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GLOBAL SUBSONIC FLOW IN A 3-D INFINITELY LONG
CURVED NOZZLE
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Communicated by Goong Chen

ABSTRACT. In this article, we focus on the existence and stability of a subsonic
global solution in an infinitely long curved nozzle for the three-dimensional
steady potential flow equation. By introducing some suitably weighted Holder
spaces and establishing a series of a priori estimates on the solution to second
order linear elliptic equation in an unbounded strip domain with two Neumann
boundary conditions and one periodic boundary condition with respect to some
variable, we show that the global subsonic solution of potential flow equation
in a 3-D nozzle exists uniquely when the state of subsonic flow at negative
infinity is given. Meanwhile, the asymptotic state of the subsonic solution at
positive infinity as well as the asymptotic behavior at minus infinity are also
studied.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The existence of global subsonic flows in infinitely long nozzles or past obstacles
is a fundamental problem in fluid dynamics. Such a problem has been extensively
studied by many authors (see [I], 2, [, 51 [7, 8] [O] [0, [14] 15, 16] and the references
therein). For examples, for 2-D or 3-D potential flow equations, if the speed of the
gas is assumed to be suitably low and the gas passes an obstacle, then it is shown
in [4] and [9, [I0] respectively that the whole subsonic flows outside 2-D or 3-D
obstacles exist uniquely. Very recently, such a 2-D result on potential flow equation
has been extended into the 2-D full Euler system case in [7] when it is supposed that
the low velocity gas hits a symmetric obstacle. With respect to the 2-D subsonic
potential flows in the infinitely long nozzles, those authors in [14] 15 [16] have shown
the global existence and stability, in particular, those authors in [I6] established
the monotonicity of the maximum of the flow speed with respect to the incoming
mass flux. In this paper, our focus is on the 3-D subsonic potential flow equation
in a 3-D infinitely long nozzle.

Now we use the potential flow equation to describe the motion of the subsonic
gas in a 3-D nozzle. Let ¢(z) be the potential of velocity u = (u1,us,us), i.e.,
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u; = 0;p, then it follows from the Bernoulli’s law that
1
§|V<P|2 + h(p) = Co, (1.1)

here V = (91, 02, 03), h(p) = c?(p)/(y—1) is the specific enthalpy for the polytropic
gas with the state equation P = Ap” (1 < v < 3) and the sonic speed ¢(p) =
V/P'(p), Co = 3¢5 +h(po) stands for the Bernoulli’s constant, where the far velocity
field (go,0,0) at minus infinity of the nozzle is subsonic, i.e., go < ¢(po) holds true.

By use of and the implicit function theorem, the density function p(z) of
gas can be expressed as

p=h"N(Co — 3IVeP) = H(Vg). (1.2)

Substituting (|1.2]) into the mass conservation equation Z?Zl 0;(puj) =0 of gas
yields
((010)* = )9t + ((020)? = ¢*) D0 + ((039)* — *) Do
+ 2010020030 + 20100390350 + 2050030330 = 0,
here ¢ = ¢(H(Vy)).

We assume th:(zt the 3-D infinitely nozzle Qg (Figure [1]) is bounde(j by the walls:
n={r:zy=cfi(z,23),21 ERa3€(0,3)}, o ={z: 22 = 1+efa(1,23), 21 €
R,z3 € (0,5)}, 73 = {2 : 23 = 0} and 4 = {z : 23 = %}, here fi(z1,23) €
C§°((—Xo, Xo) x (0, 3)) for some fixed positive constant Xo, and £ > 0 is a suitably
small constant, for example, we can choose

(1.3)

o) = O Gg) Prymit @ o2 <1/
0 for \/a? + (z3 — 1) > 1/5

and fo(x1,23) = —fi(x1,23). As illustrated in [6, (3.8), (3.9)], by the anti-
symmetric extension in the xs-direction with respect to the function f;(z1,23)(i =
1,2) and the potential function ¢(x), then the domain g can be changed to

O ={z: 6f?(1‘1,$3) <z <1 —|—€f§(m1,x3),x1 eR,z5 €[0,1]}
(Figure [2), where

filwr,x3), 0< w5 <1/2
filz1,1—x3), 1/2<az3<1.

(w1, m3) = {

Then by using periodic extension in the xs—direction, we can use the follow-
ing unbounded strip domain €2 instead of £; to consider our problem with
o(x1, 9, 23) = ©(x1, T2, 23+1), where Q is bounded by I'y = {z : 25 = e f1 (21, 23), —00 <
21,3 < oo} and T'y = {x : 29 = 1 4+ efa(x1,23), —00 < 21,25 < +00}, here
filzr, 23+ 1) = fi(x1,23) and fi(x1,23) € C§°((—Xo, Xo) X (—00,+00)). More
concretely, f;(z1,23) = f2(x1,23 — 1) for | < 23 <1+ 1 with [ € Z.

Since the flow is tangent to the nozzle walls, then one has

(01,02, 03¢p) - (€01 fi, —1,€03fi) =0 on Ty, i=1,2. (1.4)
In addition, we suppose that the the state of subsonic flow at minus infinity satisfies
lim (p(z) — gox1) = 0. (1.5)

T1——00
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FIGURE 1. Domain g

FIGURE 2. Anti-symmetric extension ¢ to €27 with respect to

1
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On the other hand, from the physical point of view (see [4, [5 [7} [8, [0, [10] and the
references therein), when a subsonic flow in an unbounded domain is called to be
stable, it should admit a determined state at infinity. Namely,

lim Ve(z) exists for x € Q. (1.6)

xr1—+00
Our result read as follows.

Theorem 1.1. If the 3-D unbounded strip domain Q) is defined by I'y = {x : 29 =
efi(zr,3),—00 < x1,23 < 400} and I'y = {z : 22 = 1 + efa(x1,23),—00 <
z1,x3 < +oo}, here fi(x1, 3 +1) = fi(z1,23) and fi(21,23) € C5°((—Xo, Xo) x
(—o00,400)) for some fized constant Xo > 0, then there exists a small constant
g9 > 0 such that the problem (L1.3)-(1.6) has a global smooth solution ¢(z) as
€ < €9, which admits

(i) @21, 22,23) = p(x1, 22, 73 + 1).
(i) V| < c(H(Vp)). Namely, the flow is globally subsonic in the whole do-
main Q.
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(i) Forz1 < 0 and x € §, there exist a suitable constant o > 0 and a constant
Coy > 0 such that

750|£E1‘

p(2) — qom1| + [V(p(2) — qow1)| < Coce
(iv) For zy >0 and x € §Q, there exists a constant Cy > 0 such that
le(2) = goz1| < Coe(1 + 21).

(v) limg, 4 oozen V() = (g0,0,0) holds. Moreover, for xz1 > 0 and x € ,
there exists a constant Cy > 0 such that

Va2 0(x)| < Coee 20",
here 69 > 0 is given in (ii).

Besides the estimates described by Theorem we can give more detailed as-
ymptotic properties on the subsonic solution ¢(x) and its derivatives in £ when
x1 — Fo0. This will be stated more precisely in Theorem @

Although there have been many results on the weighted W2P(Q) (1 < p < 00)
estimates of solution to the second order linear elliptic equation in an unbounded
strip domain © or half-space Q (see [3, 12, [13] and the references therein), it is
difficult for us to use these results to treat the existence of solution to the quasilinear
elliptic equation as well as the asymptotic state and asymptotic behavior at
minus or positive infinity of solution since the related weighted Sobolev spaces in
[3, 2, T3] can not be imbedded into the suitable Holder space C°(Q) with some
positive constant 6 > 0.

