
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 150, pp. 1–12.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

AN ALTERNATIVE APPROACH TO CRITICAL PDES

NIKOS LABROPOULOS

Communicated by Vicentiu Radulescu

Abstract. In this article, we use an alternative method to prove the existence

of an infinite sequence of distinct non-radial nodal G-invariant solutions for
critical nonlinear elliptic problems defined in the whole the Euclidean space.

Our proof is via approximation of the problem on symmetric bounded domains.

The base model problem of interest originating from Physics is stated below:

−∆u = |u|
4

n−2 u, u ∈ C2(Rn), n ≥ 3.

1. Introduction

In this article, our main motivation is based on the work by Ding [14] which
proved the existence of non-radial solutions of the above problem. In this work we
find both the type and the number of such solutions. The pleasant surprise is the
fact that in order to answer these two questions it needed to use a new method of
solving critical, (or supercritical), PDEs, the method itself seems to have particular
value in that it can be used and in other types of PDEs. However, the main objective
here is to prove the existence of non-radial nodal (sign-changing) solutions, for the
following critical nonlinear elliptic problem:

−∆u = |u|
4

n−2u, u ∈ C2(Rn), n ≥ 3. (1.1)

As mentioned above the problem (1.1) owns its origin in many astrophysical and
physical contexts and more precisely in the the Lane-Emden-Fowler problem,

−∆u = up, u > 0 in Ω,
u = 0 on ∂Ω,

where Ω is a domain with smooth boundary in RN and p > 1. But its greatest
interest lies in its relation to the Yamabe problem (for a complete and detailed study
we refer to [5], nevertheless it has an autonomous presence holding an important
place among the most famous nonlinear partial differential equations). Indicatively,
we refer to the classical papers [20, 14, 28], which are some of the large number of
very good papers that are devoted to the study of this problem.

Concerning the resolution of the problem (1.1), our proof is via approximation
of the problem on symmetric bounded domains. This method is different from that
previously used by other authors referred within this paper and can be used to
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solve polyharmonic equations with supercritical exponent and even in the critical
of supercritical case, providing an alternative way of utilizing the best constants of
the Sobolev inequalities. Furthermore, it enables us to determine the kind and the
number of solutions of the problem.

In problem (1.1) the main difficulty comes from the double lack of compactness.
By lack of compactness, we mean that the functionals that we consider do not
satisfy the Palais-Smale condition, (i.e. there exists a sequence along which the
functional remains bounded, its gradient goes to zero, and does not converge). The
first main difficulty comes from the fact that the exponent 2∗ = 2n

n−2 = 4
n−2 + 1 is

critical, and the second is some extra difficulty because of the lack of compactness
in unbounded domains.

The first obstacle can be overcome by obtaining the solutions of the following
corresponding problem

−∆uε + εa(x)uε = f(x)|uε|
4

n−2uε, n ≥ 3,
uε 6≡ 0 in Ωε, uε = 0 on ∂Ωε,

(1.2)

where Ωε, ε > 0 is an expanding domain in Rn, n ≥ 3, invariant under the action
of a subgroup G of the isometry group O(n) and a, f ∈ C∞(Ωε) are two smooth
G−invariant functions on Ωε.

The main idea to overcome the second difficulty is to solve the problem (1.2) in
a sequence of Ωεs and henceforth to obtain the solutions of the limit problem (1.1)
as the limits of the solutions, as 1

ε tends to∞, of the sequence of the problem (1.2).
Problem (1.2) has been studied by many authors. We refer to [3, 4, 9, 14, 18, 21]

and the references therein for a further discussion of both the problem itself and
several variations of it. Some special cases also have been studied. For example,
no solution can exist if Ω is starshaped, as a consequence of the Pohozaev identity
(see in [30]). Furthermore, if Ω is an annulus, there are infinite solutions (see in
[26]). Also, a general result of Bahri and Coron guarantees the existence of positive
solutions in domains Ω having nontrivial topology (i.e. certain homology groups of
Ω are non trivial) (see in [6]). The existence and multiplicity of positive or nodal
solutions of critical equations on bounded domains or in some contractible domains
have been determined by other authors (see for example in [15, 18, 21, 29, 33]).
Some more nonexistence results in this case are available, (see in [1, 4, 11, 23]).

