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TWO-DIMENSIONAL PRODUCT-TYPE SYSTEMS OF
DIFFERENCE EQUATIONS OF DELAY-TYPE (2,2,1,2)

STEVO STEVIĆ

Communicated by Vicentiu Radulescu

Abstract. We prove that the following class of systems of difference equations

is solvable in closed form:

zn+1 = αza
n−1w

b
n, wn+1 = βwc

n−1z
d
n−1, n ∈ N0,

where a, b, c, d ∈ Z, α, β, z−1, z0, w−1, w0 ∈ C \ {0}. We present formulas
for its solutions in all the cases. The most complex formulas are presented

in terms of the zeros of three different associated polynomials to the systems

corresponding to the cases a = 0, c = 0 and abcd 6= 0, respectively, which on
the other hand depend on some of parameters a, b, c, d.

1. Introduction

There has been a considerable interest in difference equations and systems of
difference equations (see, for example, [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]). Books
[1, 7, 9, 10, 12], among others, present some classical methods for solving some
classes of the equations and systems. The topic has re-attracted some attention in
the last decade (see, for example, [2, 3, 20, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]
and numerous related references therein). Many nonlinear equations and systems
which have appeared in the literature recently were solved by transforming them
to the classical solvable ones, by using some suitable changes of variables (see, for
example, [3, 20, 29], as well as the related references therein). On the other hand,
almost two decades ago Papaschinopoulos and Schinas have started investigating
some concrete systems of difference equations ([14, 15, 16]), which motivated other
experts to investigate some related ones ([3, 5, 13, 17, 18, 19, 24, 25, 26, 27, 28,
30, 31, 32, 33, 33, 34, 35]). Majority of the systems investigated therein belong to
the class of symmetric or close to symmetric systems. Namely, special cases of the
following symmetric two-dimensional system of difference equations

xn = f(xn−k, yn−l), yn = f(yn−k, xn−l),

n ∈ N0, have been studied a lot.
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2 S. STEVIĆ EJDE-2017/153

Many recent papers on difference equations and systems study only their positive
solutions. One of the reasons for this is the fact that numerous difference equations
and systems present some population models. Some systems of difference equa-
tions include product-type ones, which are obtained for some special values of its
coefficients and/or parameters. It is well-known how product-type systems with
positive initial values and coefficients are solved. Studying non-positive solutions
is a more interesting problem. We started investigating complex-valued product-
type systems in [31]. Another system was investigated in [32], where some further
basic steps concerning solvability of such systems were presented. Having pub-
lished [29] we came up with an idea of studying product-type systems which, unlike
the ones in [31] and [32], have some multipliers. The system in [26] was the first
complex-valued product-type system with multipliers that we have studied. Papers
[26, 31, 32], suggested us to study the solvability of the following two-dimensional
product-type system

zn = αza
n−kw

b
n−l, wn = βwc

n−mz
d
n−s, n ∈ N, (1.1)

where a, b, c, d, k, l,m, s ∈ N and α, β ∈ C. We call system (1.1) two-dimensional
product-type system of delay-type (k,m, l, s).

The main problem, which is a relatively big project, is to present closed-form
formulas for the solvable systems of the type (this was not done for the systems in
[32] and [34]). The systems in [28] and [35] were more complex than the one in [26],
and non-trivial analyses of the form of their solutions in terms of the initial values
and especially parameters were needed. The structures of the solutions for the
system in [33] is simpler, so the corresponding analysis was also simpler. Another
approach in dealing with the solvability problem for product-type systems can be
found in [27]. To each system a few polynomials can be associated for determining
the form of its solutions. A fourth order one helped in presenting formulas for
solutions to the system in [30].

The solvability of system (1.1) of delay-type (2, 2, 1, 2), that is, of

zn+1 = αza
n−1w

b
n, wn+1 = βwc

n−1z
d
n−1, n ∈ N0, (1.2)

where a, b, c, d ∈ Z, α, β, z−1, z0, w−1, w0 ∈ C, is investigated in this paper, contin-
uing the project in [26, 27, 28, 30, 31, 32, 33, 34, 35].

Note that if some of the quantities α, β, w−1, w0, z−1, z0 are zero, then the solu-
tions are either not defined or trivial, so not interesting. Hence, the case is excluded
from further considerations. If m,n ∈ Z, then m,n = {j ∈ Z, m ≤ j ≤ n}, while∑n−1

j=n fj = 0 for each n ∈ Z.

2. Auxiliary results

The following set of lemmas presents standard tools for dealing with the problem
of solvability of product-type systems with small delays k, l,m, s. For the first
lemma, which is classical one, see, for example, [4, 9, 32].

Lemma 2.1. Let

pk(t) = ck

k∏
j=1

(t− tj),
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ck 6= 0 and ti 6= tj, i 6= j. Then
k∑

j=1

tsj
p′k(tj)

= 0, 0 ≤ s ≤ k − 2,

k∑
j=1

tk−1
j

p′k(tj)
=

1
ck
.

For the second lemma see, for example, [9, 12] (or [28] for a general method for
calculating the sums in the lemma).

Lemma 2.2. Let

s(i)
n (z) =

n∑
j=1

jizj−1, n ∈ N,

where i ∈ N0 and z ∈ C. Then

s(0)
n (z) =

1− zn

1− z
,

s(1)
n (z) =

1− (n+ 1)zn + nzn+1

(1− z)2
,

s(2)
n (z) =

1 + z − (n+ 1)2zn + (2n2 + 2n− 1)zn+1 − n2zn+2

(1− z)3
,

s(3)
n (z) =

n3zn(z − 1)3 − 3n2zn(z − 1)2 + 3nzn(z2 − 1)− (zn − 1)(z2 + 4z + 1)
(1− z)4

,

for every z ∈ C \ {1} and n ∈ N.

The results in [22] are suitably reformulated in the following lemma.

Lemma 2.3. Let

P4(t) = t4 + bt3 + ct2 + dt+ e, ∆0 = c2 − 3bd+ 12e,

∆1 = 2c3 − 9bcd+ 27b2e+ 27d2 − 72ce, ∆ =
1
27

(4∆3
0 −∆2

1),

P = 8c− 3b2, Q = b3 + 8d− 4bc, D = 64e− 16c2 + 16b2c− 16bd− 3b4.