Now we mention some works which are related to this paper. In [4 @, [I0], for
the case of the gas past an obstacle, by using the Kelvin transformation, those
authors have reduced the exterior domain problem on the 2-D or 3-D potential flow
equation into a boundary value problem in a bounded domain. From this, together
with the maximum principle, some a priori estimates on the solutions to second
order linear elliptic equations and Schauder fixed point theorem, those authors
have shown that the global subsonic flow field exists uniquely outside the obstacle.
Although it seems that the subsonic nozzle flow problem is perhaps similar to or
even simpler than the one for the subsonic flow past a profile, which is also roughly
described in [5, page 75] as “the problem of finding a subsonic flow in a given
channel is mathematically simpler than that of finding the flow past an airfoil”, we
find that these two problems have actually some differences:

(i) One is that the Kelvin transformation used in [4] and [9 10] can not be
applied directly to our nozzle problem due to the different geometric properties
between the exterior domain and the infinitely long nozzle.

(ii) Another one is that the asymptotic properties of subsonic flow at minus
infinity and positive infinity are very different for the nozzle problem (however,
the far fields of subsonic flow at infinity are uniform for the subsonic flow past an
obstacle, one can see [4, [9] [10]).

There also have some essential differences between 2-D and 3-D subsonic nozzle
flow. With respect to the 2-D subsonic nozzle flow, those authors in [I6] use the
stream function v to reduce the 2-D potential flow equation into a second order
quasilinear elliptic equation on ¥, meanwhile, the fixed nozzle wall conditions are
correspondingly changed into the Dirichlet boundary value conditions on . By use
of this kind of crucial reduction in 2-D case (at this time, the maximum principle
and comparison principle can be directly applied due to the appearance of Dirichlet
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boundary value), together with some a priori uniform estimates on the solutions
to the suitably modified nonlinear equations in some well-chosen bounded domains
with the suitable Dirichlet boundary values, those authors established the global
existence, stability and the monotonicity of the maximum of the flow speed with
respect to the incoming mass flux. However, for the 3-D subsonic nozzle flows, the
streamline function method does not work (this is also illustrated in Chapter VI of
[8]), we have to directly treat the 3-D potential flow equation with the fixed nozzle
wall condition, which is described by the Neumann boundary value condition. In
this case, the crucial comparison principle on second order elliptic equations can
not be used and further the L°° norm estimate of ¢ — ggxr; can not be obtained
directly. Therefore, we have to use some new ingredients to overcome this essential
difficulty.

Next we comment on the proof of the main result in this paper. By introduc-
ing some suitable coordinate transformation and linearizing the nonlinear equation
, we can actually get a Laplacian equation Au = f in an unbounded strip
domain € = {(#1,22,23) : —00 < 21 < 00,0 < 29 < 1,—00 < 23 < oo} with two
Neumann boundary conditions on zo = 0 and 2o = 1, one periodic boundary con-
dition on the variable z3, one Dirichlet boundary value condition at minus infinity
(i.e., 21 — —o0) and one restriction condition on the existence of lim,, 4. V u(z).
In order to solve such a Laplacian equation in Q, our ingredient is to use the separa-
tion variable method to write out the formal expression of u(z). From this, together
with some delicate analysis, we can show that this formal expression is actually a
solution of Au = f and its derivatives will decay at the rate of e—%l=l (60 > 0 is
a suitable constant) for z; < 0; on the other hand, for z; > 0, the solution wu(z)
increases at the rate of (14 z;) meanwhile its partial derivative 9., u is bounded and
the partial derivatives (0.,u,d,,u) decay at the rate of e~%%. In terms of these
properties, some inhomogeneous weighted Holder spaces will be introduced by us
and further be used to treat the regularity and existence of solution to the second
order nonlinear elliptic problem in an unbounded strip domain. In this procedure,
some detailed analysis on the expression of solution will be required, moreover, a
priori estimates with different weighted norms are required to be established. Sub-
sequently, by using the continuity method, we can complete the proof of Theorem
Imi!

This article is organized as follows. In §2, we reformulate the problem
with —, and then give a more precise descriptions on Theorem in some
suitably weighted Horder spaces. In §3, we will linearize the nonlinear problem
with —. By such a linearization, we essentially obtain the Laplacian
equation Au = f(z) in the strip domain Q = {z = (21,22,23) : —00 < z1 <
00,0 < 29 < 1,—00 < z3 < 0o} with two Neumann boundary conditions on zo = 0
and 2z = 1, one periodic condition on z3 together with lim,, .., u(z) = 0 and
the requirement on the existence of lim,, o V,u(z). By use of Sturm-Liouville
theorem and the separation variable method, we can derive the formal expression of
u(z) in Q. Subsequently, it follows from some detailed estimates that we can obtain
the existence and regularity of u(z) in Q. In §4, based on the crucial estimates
and properties given in §3, by using the suitable iteration scheme, we can complete
the proof of Theorem and further obtain the asymptotic behavior of V, ¢ at
negative and positive infinity in the strip domain €2 respectively.
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2. REFORMULATION ON (|1.3)-(|1.6) AND MORE PRECISE DESCRIPTIONS ON
THEOREM [I]]

In this section, we first introduce some notation and weighted Holder norms so
that Theorem can be given a more precise description.

Let © C R? be an open set including the origin O = (0,0,0), if u € C™(£)
with 0 < a < 1, then we define the following weighted Holder norms for x,y € €,
some positive constant 6 > 0 and m € NU {0}:

5
[u]ﬁn?o;ﬂz Z supe‘s‘”leﬁu(x)\;

TEQ
|B]=m
DB _ DB
[u]fi)a_QE Z sup eéd’*y| ue) au(y)|’ here d, ,, = min(|z1], |y1]);
T ml:mx,yeﬂ |x*y|
5 § 5
‘u|7(n?a;ﬂ = Z [u]l(c,z);ﬂ + [u]v(n?a;ﬂ;
0<k<m
[l = sup P u(@) + sup (14 21) 7 fu(a))
z€Q;x1<0 zEQ;x1>0
+ sup ™o, u(z)|+ sup |0y, u(@)|
zeN;x1<0 x€N;x1>0
b B
+ sup (D, u(@)| + Orsul@) + 32 [0 + [
xr

2<k<m
and the corresponding function spaces are defined as
H, () = {u(z) € C™*(Q) : [ul )y < +oo},
H), (Q) = {u(z) € C™(Q) : [[ull{y)s < +o00}.
Lemma 2.1. For u(z) € C™%(Q), one has
(i) Hia(Q) C HYa(9).

(i) 100,ull) ) g < ull$.q fori=2,3 and m > 1.
(iil) |D2ul$) 5 00 < Nl form > 2.

Since these properties can be directly verified by using the definitions of the
norms | - |§£?a and || - ||,(;§?a, then we omit their proof.

By using of the weighted Holder norms introduced above, Theorem can be
stated more precisely as follows.

Theorem 2.2. Under the assumptions of Theorem in the domain Q = {x :
—00 < 21 < 00,ef1(x1,x3) < T2 < 1+ efo(x1,23), —00 < 23 < +00}, problem
(L3)-(T.6) has a unique solution p(z) € C5*(Q) (any fived constant 0 < o < 1),
which satisfies

1) |le(x) — qox1||((;,sgt);Q < Ce, here 8y > 0 is some suitable constant.