As we have mentioned above, in problem (1.2) the main difficulty comes because
the exponent 2∗ is the critical exponent for the Sobolev imbedding H2

1 (Ω) ↪→ Lp(Ω).
Because the Sobolev embedding H2

1 (Ω) ↪→ Lp(Ω) is compact for any real p such
that 1 ≤ p < 2∗ while if 1 ≤ p ≤ 2∗ is only continuous (see in [5]), in our case
we have to solve a variational problem with lack of compactness. The symmetry
property of the domain allows us to improve the Sobolev embedding in higher Lp

spaces and to overcome this obstruction. More precisely, it is well known that if
(M, g) is a smooth compact Riemannian n−manifold invariant under the action of
an arbitrary compact subgroup G of Isomg(M), OxG = {σ(x), σ ∈ G}, CardOxG =∞
and k = minx∈M dimOxG, then k ≥ 1 and the Sobolev embedding H2

1,G(Ω) ↪→ Lp(Ω)
is compact for any 1 ≤ p < 2(n−k)

n−k−2 but if 1 ≤ p ≤ 2(n−k)
n−k−2 is only continuous (see in

[22], [17], [13]). Thus, in our case the symmetry property of Ωεs allows us to solve
problems with subcritical exponent using the classical variation method.

As a small overview on the history and progress of the study of our problem
we mention the following: Loewner and Nirenberg [27] studied problem (1.1) for
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n = 4. Gidas, Ni and Nirenberg in their celebrated paper [20] proved symmetry and
some related properties of positive solutions of a larger class of second order elliptic
equations. Concerning problem (1.1) they proved that any positive solution, which
has finite energy, namely

∫
Rn |∇u|2dx <∞, is necessarily of the form

u(x) =
( λ

√
n(n− 2)

λ2 + |x− x0|2
)(n−2)/2

,

where λ > 0, x0 ∈ Rn. These solutions yield the well-known one-instanton solutions
in a regular gauge of the Yang-Mills equation. In addition, since the equation

−∆u = |u|
4

n−2u, n ≥ 3,

is invariant under the conformal transformations of Rn, if u(x) is a solution, then
for any λ > 0 and x0 ∈ Rn, λ

n−2
2 u(x−x0

λ ) is also a solution. Moreover, all solutions
obtained in this way have the same energy and we will say that these solutions
are equivalent. In particular, all these solutions are equivalent. Ding in [14] used
Ambrosetti and Rabinowitz analysis (see in [2]) to prove that this problem has
infinite distinct solutions u ∈ C2(Rn), with finite energy and which changes sign,
but he did not specify the type of these solutions. Caffarelli, Gidas and Spruck in
their classical paper [10] studied non-negative smooth solutions of the conformally
invariant equation

−∆u = u
n+2
n−2 , u ≥ 0, n ≥ 3,

in a punctured ball B1(0)\{0} ⊆ Rn, with an isolated singularity at the origin. In
this paper, the authors introduced a heuristic idea of asymptotic symmetry tech-
nique which can roughly be described as follows: After an inversion, the function
u becomes defined in the complement of B1, is strictly positive of ∂B1, and in
some sense ‘goes to zero’ at infinity. If the function u can be extended to B1 as
a super solution of our problem, then it can start the reflection process at infinity
and moved all the way to ∂B1. This would imply asymptotic radial symmetry at
infinity. With this comprehensive report on this issue we would like, on the one
hand, to emphasize the important contribution of this great article of Caffarelli, Gi-
das and Spruck on the study on the direction of finding the radial solutions of our
problem and on the other hand, we wish to make clear that in our procedural paper
we do not care about the radial solutions but we do care about the existence of
non-radial solutions. Schoen in [31] built solutions of (1.1) with prescribed isolated
singularities. In another paper [32], Schoen and Yau have used the geometrical
meaning of problem (1.1) in order to derive, through ideas of conformal geometry,
the existence of weak solutions having a singular set whose Hausdorff dimension
is less than or equal to n−2