(a) If ∆ < 0, then two zeros of P4 are real and different, and two are complex
conjugate;

(b) If ∆ > 0, then all the zeros of P4 are real or none is. More precisely,
1 if P < 0 and D < 0, then all four zeros of P4 are real and different;
2 if P > 0 or D > 0, then there are two pairs of complex conjugate zeros

of P4.
(c) If ∆ = 0, then and only then P4 has a multiple zero. The following cases

can occur:
1 if P < 0, D < 0 and ∆0 6= 0, then two zeros of P4 are real and equal

and two are real and simple;
2 if D > 0 or (P > 0 and (D 6= 0 or Q 6= 0)), then two zeros of P4 are

real and equal and two are complex conjugate;
3 if ∆0 = 0 and D 6= 0, there is a triple zero of P4 and one simple, all

real;
4 if D = 0, then
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4.1 if P < 0 there are two double real zeros of P4;
4.2 if P > 0 and Q = 0 there are two double complex conjugate zeros

of P4;
4.3 if ∆0 = 0, then all four zeros of P4 are real and equal to −b/4.

3. Main results

This section contains our main results. Before formulating them we give a list
of a few members of sequences zn and wn that we use in proofs of the results

z1 = αza
−1w

b
0, z2 = αβbwbc

−1z
bd
−1z

a
0

w1 = βwc
−1z

d
−1, w2 = βwc

0z
d
0 .

(3.1)

Theorem 3.1. Assume that a, c, d ∈ Z, b = 0, α, β, z−1, z0, w−1, w0 ∈ C \ {0}.
Then system (1.2) is solvable in closed form.

Proof. From the condition b = 0, we have

zn+1 = αza
n−1, wn+1 = βwc

n−1z
d
n−1, n ∈ N0. (3.2)

The first equation in (3.2) yields

z2n+i = α
Pn−1

j=0 aj

zan

i , (3.3)

for n ∈ N and i = −1, 0, from which it follows that

z2n+i = α
1−an

1−a zan

i , (3.4)

for n ∈ N and i = −1, 0, when a 6= 1, and

z2n+i = αnzi, (3.5)

for n ∈ N and i = −1, 0, when a = 1.
Using (3.3) in the second equation in (3.2) we obtain

w2n+i = βαd
Pn−2

j=0 aj

zdan−1

i wc
2(n−1)+i, (3.6)

for n ∈ N and i = −1, 0.
From (3.6) and by induction it is proved that

w2n+i = β
Pn−1

l=0 cl

αd
Pn−1

l=0 cl Pn−l−2
j=0 aj

z
d

Pn−1
l=0 clan−l−1

i wcn

i , (3.7)

for n ∈ N and i = −1, 0.

Case a 6= 1 6= c 6= a. From (3.7) and by Lemma 2.2, in this case, we have

w2n+i =β
Pn−1

l=0 cl

αd
Pn−1

l=0 cl Pn−l−2
j=0 aj

z
d

Pn−1
l=0 clan−l−1

i wcn

i

=β
1−cn

1−c αd
Pn−1

l=0 cl 1−an−l−1
1−a z

d an−cn

a−c

i wcn

i

=β
1−cn

1−c α
d

1−a ( 1−cn

1−c −
an−cn

a−c )z
d an−cn

a−c

i wcn

i

=β
1−cn

1−c α
d(a−c+(1−a)cn+(c−1)an)

(1−a)(1−c)(a−c) z
d an−cn

a−c

i wcn

i ,

(3.8)

for n ∈ N and i = −1, 0.
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Case a = c 6= 1. From (3.7) and by Lemma 2.2, in this case, we have

w2n+i =β
Pn−1

l=0 al

αd
Pn−1

l=0 al Pn−l−2
j=0 aj

z
d

Pn−1
l=0 alan−l−1

i wan

i

=β
1−an

1−a αd
Pn−1

l=0 al 1−an−l−1
1−a zdnan−1

i wan

i

=β
1−an

1−a α
d

1−a ( 1−an

1−a −nan−1)zdnan−1

i wan

i

=β
1−an

1−a α
d((n−1)an−nan−1+1)

(1−a)2 zdnan−1

i wan

i ,

(3.9)

for n ∈ N and i = −1, 0.
Case a 6= 1 = c. From (3.7) and by Lemma 2.2, in this case, we have

w2n+i =β
Pn−1

l=0 1αd
Pn−1

l=0

Pn−l−2
j=0 aj

z
d

Pn−1
l=0 an−l−1

i wi

=βnαd
Pn−1

l=0
1−an−l−1

1−a z
d an−1

a−1
i wi

=βnα
d

1−a (n− an−1
a−1 )z

d an−1
a−1

i wi

=βnα
d an−an+n−1

(1−a)2 z
d an−1

a−1
i wi,

(3.10)

for n ∈ N and i = −1, 0.
Case a = 1 6= c. From (3.7) and by Lemma 2.2, in this case, we have

w2n+i =β
Pn−1

l=0 cl

αd
Pn−1

l=0 cl(n−l−1)z
d

Pn−1
l=0 cl

i wcn

i

=β
1−cn

1−c α
d((n−1) 1−cn

1−c −c
1−ncn−1+(n−1)cn

(1−c)2 z
d 1−cn

1−c

i wcn

i

=β
1−cn

1−c α
d cn−nc+n−1

(1−c)2 z
d 1−cn

1−c

i wcn

i ,

(3.11)

for n ∈ N and i = −1, 0.
Case a = c = 1. From (3.7) and by a well-known formula, in this case, we have

w2n+i =β
Pn−1

l=0 1αd
Pn−1

l=0 (n−l−1)z
d

Pn−1
l=0 1

i wi

=βnαd
(n−1)n

2 zdn
i wi,

(3.12)

for n ∈ N and i = −1, 0.
From all above mentioned the theorem follows. �

Corollary 3.2. Assume that a, c, d ∈ Z, b = 0, α, β, z−1, z0, w−1, w0 ∈ C \ {0}.
Then the following statements are true.

(a) If a 6= 1 6= c 6= a, then the general solution to system (1.2) is given by
formulas (3.4) and (3.8).

(b) If a = c 6= 1, then the general solution to system (1.2) is given by formulas
(3.4) and (3.9).

(c) If a 6= 1 = c, then the general solution to system (1.2) is given by formulas
(3.4) and (3.10).

(d) If a = 1 6= c, then the general solution to system (1.2) is given by formulas
(3.5) and (3.11).

(e) If a = c = 1, then the general solution to system (1.2) is given by formulas
(3.5) and (3.12).
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Theorem 3.3. Assume that a, b, c ∈ Z, d = 0, α, β, z−1, z0, w−1, w0 ∈ C \ {0}.
Then system (1.2) is solvable in closed form.