(ii) limgenz, —+o00 V() = (g0,0,0).
Remark 2.3. From the results on the interior regularities and boundary regular-

ities of solutions to second order elliptic equations (see [LI, Chapter 6]), we know
that ¢(x) € C*(£2) holds in Theorem

For the requirements to show Theorem [2.2] we intend to introduce the following
transformation so that the domain € can be changed into a standard strip domain



EJDE-2017/144 GLOBAL SUBSONIC FLOW

Qz{z:(zl,zg,zg):—oo<zl < 00,0 <29 <1,—00< 23 <00}

21 = X1,
2y = T — Efl(zlax:}) , (2.1)
1+ efa(xr,x3) —efi(zr, z3)
zZ3 — I3.

In this case, for notational convenience, we still denote by ¢(z) as the solution
instead of p(z) under the transformation (2.1)). It follows from a direct computation

that the problem (1.3)-(1.6) can be changed into

3
D Aij(2,V20)D2, . 0+ B(2,V.0)02,0 =0 in Q)

ij=1
b11(2)02, 0 + 0o + b13(2)02,0 =0 on 22 =0,

b21(2)0z,0 + Ospip + b23(2)02,0 =0 on 25 =1, (2.2)
(21,22, 23 + 1) = ¢(21, 22, 23),
L Jim ((2) = goz1) =0,
lim V,p(z2) exists,
2EQ;21—+00
where
All(z Vz‘p) = CQ(H(VZ@)) - (6x1<)0)27
3
82 0z 0z
An(2,V.0) =Y (& ) = (9r:)?) 32 -2y a“oazjﬁzaz
i=1 Li 1<i<j<3 Lj
Azs(2,V.p) = C2(H(Vx@)) - (ars‘P)Q»
A12(2, V) = A1 (2, V.p)
8 822

0z z
(2 _ 2 _ 2 _
- (C (H(vmcp)) (aﬁtl 50) )a.’L‘l 8I1 <P312808x2 8I1 90813@8.’1}3 i

A13(Z, Vz‘P) = A31(z7 VZSO) = — 0z, P0r, P,
Az3(2, V@) = Azz(2,V.0)

(92’2
8z2<)087x27 8I3<)0_623g0+622<)087123

0z 0z 0z
— (2 _ 2y Y<2 Y2 g2
- (C (H(VIQP)) (81390) )(956‘3 6961 (pamsspaxl 8962 (pazs(pax2 )
3
o 022 0%z
B(zVap) = ) (C(H(Va9) = (00,0)) 5oy =2 Y Ouip0s, 05—
. O0x;0x;
i=1 1<i<j<3
Eaz fi . -
bl(z): ~ Z] 20 ) 121727.]:173
5 €0, [i 32 — 922 + €0y, [ 32
with
322

822
8961()0:621304'8229087‘%17 (95;2@:

By the transformation (2.1]), together with the properties of f;(z1,2z3) (i =1,2)
()., to show Theorem , we only need to

|m,a,

and the definition of the norm || -
establish the following theorem.
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Theorem 2.4. Undet the assumptions in Theorem problem (2.2)) has a unique
solution p(z) € C5(Q) which satisfies

(1) [le(z) — (1021||g753);5~2 < Ce.
(11) hmZEQ;Zl—>+OO VZQO(Z) = (qO) 07 O)

In next sections, we will focus on the proof of Theorem [2.4}

3. SOLVABILITY AND A PRIORI ESTIMATES FOR THE LINEARIZED PROBLEM OF
22

To solve the nonlinear problem 7 we first consider its linearized case, which
corresponds to a mixed boundary value problem of a second order linear elliptic
equation in an infinitely long strip domain Q. In terms of the smallness of perturbed
nozzle walls and by using direct computations, the linearized problem of can
be essentially expressed as:

L(v)u = |

(2

ZiZj

3
Jj=1
3

aij(z,V.0)02 4
)

Z (cz(H(Vzv) - (3%11)2)6;12 -2 Z 8ziv8zjv3§izja
i=1 1<i<y<3

:f in Q,

0,0 =¢1 onze=0,

0, =@gs on zg =1,

(21, 22, 23 + 1) = 0(z1, 22, 23),

lim  (z) =0,
zlﬂfoo,ZGQ
lim _ V.u(z) exists, (3.1)
z1——+00, zEQN

where v(z1, 22, 23), f(21, 22, 23) and §;(21,23) are all 1-periodic functions with re-

) <eand §yp > 0 a

spect to the variable z3, and v € Hgg)(fl) with [Jv — qozl||é§;Q

suitably fixed constant.
It is easy to verify that the coefficients of problem (3.1)) satisfy the following
uniformly elliptic condition in £2:

3

NEP <> aij(z, Vav)€igy < A6, (3.2)

4,J=1

for all £ = (£1,&2,&3) € R3 and 2 € ), here A and A are two appropriate constants.
Next, we study the solvability of problem (3.1]) as well as the regularity and a
priori estimates of solution u(z) to (3.1). To this end, we first study the Laplacian
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equation in R?® with the following boundary conditions:

Lou=Au=f K,
Osu=¢g1 on zy =0,
O.,u =g oOn zg =1,

u(z1, 22, 23 + 1) = u(z1, 22, 23),
lim wu(z) =0,

Z1——00

lim V. u(z) exists.
z1—+00

where f(z) € Hii;’)(fl) and §;(z1,23) € Héag)(fl) (¢ =0,1) are all 1-periodic func-
tions with respect to the variable z3. 3
For the later uses, we now give a lemma on the function f(z).

Lemma 3.1. For f € Hi‘sg)( Q), if we set
11

fmo(z1) = 2/ / f(2) cos(mmzy)dzadzs,

fon(21) / / ) cos(2nmz3)dzadzs,

fe. ()= / / f(2)sin(2nmz3)dzodzs,

f,,m 21) / / ) cos(mmzs) cos(2nmzs)dzodzs,

) cos(mmza) sin(2nmz3)dzadzs

for m,n € N, then

o)) < g ) el

| L |
[ fon(21)] < ﬁ|f|§,;{ﬁe Slal =12,

- C 76 - .
Fran(@0)| € —s | flyge ™l i=1,2,

Proof. Integrating by parts, we arrived at

mm

1 1
1 - _ 1 ~
fmo(z1) = 2/ (—f Sin(mﬂ'ZQ)\Z;(l) - —/ 622fsin(m7rz2)dz2)d23
0 mm Jo
=2 N Do f o PR 102~ dzo)d
=2 | (o - f cos(mmze)| 22, — el i -, fcos(mmza)dzy | dzs.

Because f € HLE?;)(Q), we have |DPf(z)| < |f|fz¢)@e’5°‘zl‘ for |8] < 4. From

this, we derive that

C | z60) —os0lz
[ fmo(z0)| < —5|FI§0)qe P,
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Analogously, by using the periodic property of f with respect to z3 and integration
by parts, we have

/ fcos 2nmzg)dzs = P / fcos 2nmzs)dzs. (3.4)
T
This yields
1 £100) _ ,—d0lz1]
| fon(21)] < |f\4aQ ol

Analogously, |f2,(z1)| < %|f|fz)_ﬁe—50\zl\ also holds.