2 . Let us notice that in this paper the authors explain
how to build solutions of (1.1) with a singular set whose Hausdofff dimension is not
necessarily an integer. Mazzeo and Smale have proved [28] the existence of singular
solutions of (1.1) for a very large variety of singular sets. Bartsch and Schneider in
[7] proved that for N > 2m the equation

(−∆)m = |u|
4m

N−2mu
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on RN has a sequence of nodal, finite energy solutions which is unbounded in
Dm,2(RN ), the completion of D(RN ) with respect to the scalar product

(u, υ) =

{∫
RN ∆m/2u ·∆m/2υ, if m is even∫
RN ∇∆(m−1)/2u · ∇∆(m−1)/2υ, if m is odd.

This generalizes the result of Ding for m = 1, and provides interesting information
concerning the number and the kind of the solutions of the equation (see Remark
3.5). Finally, for reasons of completeness, we refer in this point to the paper of
Wang [35] where the following nonlinear Neumann elliptic problem is studied:

−∆u = u
N+2
N−2 , u > 0 in RN\Ω,

u(x)→ 0 as |x| → +∞,
∂u

∂n
= 0 on ∂Ω,

(1.3)

where n denotes interior unit normal vector and Ω is a smooth bounded domain in
RN , N ≥ 4. In this paper, it is proved that if N ≥ 4, (Wang believes that the results
will also hold in the case of N = 3), and Ω is a smooth and bounded domain then
the problem (1.3) has infinity many non-radial positive solutions, whose energy
can be made arbitrarily large when Ω is convex as seen from inside (with some
symmetries). We refer to the Wang’s problem (1.3) due to its close relationship
with our problem and as we will see later if we choose suitable Ω we can have a
result on this problem in almost all the space. In particular, in both problems we
have to solve the same non-linear differential equation with critical exponent with
boundary conditions Dirichlet and Neumann respectively. In addition, in both cases
the domain Ω presents some symmetries. However, a subsequent process in each
case is completely different from that of another. In our case, our goal is to solve
the problem in the whole space, starting from an open symmetric domain Ω of
n-dimensional space and we extend Ω so that it remains symmetrical to fill almost
all the space. In the other case is considered the corresponding Neumann problem
in RN\Ω where Ω is convex seen from inside with some symmetries. If we choose
appropriate a such Ω with a small volume as much as we can say that the solutions
of Wang satisfy the conditions of the problem in almost all the space. Finally, in
both problems we take infinity many non-radial solutions, whose energy can be
made arbitrary large, however in the first problem we find nodal solutions while in
the second are founded positive solutions.

In this research our goal is to specify the kind and the number of solutions
of the problem (1.1). We prove the existence of a sequence {uk} of non-radial,
inequivalent, nodalG-invariant solutions of (P), such that: limk→∞

∫
Rn |∇uk|2dx =

∞.
This article is arranged as follows: Section 2 is devoted to notation and some nec-

essary preliminary results. In addition, in this section two examples are presented.
Furthermore, in Section 2, we introduce our main tool, meaning the process through
which an open symmetric domain of n− dimensional space can be extended in an
appropriate manner to ‘fill’ eventually the entire space ‘almost everywhere’, re-
maining symmetric, and subsequently we solve the auxiliary problem (1.2). Section
3 is devoted to some basic definitions and to the proof of the main theorem.
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2. Some notation and preliminary results

Let C∞(Ω) be the space of smooth functions on Ω and D(Ω) be the set of
infinitely differentiable functions whose support is compact in Ω. We define, also,
the Sobolev space H2

1 (Ω) as the completion of C∞(Ω) with respect to the norm:

‖u‖H2
1 (Ω) =

(∫
Ω

(|∇u|2 + |u|2)dx
)1/2

.