Proof. Using the condition d = 0 in (1.2) we have

zn+1 = αza
n−1w

b
n, wn+1 = βwc

n−1, n ∈ N0. (3.13)

This system corresponds the one in [33, Theorem 2.3], where parameters a and b, as
well as c and d are interchanged, respectively. Hence, all the formulas for solutions
to (3.13) are obtained from [33, Theorem 2.2 and Corollary 2.2]. �

Theorem 3.4. Assume that b, c, d ∈ Z, bd 6= 0, a = 0, α, β, z−1, z0, w−1, w0 ∈
C \ {0}. Then system (1.2) is solvable in closed form.

Proof. Using the condition a = 0 in (1.2), we have

zn+1 = αwb
n, wn+1 = βwc

n−1z
d
n−1, n ∈ N0. (3.14)

From (3.14) we easily get

wn+1 = αdβwc
n−1w

bd
n−2, n ≥ 2. (3.15)

Let µ = αdβ,
a1 = 0, b1 = c, c1 = bd, y1 = 1. (3.16)

Then
wn+1 = µy1wa1

n wb1
n−1w

c1
n−2, n ≥ 2. (3.17)

Similarly, (3.17) implies

wn+1 = µy1(µwa1
n−1w

b1
n−2w

c1
n−3)a1wb1

n−1w
c1
n−2,

= µy1+a1wa1a1+b1
n−1 wb1a1+c1

n−2 wc1a1
n−3

= µy2wa2
n−1w

b2
n−2w

c2
n−3,

(3.18)

for n ≥ 3, where

a2 := a1a1 + b1, b2 := b1a1 + c1, c2 := c1a1, y2 := y1 + a1. (3.19)

Assume
wn+1 = µykwak

n+1−kw
bk

n−kw
ck

n−k−1, (3.20)

for a k ≥ 2 and all n ≥ k + 1, and

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1, ck = c1ak−1, (3.21)

yk = yk−1 + ak−1. (3.22)

If we replace n by n− k in (3.17), and employ it in (3.20), we obtain

wn+1 = µyk(µwa1
n−kw

b1
n−k−1w

c1
n−k−2)akwbk

n−kw
ck

n−k−1

= µyk+akwa1ak+bk

n−k wb1ak+ck

n−k−1 wc1ak

n−k−2

= µyk+1w
ak+1
n−k w

bk+1
n−k−1w

ck+1
n−k−2,

(3.23)

for n ≥ k + 2, where

ak+1 := a1ak + bk, bk+1 := b1ak + ck, ck+1 := c1ak, yk+1 := yk + ak. (3.24)

Equalities (3.18), (3.19), (3.23), (3.24) along with the induction show that (3.20)-
(3.22) hold.
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Setting k = n− 1 in (3.20) and using (3.1), (3.21) and (3.22), we have

wn+1 = µyn−1w
an−1
2 w

bn−1
1 w

cn−1
0

= (αdβ)yn−1(βwc
0z

d
0)an−1(βwc

−1z
d
−1)bn−1w

cn−1
0

= αdyn−1βyn−1+an−1z
dbn−1
−1 z

dan−1
0 w

cbn−1
−1 w

can−1+cn−1
0

= αdyn−1βynzdan
−1 z

dan−1
0 wcan

−1 w
an+1
0 ,

(3.25)

for n ≥ 2.
From (3.21) we obtain

ak = b1ak−2 + c1ak−3, for k ≥ 4. (3.26)

Since c1 = bd 6= 0, from (3.26) it follows that

ak−3 =
ak − b1ak−2

c1
.

Using this equality, aj-s can be calculated for j ≤ 0, and, as in [28] and [35], we
obtain

a−1 = a−2 = 0, a0 = 1. (3.27)
From (3.16), (3.22) and (3.27), it follows that

y−2 = y−1 = y0 = 0, y1 = 1, (3.28)

yk =
k−1∑
j=0

aj , k ∈ N. (3.29)

Since the initial-value problem (3.26)-(3.27) is solvable, formula for ak can be
found, from which along with (3.29) and by Lemma 2.2 is obtained a formula for
yk (the form of ak is well-known, see [1, 12]). Using the formulas for ak and yk in
(3.25) we have a closed form formula for the solution to equation (3.15).

Using (3.25) in the first equation in (3.14), we obtain

zn = α1+bdyn−3βbyn−2z
bdan−2
−1 z

bdan−3
0 w

bcan−2
−1 w

ban−1
0 , (3.30)

for n ∈ N.
It is not difficult to see that formulas (3.25) and (3.30) present a solution to

system (3.14). This completes the proof. �

Now we specify the form of the solutions to (1.2) when a = 0 and bd 6= 0. The
characteristic polynomial associated to (3.26) is

p3(λ) = λ3 − cλ− bd. (3.31)

The zeros of (3.31) are

λj =
1

3 3
√

2

(
εj 3

√
∆1 −

√
∆2

1 − 4∆3
0 + εj 3

√
∆1 +

√
∆2

1 − 4∆3
0

)
, j = 0, 2, (3.32)

where
∆0 = 3c =: −3p and ∆1 = 27bd =: −27q, (3.33)

and ε3 = 1, ε 6= 1 ([4]).
Zeros of p3 are different and none of them is 1. In this case it must be
∆ := (∆2

1 − 4∆3
0)/27 6= 0, that is, 27(bd)2 6= 4c3. If also c+ bd 6= 1, then 1 is not a

zero of p3. These conditions are satisfied, for example, if c = bd ∈ N.
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Zeros of p3 are different and one of them is 1. Since p3(1) = 0, we have that
c+ bd = 1. Hence

p3(λ) = λ3 − cλ+ c− 1 = (λ− 1)(λ2 + λ+ 1− c),

and the zeros of p3 are

λ1,2 =
−1±

√
4c− 3

2
, λ3 = 1. (3.34)

Note also that it must be c 6= 3, from the condition p′3(1) = 3− c 6= 0.
Since in these two cases all the zeros of p3 are different, the general solution to

(3.26) must have the form

an = α1λ
n
1 + α2λ

n
2 + α3λ

n
3 , n ∈ N, (3.35)

where αi, i = 1, 3, are constants [1, 12].
As it was explained, for example, in [28], the solution to (3.26) satisfying (3.27)

is given by

an =
3∑

j=1

λn+2
j

p′3(λj)

=
λn+2

1

(λ1 − λ2)(λ1 − λ3)
+

λn+2
2

(λ2 − λ1)(λ2 − λ3)
+

λn+2
3

(λ3 − λ1)(λ3 − λ2)
,

(3.36)

and the formula holds for every n ∈ Z.
From (3.29) and (3.36), it follows that

yn =
n−1∑
k=0

3∑
j=1

λk+2
j

p′3(λj)
, n ∈ N. (3.37)

The formula holds also for n ≥ −2 ([28]).
If λj 6= 1, j = 1, 3, then from (3.37) and Lemma 2.2, we obtain

yn =
λ2

1(λn
1 − 1)

(λ1 − λ2)(λ1 − λ3)(λ1 − 1)
+

λ2
2(λn

2 − 1)
(λ2 − λ1)(λ2 − λ3)(λ2 − 1)

+
λ2

3(λn
3 − 1)

(λ3 − λ1)(λ3 − λ2)(λ3 − 1)
,

(3.38)

while if one of the zeros is 1, say λ3, then 1 6= λ1 6= λ2 6= 1, and we have

yn =
λ2

1(λn
1 − 1)

(λ1 − λ2)(λ1 − 1)2
+

λ2
2(λn

2 − 1)
(λ2 − λ1)(λ2 − 1)2

+
n

(λ1 − 1)(λ2 − 1)
. (3.39)

for n ∈ N. Formulas (3.38) and (3.39) holds for every n ≥ −2 ([28]).