Next, we estimate f¢, (z1) for i = 1,2. It follows from (3.4) and integration by
parts with respect to zo that

fvlnn(zl)

n2m2

/ / 9?2 fcos (mmz2) cos(2nmzs)dzadzs
2 z2 1
= m (/0 (cos(mmz2)0.,02, f) 2225 cos(2nmz3)dzs

/ / o2, 82 f cos(mmzy) cos(2n7r23)d22d23)

This yields

C ) Yy
Frn(2)] < s F 00 e,

\f|fz)_ﬁe_6°|zl| holds. O

Analogously, | f7,,,(21)| <

m2n?

Lemma 3.2. If f € Hf;)(ﬂ) and §; € Héég)(Q) with 0 < §g < m, then the equation
(€

(3-3) has a solution u € C?(Q), which satisfies the estimate

d0) d0) o
lully D, < CUA, +Z|gz|g;;>ﬂ (3.5)

Proof. We intend to use the method of separation variables to study the solvability
and regularities of solution u to . To this end, we firstly focus on its corre-
sponding homogeneous problem.

Let us consider the nontrivial solutions of the problem

Au=0 inQ,

Os,u=0 on ze =0,

O0,u=0 onz =1, (3.6)
u(z1, 22,23 + 1) = u(z1, 22, 23).
Set u(z) = X (21)Y (22)Z(z3), then from it follows that
Y"(22) + AY (22) = 0,
Y'(0) =0, (3.7)
Y'(1) =0,
and .
Z"(z3) + pZ(z3) =0, (3.8)

Z(z +1) = Z(z),
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and
X"(z1) = (A4 p)X(21) =0, (3.9)
here A\, u € R.

By a simple computation, we can show that the eigenvalues of are \,, =
(mm)? (m = 0,1,2,...), and the corresponding eigenfunctions are cos(mmzz). In
addition, we can compute that the eigenvalues of (3.8) are u, = (2n7)? (n =
0,1,2,...), and the corresponding eigenfunctions are cos(2nmwz3) and sin(2nmz3)
respectively.

We now solve equation (3.6) by using the eigenfunction expansion method in
terms of the complete orthogonal basis {cos mmzg cos 2nmzs, cos mwzy sin 2n7rz3}m 0"

Set h(z) = (92(21,23) 91(21,2’3))22 +g1(21, 23)22 and v(z) = u(z) — h(z), then
it follows from ) that v(z) satisfies

Av=f—Ah=Ff in Q

0,v =0 onz =0,

)

9.,v=0 onz=1,
v(21, 22,23 + 1) = v(21, 22, 23), (3.10)
lim wv(z) =0,

zZ1——00

lim V,v(z) exists.
z1—+00

Let

o0

v(z) = Xoo(z1) + Z Xmo(z1) cos(mmza)

m=1

Z X (21) cos(2nmzs) + X§, (21) sin(2nmzs))
— (3.11)

+ Z n(21) cos(mmza) cos(2nmzs)

m,n=1
+ X’ran (Zl) COS(mT{'ZQ) Sin(2n7rz3))
and

f(z) = foolz1) + Z fmo(z1) cos(mmza)

m=1

+ Z fon(21) cos(2nm2s) + fo, (21) sin(2nmzs))

n=

+ Z i (21) cos(mmzg) cos(2nmzs) + [, (1) cos(mmzz) sin(2nmz3))

m,n=1

where

foo(z1) = /01 /01 f(2)dzodz3

1
fmo(zl):2/o /0 f(2) cos(mmza)dzodzs,



12 W. CHEN, G. XU, Q. XU EJDE-2017/144

f()n 21) / / f(2) cos(2nmzs)dzadzs,
fon(z1) = 2/ / f(2)sin(2nmz3)dzedzs,
0o Jo
11
1 (1) 24/ / f(z) cos(mmzz) cos(2nmzg)dzadzs,

1 (21) —4/ / f(2) cos(mmzz) sin(2nmz3)dzedzs.

Next, we determine the terms Xog(21), Xmo(21), X§,(21) and X}, (21) (i = 1,2)
in (3.11). It follows from (3.10) and (3.11)) that we can formally obtain

Xoo(21) = foo(21),

lim Xgo(z1) =0, lim X{,(21) exists, (3.12)

Z1——00 z1—+00
Xomo(z1) = m*7* Xono(21) = fimo(21),

lim XmO( 1) =0, linﬂ X, 0(21) exists, (3.13)

Z21—— 21 ——+00
(Xon)"(21) = 4’72 X, 0(21) = fon(21),

lim X}, (z1) =0, lir_r# (X)) (21) exists, (3.14)

21— —00 21 —400
(Xpn)" (21) = (m? +4n*)1° X, (21) = fun (1),
(3.15)

lim X! (z1)=0, hlil (X)) (21) exists.
Z1—1T00

21— —00

Solving these ordinary differential equations directly yield

Xoo(z1) / / foo(&)dEdt, (3.16)

21 t

Xmo(z1) =M™ / 672"””5/ e frno(€)dédt, m > 1, (3.17)

“+oo —o0

. #1 t .

Xju (o) =t [ e [ g dede, nx (3.18)

+oo — 00

. Zl t .

X:nn(zl) _ e\/m2+4n27rzl / 672\/m2+4n27rt/ 6\/m2+4n27r§f;nn(€)d€dt (3 19)

m,n > 1.

We now analyze the expressions in ([3.16[)-(3.19). This will be divided into three
parts.

Part 1. Estimate of X(o(z1). By using the expression of Xgg(z1) in (3.16)) and
integrating by parts, one has

t Z1
XO()(Zl) = t/ foo(f)d{.‘z_loo —/ tfoo(t)dt. (320)
By f(z) € H?Eig)(f)), we have

| foo(21)| < |f|3 o€ e~ ol=l, (3.21)
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Thus
hm t/ foo(&)dt = 0.

This and (3.20)), yield

Xoo(z1) = 21 /Z1 Joo(t)dt — /Z1 t foo(t)dt

— 00

For z; < 0, it follows from and - that

13

(3.22)

! 0] ¢ 1 8] z
Xoo(en)| < [ ) / ol <1715 | [ emeagar < Sl e

For z; > 0, by using (3.21))-(3.22)), we have

z1

Xoo(z1)] < =1 / " ol)ldt + / 1t foo () dt

— 00 — 00

(6) 0 zZ1 0
<|f|3iQ< [meéotdt+21/0 eié"tdtf/ioote

< C(L+2)IfI57

This means

z1
ot 4 / te*‘%tdt)
0

s s
| Xoo(21)llig” < CIFIS - (3.23)
Next we estimate X(y(z1). Note that
zZ1
Xiola) = [ foltyt
— 0o
If z; < 0, then one has
5 - L. .
Xbo(z0)l < 115, /m ot gt < %|f|;,i);ﬁeéo 1
If z; > 0, then
(60) ° s s
Thus, we arrive at
50) s
| X00(=1) g < CIFIS
and
“+oc0 1 1
lim  X{(21) :/ / / f(t, z2, z3)dzadzsdt. (3.25)
z1—+00 — Jo Jo
Part 2. Estimate of X,,o(z1) with m > 1. By (3.17) and integration by parts,
we have
1 ommt [ ¢ 1 = t
Xomo(21) = ———e™™ (e_ mr / e fn d ’ —/ e fo(t dt)
o(z1) = —5— . Fmo(§)de] . fmo(t)
1 zZ1 +OO
=5 (e_"”rzl / "™ fro(t)dt + e / e_m”tfmo(t)dt),
— 00 zZ1