The Sobolev space H̊2
1 (Ω) as the closure of D(Ω) in H2

1 (Ω).
In the following, we suppose that Ω is a bounded, smooth, domain of Rn, n ≥ 3,

G-invariant under the action of a compact subgroup G of the isometry group O(n),
without finite subgroup. Such Ωs in Rn can be constructed as follows:

Let Ω be a bounded, smooth, domain of Rn = Rk × Rn−k, k ≥ 2, n − k ≥ 1
such that Ω ⊂ (Rk\{0}) × Rn−k. Suppose that Ω is invariant under the action of
Gk,n−k, that is τ(Ω) = Ω for all τ ∈ Gk,n−k, where Gk,n−k = O(k)× Idn−k is the
subgroup of the isometry group O(n) of the type:

(x1, x2)→ (σ(x1), x2), σ ∈ O(k), x1 ∈ Rk, x2 ∈ Rn−k.
Then Ω is a bounded, smooth, domain of Rn, invariant under the action of the
subgroup Gk,n−k of the isometry group O(n). We denote by H2

1,G(Ω) and H̊2
1,G(Ω)

the subspaces of H2
1 (Ω) and H̊2

1 (Ω) of all G-invariant functions, respectively.
We consider the functional

J(u) =
∫

Ω

(|∇u|2 + a(x)u2)dx,

and suppose that the operator L(u) = −∆u + a(x)u is coercive. That is, there
exists a real number λ > 0, such that for all u ∈ H̊2

1 (Ω):

J(u) ≥ λ
∫

Ω

(|∇u|2 + u2)dx.

For example, the operator L is coercive if a(x) ≥ 0, for all x ∈ Ω, and more generally
when a(x) is greater than minus the best Poincaré constant of H̊2

1 (Ω).
We consider now the problem

−∆u+ a(x)u = f(x)|u|
4

n−2u, n ≥ 3,
u 6≡ 0 in Ω, u = 0 on ∂Ω ,

(2.1)

where Ω is defined as above and a, f are two smooth G-invariant functions.
For any small ε > 0 and some m > 0 we consider the family of expanding

domains:
Ωε = ε−mΩ = {ε−mx : x ∈ Ω}.

Then, it is very simple to confirm that the Ωεs inherit the symmetry properties of
Ω for any ε. We consider, also, the transformation:

φ : Ω→ Ωε : X = φ(x), x ∈ Ω, X ∈ Ωε, (2.2)

and for l > 0, we set
u(x) = ε−luε(X). (2.3)

In particular, we obtain

|∇u| = ε−l−m|∇uε|, (2.4)

∆u = ε−l−2m ∆uε. (2.5)
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Applying the transformation (2.2))in the equation of problem (2.1), because of
(2.3), (2.4) and (2.5) we obtain the equation

−∆uε + ε2ma(x)uε = ε2m−l 4
n−2 f(x)|uε|

4
n−2uε,

where we denote again by a and f the functions a ◦ φ−1 and f ◦ φ−1, respectively
and the independent variable by x. Since l is an arbitrary positive real, we can
choose l = 2mn−2

4 and thus we have

−∆uε + ε2ma(x)uε = f(x)|uε|
4

n−2uε. (2.6)

From (2.6), replacing the ε2m by ε, we obtain

−∆uε + εa(x)uε = f(x)|uε|
4

n−2uε.

So, we have to solve the critical problem

−∆uε + εa(x)uε = f(x)|uε|
4

n−2uε, n ≥ 3,
uε 6≡ 0 in Ωε, uε = 0 on ∂Ωε.

(2.7)

We consider the functional

J(uε) =
∫

Ωε

(|∇uε|2 + εa(x)u2
ε)dx.

Since the operator L(u) = −∆u + a(x)u is considered to be coercive in Ω the
operator L(uε) = −∆uε + εa(x)uε is coercive in Ωε.

Denote

Hε =
{
uε ∈ H̊2

1,G(Ωε) :
∫

Ωε

f(x)|uε|
2n

n−2 dx = 1
}
,

and suppose that an isometry σ such as σ(Ωε) = Ωε exists. Furthermore, suppose
also that the functions a(x) and f(x) are invariant under the action of σ and that

Hσε = H ∩
{
uε ∈ H̊2

1 (Ωε) : uε ◦ σ = −uε
}
6= ∅.

By definition, a function u which satisfies u ◦ σ = −u is called antisymmetrical.
Under the above considerations the following theorem holds (see in [12]).