Corollary 3.5. Assume that b, c, d ∈ Z, a = 0, bd 6= 0, α, β, z−1, z0, w−1, w0 ∈
C \ {0} and ∆ 6= 0. Then the following statements are true.

(a) If c+bd 6= 1, then the general solution to (1.2) is given by (3.25) and (3.30),
where (an)n≥−2 is given by (3.36), (yn)n≥−2 is given by (3.38), while λj-s,
j = 1, 3, are given by (3.32) and (3.33).

(b) If c+ bd = 1 and c 6= 3, then p3 has a unique zero equal to 1, say λ3, and
the general solution to (1.2) is given by formulas (3.25) and (3.30), where
(an)n≥−2 is given by (3.36) with λ3 = 1, (yn)n≥−2 is given by (3.39), while
λj-s, j = 1, 3, are given by (3.34).
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One of the zeros is double. In this case it must be ∆ = 0, that is, c3 = 27(bd)2/4.
If m is a double zero of p3, then

m3 − cm− bd = 0 and 3m2 − c = 0.

Hence
p3(λ) = λ3 − 3m2λ+ 2m3 = (λ−m)2(λ+ 2m). (3.40)

Since bd 6= 0, we have m 6= 0. From this and (3.40) we see that p3 cannot have a
triple zero. It also cannot have a unique zero equal to 1, otherwise we would have
2m = 1 and consequently c = 3/4 /∈ Z, which is impossible. Note also that 1 is a
double zero if and only if c = 3 and bd = −2.

If λ1 6= λ2 = λ3, then the general solution to (3.26) has the form

an = α̂1λ
n
1 + (α̂2 + α̂3n)λn

2 , n ∈ N, (3.41)

where α̂i, i = 1, 3, are constants.
The solution of the form in (3.41) satisfying (3.27) is

an =
λn+2

1 +
(
λ2 − 2λ1 + n(λ2 − λ1)

)
λn+1

2

(λ2 − λ1)2
, (3.42)

and also holds for every n ≥ −2 ([28]).
Since, in the case, ∆ = 0, from (3.32), we have

λ1 =
2

3 3
√

2
3
√

∆1, λ2,3 = − 1
3 3
√

2
3
√

∆1. (3.43)

From (3.29) and (3.42), we have

yn =
n−1∑
j=0

aj =
n−1∑
j=0

λj+2
1 +

(
λ2 − 2λ1 + j(λ2 − λ1)

)
λj+1

2

(λ2 − λ1)2
, n ∈ N. (3.44)

The formula holds also for n ≥ −2 ([28]).
From (3.44) and by Lemma 2.2, it follows that

yn =
λ2

1(λn
1 − 1)

(λ2 − λ1)2(λ1 − 1)
+

(λ2 − 2λ1)λ2(λn
2 − 1)

(λ2 − λ1)2(λ2 − 1)

+
λ2

2(1− nλn−1
2 + (n− 1)λn

2 )
(λ2 − λ1)(λ2 − 1)2

, n ∈ N.
(3.45)

If we assume that λ1 6= 1 and λ2 = λ3 = 1, then from (3.44) it follows that

yn =
λ2

1(λn
1 − 1)

(λ1 − 1)3
+

(1− 2λ1)n
(λ1 − 1)2

+
(n− 1)n
2(1− λ1)

, n ∈ N. (3.46)

Formulas (3.45) and (3.46) hold also for n ≥ −2 ([28]).

Corollary 3.6. Assume that b, c, d ∈ Z, a = 0, bd 6= 0, α, β, z−1, z0, w−1, w0 ∈
C \ {0} and ∆ = 0. Then the following statements are true.

(a) If c+bd 6= 1, then the general solution to (1.2) is given by (3.25) and (3.30),
where (an)n≥−2 is given by (3.42), (yn)n≥−2 is given by (3.45), while λj-s,
j = 1, 3, are given by (3.43) and (3.33).

(b) If c = 3 and bd = −2, then two zeros of (3.31) are equal to 1, say, λ2 and
λ3, and the general solution to system (1.2) is given by (3.25) and (3.30),
where (an)n≥−2 is given by (3.42) with λ2 = 1, (yn)n≥−2 is given by (3.46),
while λ1 = −2.
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(c) Polynomial (3.31) cannot have 1 as a simple zero.
(d) Polynomial (3.31) cannot have a triple zero.

Theorem 3.7. Assume that a, b, d ∈ Z, bd 6= 0, c = 0, α, β, z−1, z0, w0 ∈ C \ {0}.
Then system (1.2) is solvable in closed form.

Proof. The condition c = 0 implies that

zn+1 = αza
n−1w

b
n, wn+1 = βzd

n−1, n ∈ N0. (3.47)

From (3.47) we obtain

zn+1 = αβbza
n−1z

bd
n−2, n ∈ N. (3.48)

Let µ = αβb,
a1 = 0, b1 = a, c1 = bd, y1 = 1. (3.49)

Then
zn+1 = µy1za1

n zb1
n−1z

c1
n−2, n ∈ N. (3.50)

As in the proof of Theorem 3.4 we obtain

zn+1 = µykzak

n+1−kz
bk

n−kz
ck

n−k−1, (3.51)

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1, ck = c1ak−1, (3.52)

yk = yk−1 + ak−1, (3.53)

for each k ≥ 2 and all n ≥ k.
Setting k = n in (3.51) and using (3.1), (3.52) and (3.53), we have

zn+1 = µynzan
1 zbn

0 zcn
−1 (3.54)

= (αβb)yn(αza
−1w

b
0)anzbn

0 zcn
−1 (3.55)

= αyn+anβbynzaan+cn
−1 zbn

0 wban
0 (3.56)

= αyn+1βbynz
an+2
−1 z

an+1
0 wban

0 , (3.57)

for n ∈ N.
From (3.52),

ak = b1ak−2 + c1ak−3, for k ≥ 4. (3.58)
Since c1 = bd 6= 0, (3.58) yields

ak−3 =
ak − b1ak−2

c1
. (3.59)

Using (3.49), (3.53) and (3.59), we obtain

a−1 = a−2 = 0, a0 = 1, (3.60)

y−2 = y−1 = y0 = 0, y1 = 1, (3.61)

yk =
k−1∑
j=0

aj , k ∈ N. (3.62)

By using (3.58), (3.60), (3.62) and Lemma 2.2, it follows that closed form formulas
for ak and yk can be found and consequently a closed form formula for the solution
to equation (3.48).