(3.26)
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where we have used that

t 7T
. ffoo e gme(f)dg . me(t)
lim = lim —— % —
t—+oc0 e2mmt t——+o0 2mme™mmt
It is noted that by Lemma [3.I] and the proof of Lemma [3.1] we have

(i) If 1 <0, then

Z1 zZ1
’e—mﬂ-zl / em‘n-tfmo(t)dt‘ < |f‘3 o Q e~ mT21 / e(mﬂ+60)tdt
oo oo (3.27)
_ ¢ |f|(5o) doz1
m2(mm 4 dg) 3 ¢
and
+oo
’em-rrn / e—mﬂ-tfmo(t)dt‘
' 0 “+oco
|f‘;62)9 m7r21</ 6(607m7r)tdt+/ ef(m'n'Jr(?o)tdt) (328)
zZ1 0
c |f|(50) 60z1.
- m?2 (m ) 3,a;Q
(ii) If z; > 0, then
zZ1
|e—m‘n’21 / emTrtme (t)dt‘
- 0 Z1
|f|3aQ "”’”1( / e(mm o0t gt 4 / e(m”_é")tdt) (3.29)
—00 0
c |f|(5o) —80z1
~ m2(mmw — &) B 0°
and
+oo B 400
|6m7r21 / efmﬂ'tfmo(t)dﬂ < — |f‘3 Z)Q mmzy / 67(m7r+60)tdt
g mn 2 (3.30)
< ¢ |f|(50) —d021
~ m2(mm + dp) 3.0:0° '
Substituting (8-27)-(328) and (3.29)-(3.30) in (3.26) yields
¢ ~dolaal
[ Xmo(21)] < WW?’QQ o
Namely,
o [
[ Xomo(21)I68) < Ww; o (3.31)

Next, we estimate X/,,(#1). Since

/ _ 1 —mmzy mmt mmzy e —mmt
X 0(z1) = 5 ¢ ™™ fmo(t)dt — e e Ffmo(t)dt ),

Z1

—0o0

by using (3-27)-(3-28) and (8.29)-(B:30), we have
C
m2 (m ) |f‘3 o; Q

e~ %0l

[ X oo (21)] <
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This means
XIS < ——o | fif (3:32)
™ P m2(mr — §p) 3
lim X],,(z1) = 0. (3.33)

Z21— 00

Part 3. Estimates of X{ ,(z1) and X/, (z1) with i =1,2 and m,n > 1. As in
Step 2, it follows from a direct computation that

. 1 21 ) +oo )
X - _ ( 2nm(t—z1) fi dt / 2nm(z1—t) £i t dt),
it = 5 ([ e gnars [ e g
i 1 o TVm n?(t—z %
an(zl) = _27m<~/—oo € e l)fmn(t)dt

+oo
21
Similar to the estimates on X ,(z1), we can arrive at

: c (50) -5
X < o) olz1]
‘ On(21)| — n3(2n7r _ 60) |f|37a;Qe )
C

m2n2v/m?2 + 4n2(mv/m?2 + 4n2 — §y) (3.34)

2
71 (6 ~ (o -6
< (e + X lalela e
i=1

Namely,
; C
X (%) (60) _ )
‘ On('zl) 0,0 = n3(2n7r — (50) ‘f|3,a;ﬂ’ (3 35)
; C
Xt (5)|00) <
Konn(21)lo” < m2n2v/m? + 4n2(mvm?2 + 4n2 — &)
2 (3.36)
#1(%0) = 1(d0)
< (1150 + 2010
i=1
Analogously,
. C s
Xi oy (d0) (60)
|( On) (Zl) 0,0 = n2(2n7r — 50) |f|3,o¢;ﬂ’
c 2 (3.37)
X V()]0 < ( 71(60) + G (50)~>
|( mn) ( 1)|O,O = m2n2(ﬂ_\/m_60) |f|4,a;Q ;Lq |5,Q;Q
and
lim (X&) (z1) =0, lim (X!,) (1) =0. (3.38)

Z21—00 Z21— 00

Based on Parts 1-3, we now show that the formal solution (3.11) is actually a
classical solution of (3.10). For convenience, we set

v(z) = Xoo(21) + I(2), (3.39)
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where I(z) = 22:1 I (z) with

Li(z) = (21, 22) = Z Xmo(z1) cos(mmza),

m=1

I(2) = I(z1,23) = Z X3 (1) cos(2nm23),

m=1

(o)
I3(2) = I3(21, 23) = Z X2 (21)sin(2nmz23),

m=1

Z X} (21) cos(mmzy) cos(2nm23),

m,n=1

Z X2 (21) cos(mmzy) sin(2n723).

m,n=1

Next, we show that Ij(z) (1 < k < 5) is convergent for (21, 22, 23) € (—00, +00) X
[0,1] x (—o0,400). Indeed, by using (3.31)), we have

“+o0
C S0z 5 —80z
MG Y g Ml e < Clflgge™™™ (340)
S 1
IL()l6y < CIS . (341)
In terms of (3.35))-(3.36)), we have
+o0 C
— z 0 — z
WWHWMKZW%—WMQW@W@yWHM)
n=1

+oo
C
L(2)| + |I5(2)] <
LORSEOIEDY m2n2vm? + 4n?(mv'm?2 + 4n2 — &)

m,n=1

<|f| (d0) o+ Z |G |é52)9) —8oz1] (3.43)

|f|4 Q_|_2|gz (50) —50\.21\.

This means

(=) wm%ﬁZM%(Wk%Mﬁ (3.44)

Thus, the series I(z) and further v(z) are continuous because of the uniform con-
vergence of Ix(z) in any compact subset of 2 = (—o0, 400) x [0,1] x (—00, +00).
Next, we show I(z) € C1(Q) and further v(z) € C*(Q). It is noted that

02, 1 (2)] < Z | X0 (21)]

(%0) e—%0lz1]
<ZW oo M ls.aa® ™
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< CIflyoqe ™

and
+oo
102,11 (2)] < Z m| Xmo(21)]
m=1
< Z S e e )
m2(mm — o) = 3,050

Therefore, I;(z) € C*(€2) holds, and satisfies the estimate
s
V-L(2)lgs < OIS

Analogously, I;(z) € C*(Q) (k = 2,3,4) holds. Moreover, we have

4 —3olz
IV.I(z)| < C |f\4a9+z|gz|;g}g Je~ ol

and

& (8 &
V()58 < CFI + Z 1G5 ). (3.45)

Finally, we show I(z) € C?(Q) and further U(z) € C%(). By using the expres-
sion of I (z) and (3.13)), we have

+oo
92 I (= Z X! (z1) cos(mmzy) = Z (M?*7% X mo(21) + fino(21)) cos(mmzy).
m=1
It follows from Lemma and (3.31]) that
S ¢ (%0) Sol 1|
2 - 1
20 < Y, (= + |f|439+2‘915a9 "

m=1

5 3 —60lz
|f‘ifl)g+z|gz éi)g Je fol=al,

Analogously, one has

—+oo
C C
2 2 (%0) (5 —dolz1]
2, 12(2)| + 1215(2)| € 3 (s + 1) |f|4gﬂ+§j|gl5gg

n=

g —do|2z
lfli:;’legzm e

and
|02 Lu(2)| + 102, Is ()|

—+oo
> e DU+ 3 e
m?n2(mv/m? 4+ 4n? — §y) m2n2 4,0:0 i 5,3 o)

<

m,n=1

8 -6
<C |f|4aQ+Z|gzlézfg Jem ol
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This implies