Theorem 2.1. Problem (1.2), always, has a non-radial nodal solution u. Moreover,
if f(x) > 0 for all x ∈ Ωε, (1.2) has an infinity sequence {uεi

} of non-radial nodal
solutions, such that

lim
i→∞

∫
Ωε

(|∇uεi |2 + u2
εi

)dx = +∞.

In addition, u and {uεi
}i=1,2,... are G-invariant and σ-antisymmetrical.

Remark 2.2. Theorem 2.1 holds for the supercritical case and even to the critical
of the supercritical case, (see in [12]), namely for every p such that:

2n
n− 2

< p ≤ 2(n− k)
n− k − 2

.
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3. Solution of problem (1.1)

Because of the double lack of compactness, direct variational methods are not
applicable to the limit problem

−∆u = |u|
4

n−2u, u ∈ C2(Rn), n ≥ 3. (3.1)

However, this method is successful in approximating a solution to the problem
(1.1) by solutions in the open domains Ωεj

. Thus, a solution to (1.1) may be then
obtained by the limit procedure as εj → 0.

Before we approximate the solutions in Rn by solutions in bounded domains
Ωε ∈ Rn, we note that, in the generalized setting of the problems in Ωεs, the
Dirichlet condition uε(x) = 0 on ∂Ωε may actually be included in the condition
uε ∈ H̊2

1 (Ωε). Moreover, since any function uε ∈ H̊2
1 (Ωε) can be extended onto Rn

by

ũε(x) =

{
uε(x), x ∈ Ωε
0, x ∈ Rn\Ωε,

generalized solutions may be defined in Ωεs analogously to the case in Rn. We need
now the following two definitions:

Definition 3.1. A function uε ∈ H̊2
1 (Ωε) is a generalized solution of (1.2) if the

function
g(x, uε) = εa(x)uε − f(x)|uε|

4
n−2uε

is locally integrable and for all ϕ ∈ C∞0 (Ωε), the following holds:∫
Ωε

(∇uε,∇ϕ)dx+
∫

Ωε

g(x, uε)ϕdx = 0.

Definition 3.2. A function uε ∈ C2(Ωε) ∩ C(Ωε) is a classical solution to (1.2) if
after substituting it into the equation of (1.2), this equation becomes an identity
at each x ∈ Ωε and uε(x) = 0 provided x ∈ ∂Ωε.

Consider now a sequence of real numbers {εj}j=1,2,... such that εj → 0 as j →∞
and the sequence of problems:

−∆uεj
+ εja(x)uεj

= f(x)|uεj
|

4
n−2uεj

, n ≥ 3
uεj 6≡ 0 in Ωεj , uεj = 0 on ∂Ωεj ,

(3.2)

where f(x) > 0 for all x ∈ Ωεj
. Then, the following theorem on approximation by

bounded domains holds.

Theorem 3.3. The problem

−∆u = f(x)|u|
4

n−2u in Rn, n ≥ 3 (3.3)

has a generalized non-radial nodal G-invariant and σ-antisymmetrical solution u
and there is a subsequence {uj}, such that

uj ⇀ u in H2
1,G as j → +∞.

Proof. According to Theorem 2.1, every problem (3.2) has at least one non-radial
nodal G-invariant and σ-antisymmetrical solution uεj . Let uεj , j = 1, 2, . . . an ar-
bitrary sequence of such solutions. Since the problem (3.2) has a nontrivial solution
belonging to one of the spaces considered earlier, then for any λ > 0 the function

υεj
= λ

n−2
4 uεj

∈ H̊2
1 (Ωεj

)
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is a non trivial solution to the problem

−∆υεj
+ εja(x)υεj

= λf(x)|υεj
|

4
n−2 υεj

, n ≥ 3,
υεj 6≡ 0 in Ωεj , υεj = 0 on ∂Ωεj .

(3.4)

For

λ = ‖uεj
‖
−4

n−2

H2
1 (Ωεj

)

we conclude that
υεj

=
uεj

‖uεj
‖H2

1 (Ωεj
)

,

which means that the sequence {υεj
} is bounded in H̊2

1 (Ωεj
) for all j = 1, 2, . . . .