Employing (3.57) in the second equation in (3.47) we obtain

wn = αdyn−2β1+bdyn−3z
dan−1
−1 z

dan−2
0 w

bdan−3
0 . (3.63)
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Some calculation show that formulas (3.57) and (3.63) present a solution to system
(3.47), completing the proof of the theorem. �

The characteristic polynomial associated with equation (3.58) is

p3(λ) = λ3 − aλ− bd . (3.64)

The zeros of the polynomial are given by (3.32) with

∆0 = 3a =: −3p and ∆1 = 27bd =: −27q. (3.65)

Hence, the analysis following Theorem 3.4 also holds here, with the difference pa-
rameter c replaced by a.

Zeros of p3 are different and none of them is 1. In this case it must be ∆ 6= 0,
that is, 27(bd)2 6= 4a3. If also a + bd 6= 1, then p3(1) 6= 0. These conditions are
satisfied, for example, if a = bd ∈ N.

Zeros of p3 are different and one of them is 1. Polynomial p3 has a zero equal
to 1 if a+ bd = 1. From this we have

p3(λ) = λ3 − aλ+ a− 1 = (λ− 1)(λ2 + λ+ 1− a),

λ1,2 =
−1±

√
4a− 3

2
, λ3 = 1, (3.66)

are the zeros of (3.64). Since 1 is a simple zero, then it must be p′3(1) = 3− a 6= 0,
that is, we also have a 6= 3.

Corollary 3.8. Assume that a, b, d ∈ Z, c = 0, bd 6= 0, α, β, z−1, z0, w0 ∈ C \ {0}
and ∆ 6= 0. Then the following statements are true.

(a) If a+bd 6= 1, then the general solution to (1.2) is given by (3.57) and (3.63),
where (an)n≥−2 is given by (3.36), (yn)n≥−2 is given by (3.38), while λj-s,
j = 1, 3, are given by (3.32) and (3.65).

(b) If a+ bd = 1 and a 6= 3, then p3 has a unique zero equal to 1, say λ3, and
the general solution to (1.2) is given by formulas (3.57) and (3.63), where
(an)n≥−2 is given by (3.36) with λ3 = 1, (yn)n≥−2 is given by (3.39), while
λj-s, j = 1, 3, are given by (3.66).

Corollary 3.9. Assume that a, b, d ∈ Z, c = 0, bd 6= 0, α, β, z−1, z0, w0 ∈ C \ {0}
and ∆ = 0. Then the following statements are true.

(a) If a+bd 6= 1, then the general solution to (1.2) is given by (3.57) and (3.63),
where (an)n≥−2 is given by (3.42), (yn)n≥−2 is given by (3.45), while λj-s,
j = 1, 3, are given by (3.43) and (3.65).

(b) If a = 3 and bd = −2, then two zeros of (3.64) are equal to 1, say, λ2 and
λ3, and the general solution to system (1.2) is given by (3.57) and (3.63),
where (an)n≥−2 is given by (3.42) with λ2 = 1, (yn)n≥−2 is given by (3.46),
while λ1 = −2.

(c) Polynomial (3.64) cannot have 1 as a simple zero.
(d) Polynomial (3.64) cannot have a triple zero.

Theorem 3.10. Assume that a, b, c, d ∈ Z, abcd 6= 0, α, β, z−1, z0, w−1, w0 ∈ C \
{0}. Then system (1.2) is solvable in closed form.
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Proof. The condition α, β, z−1, z0, w−1, w0 ∈ C\{0} along with (1.2) imply znwn 6=
0 for n ≥ −1. Hence

wb
n =

zn+1

αza
n−1

, n ∈ N0, (3.67)

wb
n+1 = βbwbc

n−1z
bd
n−1, n ∈ N0. (3.68)

Using (3.67) in (3.68) we obtain

zn+2 = α1−cβbza+c
n zbd

n−1z
−ac
n−2, n ∈ N. (3.69)

Let δ = α1−cβb,

a1 = 0, b1 = a+ c, c1 = bd, d1 = −ac, y1 = 1. (3.70)

Then

zn+2 = δy1za1
n+1z

b1
n z

c1
n−1z

d1
n−2, n ∈ N. (3.71)

We have
zn+2 = δy1(δza1

n zb1
n−1z

c1
n−2z

d1
n−3)a1zb1

n z
c1
n−1z

d1
n−2,

= δy1+a1za1a1+b1
n zb1a1+c1

n−1 zc1a1+d1
n−2 zd1a1

n−3

= δy2za2
n zb2

n−1z
c2
n−2z

d2
n−3,

(3.72)

for n ≥ 2, where

a2 := a1a1 + b1, b2 := b1a1 + c1, c2 := c1a1 +d1, d2 := d1a1, y2 := y1 +a1. (3.73)

Assume

zn+2 = δykzak

n+2−kz
bk

n+1−kz
ck

n−kz
dk

n−k−1, (3.74)

for a k ≥ 2 and every n ≥ k, and that

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1,

ck = c1ak−1 + dk−1, dk = d1ak−1,
(3.75)

yk = yk−1 + ak−1. (3.76)

Using (3.71) in (3.74), it follows that

zn+2 = δyk(δza1
n+1−kz

b1
n−kz

c1
n−k−1z

d1
n−k−2)akzbk

n+1−kz
ck

n−kz
dk

n−k−1

= δyk+akza1ak+bk

n+1−k zb1ak+ck

n−k zc1ak+dk

n−k−1 zd1ak

n−k−2

= δyk+1z
ak+1
n+1−kz

bk+1
n−k z

ck+1
n−k−1z

dk+1
n−k−2,

(3.77)

for n ≥ k + 1, where

ak+1 := a1ak + bk, bk+1 := b1ak + ck,

ck+1 := c1ak + dk, dk+1 := d1ak,
(3.78)

yk+1 := yk + ak. (3.79)

From (3.72), (3.73), (3.77)-(3.79), the inductive argument shows that (3.74)-(3.76)
hold for 2 ≤ k ≤ n.
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Setting k = n in (3.74), then using (3.75) and (3.76) in the obtained equality,
we have

zn+2 =δynzan
2 zbn

1 zcn
0 zdn
−1

=(α1−cβb)yn(αβbwbc
−1z

bd
−1z

a
0 )an(αza

−1w
b
0)bnzcn

0 zdn
−1

=α(1−c)yn+an+bnβbyn+banzbdan+abn+dn
−1 zaan+cn

0 wbcan
−1 wbbn

0

=αyn+2−cynβbyn+1z
an+3−can+1
−1 z

an+2−can

0 wbcan
−1 w

ban+1
0 , n ∈ N.