02, 1(2)|56’ < CUIL) + Z 1G5 )- (3.46)
Similarly, we can arrive at

102, 1(2)|%8) < C(1f| +Z|gz 53?9 for1<i<3, 1<j<3. (347

ZiZj 4,050

Combining ({3.23)-(3.25)), (3.41) and (3.44))-(3.47) yield (3.5).
On the other hand, it follows from 3.25[), 3.33[), (13.38) and the uniform conver-
gence of d,,1(z) with respect to z; that

“+o00 1 1 ~
lim 8zlu ) = / / / f(t, 22, Z3)d2’2d23dt
z1 =400 —oo Jo Jo

foo gl (3.48)
[ [ @) - a s,
hn+1 O, u(z) =0 for k=2,3. (3.49)
z1—+00
The proof is complete. O

To obtain the higher regularities and higher order norm (i.e., ||u||é53)) estimates
of u(z) to and further treat the nonlinear problem in the unbounded
strip domain €2, we have to overcome the difficulty induced by the exponent weight

e%l=1l in the spaces H(éo) or H(‘S”) (it is noted that in the general case, the weighted
Hélder space with the welght |d |”(v € R) is only used to obtain a priori estimates
of solutions to second order elliptic equations, here d, stands for the distance of
the point z to the boundary or some parts of boundary. One can be referred to
[11, Chapter 6]). For this end, first we take a suitable transformation (see
below) to change the unbounded domain Q into an unbounded domain Q which
is bounded by two cones {y : y3 = u1\/y> +vy3} and {y : y3 = pa\/y3 + y5} with
two suitable fixed constants p1 > po > 0. In this case, the exponent weight el
in the z-coordinates is equivalent to the weight |y|% in the y-coordinates. From
this, as in [17], [I8], the estimate of solution in the weighted Holder space with the
weight |y|° can be obtained. On the other hand, due to the different properties of
u(z) as 21 — —o0 or z; — 00, we have to introduce another transformation (see
below) such that the estimate of solution in the weighted Holder space with
the weight |§| 7% can be also obtained. Combining these two cases, together with
some delicate analysis, we can finally obtain the estimates of ||u||é6;)
the details below.

For notational convenience, we use a weighted Holder norm which is introduced
in [I1, Chapter 6] and the references therein as follows:

Let D C R?® be an open set, for z,y € D, we define r,, = min(|z|,|y|). For
meNU{0}, a e RY p € RT, puy, 2 € R and v € C"™%(D), we define

W)Y = > sup |a|™ | Du(z),
|81=m *EP

. One can see

W® = sup 1
|ﬁ|¥m z,y€D;x#y |I - y|a
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I o= ST W, + Wb,

0<i<m
[[v]]%}d;‘g) = maxq sup Z || | DPo(x)], sup Z \x|m+“2|D3v(x)|},
1<t 151=m =1 15 1=m
&} — DB
(Hlnu'z) — { p1tm—tao |D ’U(J;) U(y)|
H2) = max su T ;
]m,a,D 0<7~15<1 |ﬂ|¥m z,y |1‘ — y|°‘
pot+m+ta |D5U<.’1¢) — Dﬁv(y)l
sup > i )
e gl=m e =yl
ol = > Mol + [l
0<i<m
Now let’s consider the equation
Aw=f inQ

w(Zl,O, 23) = w(zlv 17 23) = 07

3.50
w(z1, 22, 23 + 1) = w(z1, 29, 23), (3.50)
lim w(z)= lim w(z)=0,
21— —00 z1— 400
where f € Héég)(ﬁ) with f(zl,22,23 +1) = f(zl,zg,zg).
Lemma 3.3. Ifw € Héég)(ﬁ) is a solution of (3.50), which satisfies
z 21(0
sup(e™/= w(z2)) < CIF|,, (3.51)
z€eQ) T
then we have (6 (60
0 0
|w|5,a;f) < O|f|3,a;fl'
Proof. First, we introduce a coordinate transformation:
y1 = €*! cos(2mz3) sin(%z2 + g), Yo = €' sin(27z3) Sin(%z2 + g),
T (3.52)
= cos(—2 + =)
Y3 1 3

In this case, the strip domain € is changed into an unbounded domain D which
is bounded by two infinitely long cones {y : y3 = cot %\/y% +y32} and {y : y3 =

cot 3 /y7 + 43}
It follows from the transformation (3.52)) that (3.50) can be changed into the

problem
3

3
> ai(y)ogw+ Y bi(y)dw = F(y)
i=1

ij=1
. 3T m
1nD£{y:cot§m<y3 <00t§ vi + 3},

3T
w(y1,y2,y3) =0 on cot§ y% +y§ =13,

™
w(y1,y2,y3) =0 on cotg\/m = ys,

w(0,0,0) = liIJ}l w(z1, 22, 23) =0,

(3.53)
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where
&11:7(y2+(27r)2y2+(z)2 y%yg )
ly2 \™! 2N 3
~ 1 2 2 2 T2 y%y%
a22:7(y +(2m)%y7 + (5 ),
ly[2 \"2 @m i + () yi +v3
. 1 (2 T .o, 9 9 . Y1Y2 T Y3 2
az3 = —=(y3 + ()7 (¥1 +y )7 a12=7<1+7 —(27r)>,
3= e\ ()" +u2) 2 () 7+
- Y1Y3 T2 - Y2Y3 T2
a3 ="—51-(5)%), aws=751-(5)),
(). = RO ()
7 1 T2 2 7 Y2 T2 2
bh===5(1—-(=)"—(2m)°), bo="5(1-(-)"—(2m)),
- n 5 1 .
by = —=(1—(=)7), = —f.
@) P

In addition, from (3.51)) and the transformation (3.52) it follows that

£1(0
sup [y|*fw] < CIfS°). (3.54)
Next, we show the estimate
5 £1(8
wll§op < CIFISY . (3.55)

To this end, for any fixed point yo = (y,99,43) € D, we set dy = p|yo| with
0 < p << 1and Bg,(yo) = B(yo,do), and define the map T : By, (yo) — B1(0) by
T(y) = 452 for y € By,(yo). In order to estimate w(y) in D, we distinguish two
cases:

(i) Bg,(yo) CC D, and

(if) Ba,(y0) N OD # 0.
In case (i), set w(z) = %w(yo + doz) for € B1(0), then it follows from a direct
computation that w(x) satisfies

2 2
> aij(yo + dow)diyi(x) + Y dobi(yo + dox)dyib(x)
ij=1 i=1 (3.56)

= doF(yo + dox).
By the Schauder interior estimate (for example, see [11, Chapter 6]), one has

3,a;B1(0))' (357)

10ll5,0:5, ©0) < Cll@llo;5y 0) + lldoF”

where the positive constant C' depends only on a.
For y € B%O(yo), then (% —Ddo <yl <+ %)d()’ and (3.57) implies

5
> Iyl Dy wl

m=1

1 1 (3.58)

3
m—+4 7
< 0(5 + ;)Héo (dg°|w|0;3do(yo) + Z Aot DI F () l0sBag (o)

m=1

+ ngréO [DSF(y)]O,a;BdU (yo)) )
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Combining (3.54)) with (3.58)) and noting
(2—60,2+0, 2 50,0
MF<mua5*”>SMﬂ>md°°>

yield
& & 2—080,2+68
\w%%g%@w<CXVQQQ+MF(M%@ﬁ ) 550
<C (60) 30,00) .
< (A1, + @IS 2™)-

In case (i), set w(z) = %w(yo +dox) for x € M = T(Bg,(y0) [ D). As in Case
(i), but it follows from the Schauder boundary estimate that

5.8 o s < Ol ). (3.60)
Similar to and , we can arrive at
[0l§58 . oy < CUFIS s + W5 ™). (3.61)
Therefore, by and ( n, we have
[wlls.0 < CUFS + IF@IS2™). (3.62)

Next, we estimate [D5w]]gfgé);D. Let y,y’ be distinct points in D with |y| < |y/].
We now consider the following two cases:

(a) dist(y,y’) <

(b) dist(y,y’) > £, here d = ply|.