Thus, there exists a constant C not dependent on j and such that

‖υεj‖H2
1 (Ωεj

) ≤ C. (3.5)

Because of the reflexivity of H̊2
1 (Rn) and condition (3.5) we may choose a subse-

quence {υj} of the sequence {υεj
} such that

υj ⇀ υ in H̊2
1 (Rn) as j → +∞. (3.6)

We shall show that υ is a nontrivial G-invariant generalized solution to the problem
(3.2). We choose an arbitrary ϕ ∈ D(Rn). Then, according to the definition of
D(Rn), the support of ϕ is bounded in Rn, which means that there is an Ωε0 such
that suppϕ ⊂ Ωε0 . Since, by definition, the Ωεj

s constitute a family of expanding
domains, we can choose the Ωε0 such that Ωε0 ⊂ Ωε1 and so Ωε0 ⊂ Ωεj

for all
j = 1, 2, . . . . Let

g(x, υj) = −εja(x)υεj
+ λf(x)|υεj

|
4

n−2 υεj
.

Then, because the υj is a generalized solution to (3.4), it holds∫
Rn

∇υj∇ϕdx =
∫

Ωεj

∇υj∇ϕdx

= −
∫

Ωεj

g(x, υj)ϕdx

= −
∫

Ωε0

g(x, υj)ϕdx

(3.7)

for all Ωεj
. By the weak convergence (3.6), we obtain the following limit relation

for the left-hand side of (3.7):

lim
j→∞

∫
Rn

∇υj∇ϕdx =
∫

Rn

∇υ∇ϕdx. (3.8)

In addition, it is well known, (see [22]), that the critical exponent of the Sobolev
embedding H2

1,G(Ωε0) ↪→ Lp(Ωε0) is equal to

2(n− k)
n− k − 2

>
2n
n− 2

= 2∗,

from which it follows that for any real number p, such that:

1 < p <
2(n− k)
n− k − 2
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this embedding is compact and then from the Sobolev and Kondrashov theorems
together and (3.6) arises that:

υj → υ in Lp0−1(Ωε0), 2 < p0 <
2(n− k)
n− k − 2

+ 1, as j → +∞. (3.9)

Furthermore, by definition of a(x) and f(x), there exists a positive constant C such
that:

|g(x, t)| ≤ C(|t|+ |t|p0−1), 2 < p0 <
2(n− k)
n− k − 2

+ 1,

for almost all x ∈ Ωεj
, j = 1, 2, . . . and for all t ∈ R. Thus, the Vainberg-

Krasnoselskii Theorem (see [24] or [34]) gives:

ϕg(·, υj(·))→ ϕg(·, υ(·)) in L
n

n−2 (Ωε0) as j → +∞. (3.10)

By the Hölder inequality from (3.10) follows that

ϕg(·, υj(·))→ ϕg(·, υ(·)) in L1(Ωε0) as j → +∞. (3.11)

By (3.11) the limit relation from the right hand-side of (3.7) yields:

lim
j→∞

∫
Ωε0

g(x, υj)ϕdx =
∫

Ωε0

g(x, υ)ϕdx. (3.12)

Finally, passing to the limit in (3.7) because of (3.6) and (3.12), we obtain∫
Rn

∇υ∇ϕdx = −
∫

Ωε0

g(x, υ)ϕdx = −
∫

Rn

g(x, υ)ϕdx,

which corresponds to the definition of a weak solution. It is generalized by the force
of (3.6) and since the function f is regular enough it is a classical solution, (see [25,
Secs. 1.2 and 3.1]). As convergence in Lp spaces implies a.e. convergence by (3.9)
follows that the function υ will be G-invariant.