(3.80)

From (3.75) we obtain

ak = b1ak−2 + c1ak−3 + d1ak−4, k ≥ 5. (3.81)

Equalities (3.76) and (3.81) yield

a−3 = a−2 = a−1 = 0, a0 = 1; (3.82)

y−3 = y−2 = y−1 = y0 = 0, y1 = 1, (3.83)

yk =
k−1∑
j=0

aj . (3.84)

Since the initial-value problem (3.81)-(3.82) is solvable, a formula for ak can be
found. Using it in (3.84) and applying Lemma 2.2, a formula for yk is found. By
using these two formulas in (3.80) we obtain a formula for zn. So, (3.69) is solvable.

On the other hand, we have

zd
n−1 =

wn+1

βwc
n−1

, n ∈ N0, (3.85)

zd
n+1 = αdzad

n−1w
bd
n , n ∈ N0, (3.86)

and consequently

wn+3 = αdβ1−awa+c
n+1w

bd
n w
−ac
n−1, n ∈ N0. (3.87)

As above, we have

wn+3 = ηykwak

n+3−kw
bk

n+2−kw
ck

n+1−kw
dk

n−k, n ≥ k − 1, (3.88)

where η = αdβ1−a, (ak)k∈N, (bk)k∈N, (ck)k∈N and (dk)k∈N are defined by (3.70) and
(3.75), while (yk)k∈N is defined by (3.76) and (3.83).

From (3.88) with k = n+ 1 and by using (3.1), we obtain

wn+3 = ηyn+1w
an+1
2 w

bn+1
1 w

cn+1
0 w

dn+1
−1

= (αdβ1−a)yn+1(βwc
0z

d
0)an+1(βwc

−1z
d
−1)bn+1w

cn+1
0 w

dn+1
−1

= αdyn+1β(1−a)yn+1+an+1+bn+1z
dbn+1
−1 z

dan+1
0 w

cbn+1+dn+1
−1 w

can+1+cn+1
0

= αdyn+1βyn+3−ayn+1z
dan+2
−1 z

dan+1
0 w

c(an+2−aan)
−1 w

an+3−aan+1
0 ,

(3.89)

for n ∈ N0.
The formulas for ak and yk are obtained as above. Using them in (3.89) is get

a formula for a solution to (3.87). By some calculation it is checked that (3.80)
and (3.89) are formulas for a solution to (1.2). Thus, the system is also solvable,
as claimed. �
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Corollary 3.11. Assume that a, b, c, d ∈ Z, abcd 6= 0, α, β, z−1, z0, w−1, w0 ∈
C \ {0}. Then the general solution to system (1.2) is given by (3.80) and (3.89),
where (ak)k∈N is defined by (3.81) and (3.82), while (yk)k∈N is defined by (3.83)
and (3.84).

The characteristic polynomial associated to (3.81) is

p4(λ) = λ4 − (a+ c)λ2 − bdλ+ ac. (3.90)

Since ac 6= 0, it is of the forth order.
The equation p4(λ) = 0 can be written as(

λ2 − a+ c

2
+
s

2

)2

−
(
sλ2 + bdλ+

(s− (a+ c)
2

)2

− ac
)

= 0. (3.91)

Let s satisfy (bd)2 = s(s− a− c)2 − 4acs, that is,

s3 − 2(a+ c)s2 + (a− c)2s− (bd)2 = 0. (3.92)

For such s, (3.91) becomes(
λ2 − a+ c

2
+
s

2

)2

−
(√

s λ+
bd

2
√
s

)2

= 0,

which is equivalent to the following two quadratic equations

λ2 −
√
s λ+

s− a− c
2

− bd

2
√
s

= 0, (3.93)

λ2 +
√
s λ+

s− a− c
2

+
bd

2
√
s

= 0. (3.94)

By using the change of variables s = t+ 2(a+c)
3 in (3.92) we obtain

t3 −
(4(a+ c)2

3
− (a− c)2

)
t− 16(a+ c)3

27
+

2(a+ c)(a− c)2

3
− (bd)2 = 0. (3.95)

Let

p = −a
2 + 14ac+ c2

3
and q =

2a3 + 2c3 − 66ac(a+ c)− 27(bd)2

27
.

Then, we can choose t as one of the three possible values of the quantity

t =
3

√
−q

2
−
√
q2

4
+
p3

27
+

3

√
−q

2
+

√
q2

4
+
p3

27
. (3.96)

If we use the change p = −∆0/3 and q = −∆1/27 in (3.96) we obtain

t =
1

3 3
√

2

(
3

√
∆1 −

√
∆2

1 − 4∆3
0 + 3

√
∆1 +

√
∆2

1 − 4∆3
0

)
.

Solutions to (3.93) and (3.94) are the zeros of polynomial (3.90) and they are

λ1 =
1
2

√
t+

2(a+ c)
3

+
1
2

√√√√4(a+ c)
3

− t− Q

4
√
t+ 2(a+c)

3

, (3.97)

λ2 =
1
2

√
t+

2(a+ c)
3

− 1
2

√√√√4(a+ c)
3

− t− Q

4
√
t+ 2(a+c)

3

, (3.98)
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λ3 = −1
2

√
t+

2(a+ c)
3

+
1
2

√√√√4(a+ c)
3

− t+
Q

4
√
t+ 2(a+c)

3

, (3.99)

λ4 = −1
2

√
t+

2(a+ c)
3

− 1
2

√√√√4(a+ c)
3

− t+
Q

4
√
t+ 2(a+c)

3

, (3.100)

where

Q := −8bd. (3.101)

The nature of λj , j = 1, 4, depends on the sign of

∆ :=
1
27

(4∆3
0 −∆2

1), (3.102)

where

∆0 :=a2 + 14ac+ c2, (3.103)

∆1 :=− 2a3 − 2c3 + 66ac(a+ c) + 27(bd)2, (3.104)

and the signs of

P := −8(a+ c) (3.105)

and

D := −16(a− c)2. (3.106)

Zeros of p4 are different and none of them is 1. If a, b, c and d are chosen
such that ∆0 < 0, that is, a2 + 14ac+ c2 < 0, then it will be ∆ < 0, from which by
Lemma 2.3 it follows that p4 has four different zeros. Let t1,2 = −7 ±

√
48. Then

if we choose a, c ∈ Z \ {0} such that a/c ∈ (t1, t2), then we have such a situation.

