ω

φ2|∇u|2 dx+
∫

Ω

|∇φ|2 dx. (4.1)

From the second equation in the system (1.1) we reach that |∇u|2 ≤ −∆z, thus,∫
Ω

φ2|∇u|2 dx ≤
∫

Ω

φ2(−∆z) dx =
∫

Ω

z(−∆φ) dx ≤ 2
∫

Ω

zφ(−∆φ) dx,

where the last estimate follows using Kato inequality.
Since p > 1, using Young inequality, we conclude that∫

Ω

φ2|∇u|2 dx ≤ ε
∫

Ω

φ2zp dx+ C(ε)
∫

Ω

|φ|
p−2
p−1 |∆φ|p

′
dx.

Choosing ε small and going back to (4.1), we obtain that

λ

∫
Ω

f1 φ
2 dx ≤ C(ε)

∫
Ω

|φ|
p−2
p−1 |∆φ|p

′
dx+

∫
Ω

|∇φ|2 dx.

Thus

λ ≤
C(ε)

∫
Ω
|φ|

p−2
p−1 |∆φ|p′ dx+

∫
Ω
|∇φ|2 dx∫

Ω
f1 φ2 dx

.

Setting

M ≡ inf
φ∈C∞0 (Ω)

C(ε)
∫

Ω
|φ|

p−2
p−1 |∆φ|p′ dx+

∫
Ω
|∇φ|2 dx∫

Ω
f1 φ2 dx

,

then if λ > M , then system (1.1) has no positive solution and we have the conclu-
tion. �

4.2. Some open problems. In this subsection we collect some interesting open
problems.

(1) The case pq ≥ 1 and q ≤ 2: the arguments used to treat the case pq < 1 can
not be adapted to the new situation pq ≥ 1 and q ≤ 2. Hence new arguments are
needed to deal with this last case.

(2) If p = 1, problem (1.1) takes the form

−∆u = z + f(x) in Ω,

−∆z = |∇u|q + g(x) in Ω,
v, u > 0 in Ω,

v = u = 0 on ∂Ω,
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Now, by computing ∆2u, we reach that

∆2u = |∇u|q + λh(x) in Ω,
u = ∆u = 0 on ∂Ω,

(4.2)

where λh = −∆f+g. The existence of solution for (4.2) is interesting for itself since,
in the case where Bi-Laplacian operator is substituted by the Laplacian operator,
an approach based on the classical elliptic capacity Cap1,q′ gives a necessary and
sufficient condition to obtain the existence of a positive solution, see for instance
the nice paper [14]. For Bi-Laplacian operator, some particular cases were studied
in [7] with radial structure. It seems to be very interesting to get some similar
approach in the case of Bi-Laplacian operator with gradient term if q > 1.

Acknowledgements. The authors would like to express their gratitude to the
anonymous referees for their comments and suggestions that improve the last ver-
sion of the manuscript.
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