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TWO-DIMENSIONAL PRODUCT-TYPE SYSTEMS OF
DIFFERENCE EQUATIONS OF DELAY-TYPE (2,2,1,2)

STEVO STEVIC

Commumnicated by Vicentiu Radulescu

ABSTRACT. We prove that the following class of systems of difference equations
is solvable in closed form:
Zni1 = az® qwd, wpa1=pPuws 2% |, neNy,

where a,b,c,d € Z, o,8,2—1,z0,w—1,wo € C\ {0}. We present formulas
for its solutions in all the cases. The most complex formulas are presented
in terms of the zeros of three different associated polynomials to the systems
corresponding to the cases a = 0, ¢ = 0 and abed # 0, respectively, which on
the other hand depend on some of parameters a, b, ¢, d.

1. INTRODUCTION

There has been a considerable interest in difference equations and systems of

difference equations (see, for example, [TI, 2, [3, [5, [6] [7 8] @1 10, 111, 12} 13} 14} 15

16, 17, 18, 19} 20} 211 23, 24, 25, 26} 27, 28, 29, 30, BT} 32} 33| 34, 35]). Books
[T, [7, @, [0, 12], among others, present some classical methods for solving some

classes of the equations and systems. The topic has re-attracted some attention in
the last decade (see, for example, [2], B 20, 26] 27| 28, 29] 30l 311 B82] B3], 34, B5]
and numerous related references therein). Many nonlinear equations and systems
which have appeared in the literature recently were solved by transforming them
to the classical solvable ones, by using some suitable changes of variables (see, for
example, [3] 20, [29], as well as the related references therein). On the other hand,
almost two decades ago Papaschinopoulos and Schinas have started investigating
some concrete systems of difference equations ([I4, [I5], 16]), which motivated other
experts to investigate some related ones ([3, [5, 13| [I7, 18] 19} 24 25 26, 27, 28],

130, 1311 321 [33], B3], [341 [35]). Majority of the systems investigated therein belong to
the class of symmetric or close to symmetric systems. Namely, special cases of the

following symmetric two-dimensional system of difference equations

Tp = f(xn—ka yn—l)a Yn = f(yn—kaxn—l);
n € Np, have been studied a lot.

2010 Mathematics Subject Classification. 39A20, 39A45.

Key words and phrases. System of difference equations; product-type system;
solvable in closed form.

(©2017 Texas State University.

Submitted April 21, 2017. Published June 27, 2017.

1



2 S. STEVIC EJDE-2017/153

Many recent papers on difference equations and systems study only their positive
solutions. One of the reasons for this is the fact that numerous difference equations
and systems present some population models. Some systems of difference equa-
tions include product-type ones, which are obtained for some special values of its
coefficients and/or parameters. It is well-known how product-type systems with
positive initial values and coeflicients are solved. Studying non-positive solutions
is a more interesting problem. We started investigating complex-valued product-
type systems in [31]. Another system was investigated in [32], where some further
basic steps concerning solvability of such systems were presented. Having pub-
lished [29] we came up with an idea of studying product-type systems which, unlike
the ones in [31] and [32], have some multipliers. The system in [26] was the first
complex-valued product-type system with multipliers that we have studied. Papers
[26, 3T, 32], suggested us to study the solvability of the following two-dimensional
product-type system

b d
Zn = Oy Wy, Wy = Pwy_ oz, N EN, (1.1)

where a,b,c,d, k,I,m,s € N and a,3 € C. We call system two-dimensional
product-type system of delay-type (k,m,l,s).

The main problem, which is a relatively big project, is to present closed-form
formulas for the solvable systems of the type (this was not done for the systems in
[32] and [34]). The systems in [28] and [35] were more complex than the one in [26],
and non-trivial analyses of the form of their solutions in terms of the initial values
and especially parameters were needed. The structures of the solutions for the
system in [33] is simpler, so the corresponding analysis was also simpler. Another
approach in dealing with the solvability problem for product-type systems can be
found in [27]. To each system a few polynomials can be associated for determining
the form of its solutions. A fourth order one helped in presenting formulas for
solutions to the system in [30].