It remains to prove that this solution is nontrivial. Suppose, by contradiction,
that υ ≡ 0. Then, for any ε > 0 there exists a positive integer j01 such that

|υ| < ε

2
for all j > j01. (3.13)

On the other hand, from (3.9) by the Hölder inequality arises that υj → υ in
L1(Ωε0), which means that for any ε > 0 there exists a positive integer j02 such
that

|υj − υ| <
ε

2
for all j > j02. (3.14)

Therefore, by the standard inequality |υj | ≤ |υj − υ|+ |υ| by (3.13) and (3.14) we
obtain

|υj | < ε for any j ≥ j0 = max{jo1, j02}. (3.15)

We recall now that every solution to the problem (3.2) belongs to the set

Hσε =
{
uε ∈ H̊2

1,G(Ωεj
) : uεj

◦ σ = −uεj
and

∫
Ωεj

f(x)|uεj
|

2n
n−2 dx = 1

}
Since every υj corresponds to an uεj

∈ Hσε , and υεj
= λ

n−2
4 uεj

, by definition, we
have

1 =
∫

Ωεj

f(x)λ−n/2|υj |
2n

n−2 dx <

∫
Ωεj

f(x)λ−n/2ε
2n

n−2 dx,
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which is false by (3.15) as the ε > 0 can be chosen as small as we want. We have
proved that the limit problem

−∆υ = λf(x)|υ|
4

n−2 υ in Rn, n ≥ 3 (3.16)

has a generalized non-radial nodal G-invariant and σ-antisymmetrical solution υ,
which means that the function u = λ

2n
n−2 υ is a generalized non-radial nodal G-

invariant and σ-antisymmetrical solution to the limit problem

−∆u = f(x)|u|
4

n−2u in Rn, n ≥ 3. (3.17)

This completes the proof of the theorem. �

Corollary 3.4. The problem

−∆u = |u|
4

n−2u, u ∈ C2(Rn), n ≥ 3 (3.18)

has a sequence {uk} of non-radial nodal G-invariant and σ-antisymmetrical solu-
tions, such that

lim
k→+∞

∫
Rn

|∇uk|2dx = +∞

The proof of the above corollary is obtained immediately if we put

f(x) =
1
|Ωε|

− ε|x|α, α > −n

and follow the steps of Theorem 3.3.

Remark 3.5. The number of the sequences of non-radial nodal G-invariant and σ-
antisymmetrical solutions to problem (1.1), depends on the number of all subgroups
of O(n) of which the cardinal of orbits with minimum volume is infinite, that are
on the dimension n of the domain.

To formulate our last result which is a direct conclusion from [35], we have
to repeat some assumptions about Ω. Suppose that Ω is a smooth and bounded
domain of Rn = R2 × Rn−2, n ≥ 4, satisfying the following properties: Let x =
(t1, t2, . . . , tn) = (x1, x2) ∈ R2 × Rn−2, and let r = |x1|. Then:

(H1) x ∈ Ω if and only if (t1, t2, . . . ,−tj , . . . , tn) ∈ Ω for j = 3, 4, . . . , n;
(H2) (r cos θ, r sin θ, x2) ∈ Ω if (r, 0, x2) ∈ Ω, for all θ ∈ (0, 2π);
(H3) There exists a connected component Γ of ∂Ω∩{x2 = 0}, such that H(x) ≡

γ > 0 for all x ∈ Γ, where H(x) is the mean curvature of ∂Ω at x ∈ ∂Ω.

Remark 3.6. From (H2) arises that Γ is a circle in the plane t3 = · · · = tn = 0,

and since for x ∈ Γ, H(x) =
Pn−1

j=1 kj(x)

n−1 , where kj(x) are the principal curvatures
and k1(x) = 1√

t21+t22
, implies that H(x) ≡ γ = 1√

t21+t22
, which means that a such

domain is very common, e.g. a ball or an ellipsoid.

Corollary 3.7. Suppose that Ω is a smooth bounded domain satisfying (H1)–(H3).
Then the problem

−∆u = u
n+2
n−2 u > 0 in Rn\Ω,

u(x)→ 0 as |x| → +∞,
∂u

∂n
= 0 on ∂Ω,

(3.19)
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has infinitely many non-radial positive solutions, whose energy can be made arbi-
trary large.

In particular, problem (3.19) has in Rn, (apart from a set Ω of finite measure
arbitrary small), infinity many non−radial positive solutions, whose energy can be
made arbitrary large, in the sense that we can choose an Ω with the above refereed
properties and the additional property |Ω| < ε for given ε > 0.

The proof of the above Corollary follows by [35, Theorem 1.1].
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