Zeros of p4 are different and one of them is 1. Polynomial (3.90) has a zero
equal to 1 if p4(1) = 1− a− c− bd+ ac = 0, that is, if

(a− 1)(c− 1) = bd, (3.107)

so that

p4(λ) = λ4 − (a+ c)λ2 − (a− 1)(c− 1)λ+ ac. (3.108)

Thus, if we choose a and c such that p′4(1) = 3−a−c−ac 6= 0, that is, (a+1)(c+1) 6=
4, then p4 will be such a polynomial if ∆ 6= 0. For example, if a = −3 and c = 2,
then bd = −4 6= 0, ∆ 6= 0 which means that the characteristic polynomial has all
zeros mutually different and exactly one of them is equal to 1

p4(λ) = λ4 + λ2 + 4λ− 6 = (λ− 1)(λ3 + λ2 + 2λ+ 6). (3.109)

Since in these two cases λj 6= λi, i 6= j, then the general solution to (3.81) is

an = γ1λ
n
1 + γ2λ

n
2 + γ3λ

n
3 + γ4λ

n
4 , n ∈ N, (3.110)

where γi, i = 1, 4, are arbitrary constants.
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The solution to (3.81) satisfying (3.82) is

an =
4∑

j=1

λn+3
j

p′4(λj)

=
λn+3

1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

λn+3
2

(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

+
λn+3

3

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)
+

λn+3
4

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
,

(3.111)

for n ≥ −3 ([32]).
From (3.84) and (3.111) it follows that

yn =
n−1∑
j=0

4∑
i=1

λj+3
i

p′4(λi)
=

4∑
i=1

λ3
i (λn

i − 1)
p′4(λi)(λi − 1)

, n ∈ N, (3.112)

when λi 6= 1, i = 1, 4, and

yn =
n

3− a− c− ac
+

4∑
i=2

λ3
i (λn

i − 1)
p′4(λi)(λi − 1)

, n ∈ N, (3.113)

when one of the zeros of p4 is 1 (here λ1 = 1).
Note that if one of the zeros of p4 is 1, then we have

p4(λ) = (λ− 1)(λ3 + λ2 − (a+ c− 1)λ− ac). (3.114)

The change of variables λ = t− 1
3 transforms the following equation

λ3 + λ2 − (a+ c− 1)λ− ac = 0,

into
t3 + p̃t+ q̃ = 0, (3.115)

where

p̃ =
2
3
− a− c and q̃ =

9(a+ c)− 7− 27ac
27

. (3.116)

The zeros of (3.115) are

tl = εl−1 3

√
− q̃

2
−
√
q̃2

4
+
p̃3

27
+ εl−1 3

√
− q̃

2
+

√
q̃2

4
+
p̃3

27
, l = 1, 3,

where ε3 = 1 and ε 6= 1. Hence,

λj = −1
3

+ εj−2 3

√
− q̃

2
−
√
q̃2

4
+
p̃3

27
+ εj−2 3

√
− q̃

2
+

√
q̃2

4
+
p̃3

27
, (3.117)

for j = 2, 4, are the other three zeros of p4, in this case.
The previous analysis along with Corollary 3.11 implies the following corollary.

Corollary 3.12. Assume that a, b, c, d ∈ Z, abcd 6= 0, α, β, z−1, z0, w−1, w0 ∈
C \ {0} and ∆ 6= 0. Then the following statements are true.

(a) If (a−1)(c−1) 6= bd, then the general solution to (1.2) is given by (3.80) and
(3.89), where (an)n≥−3 is given by (3.111), (yn)n≥−3 is given by (3.112),
while λj-s, j = 1, 4, are given by (3.97)-(3.100).
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(b) If (a − 1)(c − 1) = bd and (a + 1)(c + 1) 6= 4, then the general solution
to (1.2) is given by (3.80) and (3.89), where (an)n≥−3 is given by (3.111)
with λ1 = 1, (yn)n≥−3 is given by (3.113), λ1 = 1, while λj-s, j = 2, 4, are
given by (3.117) and (3.116).

p4 has only one double zero which is equal to 1. Polynomial (3.90) will have
a double zero equal to 1 if (3.107) holds and

(a+ 1)(c+ 1) = 4. (3.118)

From (3.118) we have that one of the following cases must occur: (1) a = 3 and
c = 0, (2) a = 0 and c = 3; (3) a = c = 1; (4) a = −5 and c = −2; (5) a = −2 and
c = −5; (6) a = c = −3. If a = 0 or c = 0, then ac = 0, which is a contradiction.

If a = c = 1, then

p4(λ) = λ4 − 2λ2 + 1 = (λ− 1)2(λ+ 1)2,

and
λ1,2 = 1, λ3,4 = −1. (3.119)

If a = −5 and c = −2 or a = −2 and c = −5, then

p4(λ) = λ4 + 7λ2 − 18λ2 + 10 = (λ− 1)2(λ2 + 2λ+ 10),

and
λ1,2 = 1, λ3,4 = −1± 3i. (3.120)

If a = c = −3, then

p4(λ) = λ4 + 6λ2 − 16λ+ 9 = (λ− 1)2(λ2 + 2λ+ 9),

and
λ1,2 = 1, λ3,4 = −1± 2

√
2i. (3.121)

From this, we have proved in passing, that there are no such a, c ∈ Z \ {0}, such
that 1 is a triple zero of p4, or that p4 has two pairs of double zeros such that one
of them is equal to 1.

In these four cases we have (see, for example, [30])

an =
n(1− λ3)(1− λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1

(1− λ3)2(1− λ4)2

+
λn+3

3

(λ3 − 1)2(λ3 − λ4)
+

λn+3
4

(λ4 − 1)2(λ4 − λ3)
,

(3.122)

and

yn =
n−1∑
j=0

(j(1− λ3)(1− λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1
(1− λ3)2(1− λ4)2

+
λj+3

3

(λ3 − 1)2(λ3 − λ4)
+

λj+3
4

(λ4 − 1)2(λ4 − λ3)

)
=

(n− 1)n
2(1− λ3)(1− λ4)

+
n(3λ3λ4 − 2λ3 − 2λ4 + 1)

(1− λ3)2(1− λ4)2

+
λ3

3(λn
3 − 1)

(λ3 − 1)3(λ3 − λ4)
+

λ3
4(λn

4 − 1)
(λ4 − 1)3(λ4 − λ3)

.