In case (a), (3.54)), (3.57) and ([3.60) imply
| D’w(y) — D>w(y')|
| ‘5+50+ P S C(d50|w|0;Bd(y) + d2+50”F”3,a;Bd(y))
ly =yl (3.63)
21(8 R —d0,0
< CUFISD + MFISS™)-

d
2
d
2

In case (b), (3.62) implies
|5+6o+a|D w(y) — DPw W)l
ly =yl
< O (ID%w(y)| + |Dw(y')))
1 1.
<C(5+ ﬁ) Iyt DPw(y)] + |y D w(y'))

< OIS+ IF @IS ap™)-

Taking the supremum with respect to y and ' in (3.63) and (3.64]) respectively, we
obtain

|y

(3.64)

8 50,60)
(D2l < CUASD + I1F )50 ™). (3.65)
Next we show that A 5 s s
I @NISs™ < CIFISe - (3.66)

In fact, by using a direct computation, we can arrive at If z; > 0, namely, |y| > 1,

el f(2)] = [y1™|f (w)l,

3 A 3 A 3.67
0N DR f(2)] ~ S [yl D F(y) . o
k=1 k=1
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If 2y < 0, namely, |y| <1,

P )] = Tyl = 1 W),

50|Zl‘ & k n & k—&o k r (3.68)
e®FINTIDEf(2)] ~ Yyl IDEF(y)]-
k=1 k=1
In addition, for z,Z € Q we have
odo min{|z1 ], = 1D2f(2) = DEF(3)]
|z — 2|
~ sup Zlylk “DEf(y)[+ sup Z\ylk”"\Dk ]
yeDi|y|<1 ;. yEDs|y[>1, (3 69)

T sup d3+a 5o |D2f(y) - Df,f(y)l
0<dy, 5<1 ly — g~

4+ sup d3+a+50 |D§f(y) - Df}f@”
dy,5>1 |y - g|a

)

here |y| = €7, |§| = * and

_ Jmax(lyl[g]) if min(yl, []) < min(jy|~" 1717
o mm(\yl Iyl if min(lyl |91) = min(ly[~", 571

Therefore, comblmng with ( and noting d, 5 > ry 5 vield (3.66).
-i

Substituting l 66)|) mto l we obtaln
5 25
(D], < CIAIS . (3.70)

Returning to the coordinate z = (21, 22, z3) for [Df’w]}gsg).D, we can derive

. _ .\ |DP — DBw(3
Z Sup65021|D5 ( )| + Z sup 650m1n(zl,21)| zw(z) Z’LU(Z)|

18<5 2€Q |8|=5 2,2€€2#3 |Z - Z‘ (37]_)
50)
< OIS
On the other hand, if we introduce the coordinate transformation:
71 = e " cos(2mz3) Sin(% +6), U2 =e " sin(2mz3) sin(% + 6y),
s (3.72)
- _ 2
Yz =€ Z1 COS(T + 00),
then by using the same method to deduce (3.71]), we can arrive at
_ .| DB — DBw(z
Z sup 66021 ‘D,B ( )| + Z sup 660 max(z1,21) | zw(|z) - azw(z)‘
15 <5 2€0 |B|=5 =€ =72 24 (3.73)
< C|f|3 s
Combining (3.71)) with ( - yields
(60) (60) - .
[w] 09§0|f|3,a;(2’ 1=1,2,...,5; (3.74)
5 5,05
sup S0 min{|z1],[ 21} |D>w(z) —~Da w(z)\ C|f|é5°)9~ (3.75)
2121>0 |Z - Z| i
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Next we consider the case 2127 < 0 in (3.75). Without loss of generality, we
assume z; < 0 < z;. Moreover, we consider the following two cases:
(I) 21 — 21 Z 1,
(II) Z1— 2z < 1.

For case (I), we have

5 5 z
6 min{—z1,2 }|D ( ) D (Z)| —30z 5 80z 5, (3 71(00)
onten s 200 = DU < moom poua) + e Pl < I,

For case (II), it follows from (3.71)) and (3.73) that
|DSw(z) — D5w(z)| |D5w(z) — D>w(Z)]

50 min{le,él} < 250 . 75021 < C
€ |Z_§|a =€ € |Z_"|o¢ |f|3aQ
Thus, we have proved that
s 25
[l < Clflgeg (3.76)
Namely, by using (3.74]) and (3.76]), the proof is complete. O

Based on Lemmas and we now give the estimate of ||u||(6°) for the

solution of ((3.3)).

Lemma 3.4. Under the assumptions of Lemma the solution u(z) of (3.3)
satisfies the estimate

s s
lull§s < CUF, + Z 310 (3.77)
Proof. To prove (3.77)), by using Lemma it only suffices to prove

2
[ F1(0 ~ (6
0=l < CUR + D13l ), k=23,

5,a;2
=1

02, ul) < COFI™ +Z|gz|“0’

(3.78)

Set w(z) = 0,,v, where v(z) is a solution of (3.10 m Then it is easy to know that
w(z) satisfies the equation (3.50) with f(z) = 0,, f(z). Therefore, by Lemma
we have

o 21(6 o
-0 < CIA G < Clp)

Due to u(z) = v(z) + h(z) with h(z) = %(?]2(21723) — g1(21, 23))22 + §1(21, 23) 22,
then

0, < CUF) + Z 13:1875)- (3.79)

1=1
By using similar method to the one in Lemma (compared with the problem
(3.50]), O.,v will satisfy the same equation which admits two Neumann boundary
conditions on y, = 0 and ys=1 instead of the Dirichlet boundary conditions of

(3.50) and the same restrictions in (3.50) as 21 — +00), we can arrive at

[ & &
0:40]0) 5, < Ol FIS < LAY,
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and further
5 ]
0:0ul ) < CUAY, + Z 5l (3.80)

On the other hand, substituting ({3.79 — into the equation ([3.3) yields

I3

) )
o2, u liz>ﬂ<0|fli;>g+zwgzm

The proof is complete. O

Based on Lemma we now derive uniform estimates on the solution u(z) to

problem ({3.1]).

Lemma 3.5. Suppose that the assumption (3.2)) holds, and 1 € C* (6) s a solution
of B3). Then there exists a positive constant & such that for any f € Hfg)(ﬁ),
gi € HOO(Q)(i = 1,2), we have u € HY?) () with
(6 1 3
lally, < COAT, + Z 915005, (3.81)

where C > 0 depends only on the constants A and A in (3.2)).