(3.123)
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Exactly one double zero which is different from 1. According to Lemma
2.3, in this case it must be ∆ = 0, that is,

(a2 + 14ac+ c2)3 =
(
a3 + c3 − 33ac(a+ c)− 27

2
(bd)2

)2

, (3.124)

and that
(a− 1)(c− 1) 6= bd, a+ c > 0, a 6= c. (3.125)

The problem of the existence a, c ∈ Z \ {0} such that (3.124) and (3.125) hold
seems quite technical and we leave it to the reader as an open problem.

Since, in the case λ1 = λ2, λi 6= λj , 2 ≤ i, j ≤ 4, we have that the general
solution to (3.81) has the form

an = (γ1 + γ2n)λn
2 + γ3λ

n
3 + γ4λ

n
4 , n ∈ N, (3.126)

where γi, i = 1, 4, are arbitrary constants, and the solution satisfying (3.82) can be
obtained, for example, by letting λ1 → λ2 in (3.111) [30],

an =
λn+2

2 ((n+ 3)(λ2 − λ3)(λ2 − λ4)− λ2(2λ2 − λ3 − λ4))
(λ2 − λ3)2(λ2 − λ4)2

+
λn+3

3

(λ3 − λ2)2(λ3 − λ4)
+

λn+3
4

(λ4 − λ2)2(λ4 − λ3)
.

(3.127)

From (3.84), (3.127) and by Lemma 2.2, we obtain

yn =
n−1∑
j=0

(λj+2
2 ((j + 3)(λ2 − λ3)(λ2 − λ4)− λ2(2λ2 − λ3 − λ4))

(λ2 − λ3)2(λ2 − λ4)2

+
λj+3

3

(λ3 − λ2)2(λ3 − λ4)
+

λj+3
4

(λ4 − λ2)2(λ4 − λ3)

)
=

λ3
2 − nλn+2

2 + (n− 1)λn+3
2

(λ2 − λ3)(λ2 − λ4)(1− λ2)2
+

(λ4
2 − 2λ3

2λ3 − 2λ3
2λ4 + 3λ2

2λ3λ4)(λn
2 − 1)

(λ2 − λ3)2(λ2 − λ4)2(λ2 − 1)

+
λ3

3(λn
3 − 1)

(λ3 − λ2)2(λ3 − λ4)(λ3 − 1)
+

λ3
4(λn

4 − 1)
(λ4 − λ2)2(λ4 − λ3)(λ4 − 1)

.

(3.128)
From the previous analysis and Corollary 3.11 we obtain the following result.

Corollary 3.13. Assume that a, b, c, d ∈ Z, abcd 6= 0 and α, β, z−1, z0, w−1, w0 ∈
C \ {0}. Then the following statements are true.

(a) If only one of the zeros of polynomial (3.90) is double and different from
1, then the general solution to (1.2) is given by (3.80) and (3.89), where
(an)n≥−3 is given by (3.127), while (yn)n≥−3 is given by (3.128).

(b) If 1 is a unique double zero of polynomial p4, say λ1 = λ2 = 1, then the
general solution to (1.2) is given by (3.80) and (3.89), where (an)n≥−3

is given by (3.122), (yn)n≥−3 is given by (3.123), while λ3,4 are given by
(3.119) if a = c = 1, by (3.120) if a = −5, c = −2 or a = −2, c = −5, and
by (3.121) if a = c = −3.

Two pairs of different double zeros. Let bd = 0, then

p4(λ) = λ4 − (a+ c)λ2 + ac = (λ2 − a)(λ2 − c),
λ1,2 = ±

√
a, λ3,4 = ±

√
c.
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Hence, if a = c 6= 0, p4 in this case has two pairs of different double zeros

λ1,3 =
√
a, λ3,4 = −

√
a. (3.129)

The general solution to (3.81) in this case has the form

an = (γ1 + γ2n)λn
2 + (γ3 + γ4n)λn

4 , n ∈ N, (3.130)

where γi, i = 1, 4 are constants.
The solution to (3.81) of the form in (3.130) and satisfying (3.82) is given by [30]

an =
λn+2

2 (n(λ2 − λ4)2 + λ2
2 − 4λ2λ4 + 3λ2

4)
(λ2 − λ4)4

+
λn+2

4 (n(λ4 − λ2)2 + λ2
4 − 4λ2λ4 + 3λ2

2)
(λ4 − λ2)4

.

(3.131)

From (3.84), (3.131) and by Lemma 2.2, we obtain

yn =
n−1∑
j=0

(λj+2
2 (j(λ2 − λ4)2 + λ2

2 − 4λ2λ4 + 3λ2
4)

(λ2 − λ4)4

+
λj+2

4 (j(λ4 − λ2)2 + λ2
4 − 4λ2λ4 + 3λ2

2)
(λ4 − λ2)4

)
=
λ3

2 − nλn+2
2 + (n− 1)λn+3

2

(λ2 − λ4)2(1− λ2)2
+

(λ4
2 − 4λ3

2λ4 + 3λ2
2λ

2
4)(λn

2 − 1)
(λ2 − λ4)4(λ2 − 1)

+
λ3

4 − nλn+2
4 + (n− 1)λn+3

4

(λ4 − λ2)2(1− λ4)2
+

(λ4
4 − 4λ2λ

3
4 + 3λ2

2λ
2
4)(λn

4 − 1)
(λ4 − λ2)4(λ4 − 1)

.

(3.132)

Corollary 3.14. Assume that a, b, c, d ∈ Z, ac 6= 0 and α, β, z−1, z0, w−1, w0 ∈
C \ {0}. Then the following statements are true.

(a) If polynomial p4 has two pairs of double zeros both different from 1, then the
general solution to (1.2) is given by (3.80) and (3.89), where (an)n≥−3 is
given by (3.131), while (yn)n≥−3 is given by (3.132). If additionally bd = 0
and a = c, then λj-s, j = 1, 4, are given by (3.129).

(b) For a = c = 1 and bd = 0 the polynomial in (3.90) can have two pairs of
double zeros such that one of them is equal to 1, and the general solution
to (1.2) is given by (3.80) and (3.89), where (an)n≥−3 is given by (3.131),
while (yn)n≥−3 is given by (3.132) with λ2 = 1 and λ4 = −1.

Triple zero case. Since ∆0 6= 0, when a, c ∈ Z\{0}, by Lemma 2.3 it follows that
p4 cannot have a triple zero. Consequently, it cannot have a quadruple zero.
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