Proof. Firstly, we introduce the coordinate transformation

21 = klzh 22 = k‘222, 23 = k323 (382)
with k; = \/ﬁ and ko = ks = ﬁ. Under this transformation, the domain

Q is changed into the domain Q = (—o0,+00) X [0, C(;O)] X (—o0,400), and the
equation (3.1]) can be rewritten as
At =f inQ,
0527..14 = §1 on 22 = 0,

82212 = gg on 52 = l,

11(21722723 +l) = 1}’(21722723)7 (383)
lim @ =0,
Z1——00
lim V34 exists.
z1— 400
where [ = 1/¢(po), and
3
F=F+) (1=K (A(Vo) =2 )0%i—2 > kik;j0, 00,00z,
P s (3.84)

gi =c(po)g, =12
For simplicity and without loss of generality, we assume [ = 1 in (3.83)). By the

assumption ||v — goz1 || o <cand Lemma we have

(6 5
UIJQ < 0(e)all ™) + £ (3.85)
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On the other hand, by using Lemma [3.4] one has
5 5
lillgog < CUTIy g + Z il (3.86)

Substituting (3.84) into (3.85) yields (3.81]).
Moreover, from (3.48) and (3.49)) it follows that

lim 8.4 < C(|f|°) +Z|g@|<“°>

21 —~400 4,00 Q 5,03 Q (387)
lim 0,4=0, ¢= 2, 3.
z1—+00
Therefore, the proof is complete. (I

Based on Lemmas and from the standard continuity method (see [T
Theorem 5.2]) we have the following result.

Theorem 3.6. There exists a unique solution 4 € H( )( Q) to problem (3.1)) for
some 0g > 0, which admits the following estimate

I} J
lall < C (1S +Z 61l (3.88)

4. Proors oF THEOREMS [I.1] 2.2 AND [2.4]

In this section, first we use the contraction mapping principle to show Theorem
To this end, we define the space K = {¢(z) : ¥(2)—po(2) € Hé‘?g)(ﬂ),w(zl, Z2, 23+

1) = (21, 22,28, [10(2) — 20(2)[%), < ) with 0(2) = qoz1.
Set ¢ = ¢ + @g, then satlsﬁes

3
L) = aij(z,D¥)d2. ¢ = f(z,D, DY) inQ,

ij=1

Gl(w)wzazch:gl(Z,Dw) on zz :07
Ga(P)p = 029 = §o(2, D) 20 =1, (4.1)
@21, 22,23 + 1) = p(21, 22, 23),
lim ¢ =0,
li
. lim V. exists,

where

F(z, Dp, D*) = (L(o)po — L(¥)po)

3
+ Z (aij(«z, v1/)) - Aij (Z, Vi/’))azlz]l/} - B(Zv Vw)azzd}v

i,j=1
Gi(DY) = —bi1 (2)02,0) — big(2)Doyth, i=1,2

with 7,/1 =1 — pg.
Define the nonlinear mapping J by J(¢) = ¢.
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Lemma 4.1. Suppose that o and &y are the positive constants given in Lemma[3.5.
Then there exists an g9 > 0 such that for any € € (0,e¢), J is a mapping from K
to itself.

Proof. By the definitions of A4;;(z, Vi) and B(z, V) in , we arrived at
[(ais (2, Vi) = Auj (2, V) 0z, 10
< g (2, Vo) = Aij (2, VH)I G IIB) < Ce?,
|B(z, V)9, 810 < B(z, V)| o191 < Ce2.

In addition, by using g = goz1, we have

L(po)po — L(1))po = 0.

Thus, we arrive at

)
\flf1 ‘;)Q < Ce. (4.2)
Analogously, one has
|91‘5a9§05 i=1,2. (4.3)
It follows from Theorem [3.6] that
s s
el < © uu39+§:m%ag <2, (4.9)

where C' > 0 depends only on A, .
Choose ¢y = %, then for any 0 < o < € < gg, by (4.4) we obtain

)
) <ce. (4.5)
This means that the mapping J is from K into itself. O

Next we show that the mapping J defined above is contractible.

Lemma 4.2. Under the assumptions of Lemmal{.1], the mapping J is a contractible
mapping from K to itself.

Proof. Take 11,19 € K. Let ¢; = Jip; and ¢; = ¢; — g, then we have
L(¥2)(p2 — 1) = (2, D2, D*3) — f(2, Dipr, D*n) — (L(¥2) — L(¥n))¢1  in
02, (2 — 1) = g1(2,¢2) — g1(2,¢1) on 22 =0,
025 (p2 — 01) = §2(2,¥2) — g2(2,¥1) on 2z =1,
(2 — p1)(21, 22, 23 + 1) = (2 — 1) (21, 22, 23),
, m (2 — 1) =0,

lim V,(p2 — ¢1) exists.
z1—+o0

(4.6)
As in Lemma [£1] a direct computation yields

£ (2, Dby, D*3) = (2, Dby, D*n)| ) < Cellupy — ]|,
192, 002) = (2, 00| < Cellps = |00, i = 1,2
(L) = L)1) < el — a0,
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It follows from Theorem that

)
oz — @il < Celin —wnll)s,

Choosing appropriately small g5 and letting 0 < € < g¢ yields

17(2) ~ T8V, < 3l — a5,

This means that J is a contractible mapping. (I
Based on Lemma and Lemma we now show Theorem [2.2]

Proof of Theorem[2.]] By Lemmas[.1]and [1.2] we know that the mapping J¢ = ¢
has a unique fixed point in H((? )(Q)
Next, we show lim,, 4o V.¢(z) exists. Since for Z; > Z5 > 0, we have

|az1<)0(Zla 22, 23) - 621<P(Z2a 292, Z3)|

1
= (Zl — Z2)| / aflgo(GZl + (1 — Q)ZQ, 22, 23)d0\
0

1
<C(% - Z2)|/ e~ 00 (1=022) gg| < Cem%0 72,
0

This means that there exists a function ¢(z2, z3) such that 9., ¢(z1, 22, z3) converges
to q(z2,23) uniformly as z; — +o00. On the other hand, 92 . ¢(z1, 22, 23)] <
Ce= %% for k = 2,3, this implies that 821%@(21,22,,23) converges to 0 uniformly
as z1 — +o0o. Therefore, we can arrive at 0,,q(22, 23) = 0.,4(22, z3) = 0, namely,
q(2z2,23) = ¢, here ¢ is a constant which will be determined later on. In addition,
0., 0(2)| < Ce=%l=l (k = 2,3), then lim., .10 ., () = 0. From the analysis
above, we can also obtain under the z-coordinates,

lim 0., =¢q and hm O0z,0 =0 fori=23. (4.7)

T1—00 x1—Fo0
We now show that ¢ = gg holds. Integrating the mass conservation equation
> 0102, (p(IVe]) 0, 0) =0in Qp = QN {z: —R <2 < R,0< 23 < 1} yields

0=~ [ oVt pdrt [ (V)0 0l (4.8)
xl——R :Cl_R
Using (4.7) and letting R — +o0 in (4.8), we arrive at
p(9)a = p(q0)qo- (4.9)
On the other hand, it follows from (1.2) that
v — 1
= v 20 — Y-
p(a)q (A,y) (200 — )7 .
A direct computation yields
-1, 1 _at +1
(p(@)a) = (1 AV )T ) 0 - T (@10)

In addition, by using ¢ < ¢(qo) and ., we have

L, 02(‘1) L, I, Y+1 o,

= = = . 4.11
2 TS 17T T Ty ! (4.11)
Thus, substituting (4.11]) into (4.10]) yields

(p(a)a)" > 0. (4.12)

Co =
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Combining (4.9) with (4.12) implies ¢ = ¢go. Thus, we complete the proof. O
Since the proofs of Theorem and come directly from Theorem then

we omit them.
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