The solvability of system of delay-type (2,2,1,2), that is, of

b d
Zn41 = azgflwn, Wn+1 = 5“’271%717 ne NO) (12)

where a,b,c,d € Z, a, 3,21, 20, w_1,wy € C, is investigated in this paper, contin-
uing the project in [26], 27, 28, B0, 311 [32, [33] [34], [35].

Note that if some of the quantities o, 8, w_1,wq, 2_1, 29 are zero, then the solu-
tions are either not defined or trivial, so not interesting. Hence, the case is excluded
from further considerations. If m,n € Z, then m,n = {j € Z, m < j < n}, while
Z?;}b f; =0 for each n € Z.

2. AUXILIARY RESULTS

The following set of lemmas presents standard tools for dealing with the problem
of solvability of product-type systems with small delays k,[,m,s. For the first
lemma, which is classical one, see, for example, [4] 9] 32].

Lemma 2.1. Let

k
pr(t) = [J(E— 1)),
j=1
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cp, #0 and t; #t;, 1 # j. Then

ko s
t;
; =0, 0<s<k-2,
J:lpk(t])
k k—1
>
— ;) ck

For the second lemma see, for example, [0, [12] (or [28] for a general method for
calculating the sums in the lemma).

Lemma 2.2. Let
n
sD()=3_j'@" neN,
j=1

where i € Ng and z € C. Then

1—2"
Oy = — =
R
9y = L2
" (1-2)? 7
_ 2.n 2 _ n+l _ 2 n+2
5@ () = 1+z—(n+1)%z —|—gn +)32n 1)z it
—z
3) n32"(z —1)3 = 3n22"(2 — 1)2 +3n2" (22 — 1) — (2" — 1) (22 + 42 + 1)
Sn (Z) = (1 — Z)4 )

for every z € C\ {1} and n € N.
The results in [22] are suitably reformulated in the following lemma.

Lemma 2.3. Let
Pyt) =t +bt> +ct? +dt +e, Ag=c?—3bd+ 12,

1
Ay = 2¢% — 9bed + 27b%e + 27d* — T2ce, A = E(4Ag — A?),

P =8c—3b%, Q=10+8d—4be, D = 64e—16¢*> + 16b%c — 16bd — 3b™.

(a) If A <0, then two zeros of Py are real and different, and two are complex
conjugate;
(b) If A > 0, then all the zeros of Py are real or none is. More precisely,
1 ¢f P <0 and D <0, then all four zeros of Py are real and different;
2 if P >0 or D > 0, then there are two pairs of complex conjugate zeros
Of P4 .
(¢) If A =0, then and only then Py has a multiple zero. The following cases
can occur:
1 4f P<0,D <0 and Ag # 0, then two zeros of P, are real and equal
and two are real and simple;
24 D>0o0r(P>0and (D#0 orQ%#0)), then two zeros of Py are
real and equal and two are complex conjugate;
3 if Ag =0 and D # 0, there is a triple zero of Py and one simple, all
real;

4 if D =0, then
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4.1 if P <0 there are two double real zeros of Py;

4.2 if P > 0 and QQ = 0 there are two double complex conjugate zeros
of Py;

4.3 if Ag =0, then all four zeros of Py are real and equal to —b/4.

3. MAIN RESULTS

This section contains our main results. Before formulating them we give a list
of a few members of sequences z, and w, that we use in proofs of the results
21 =z wh, 2o = aftw® 2 8 (3.1)
3.1
c d c. d
wy = pw 2%, wr = Pwgzg.

Theorem 3.1. Assume that a,c,d € Z, b = 0, a, 8,21, 20, w—1,wg € C\ {0}.
Then system (1.2) is solvable in closed form.

Proof. From the condition b = 0, we have
Znp1 = @2, Wni = PwS_ 128 |, n €N (3.2)

The first equation in (3.2)) yields

n—1 g n
Z2n+i = azj‘:o ¢ Z? ) (33)
for n € N and i = —1,0, from which it follows that
At am 3.4
Zon4i = & Zi (3.4)
forn € Nand ¢ = —1,0, when a # 1, and
2on4i = OénZi, (35)
forn e Nand i = —1,0, when a = 1.
Using (3.3)) in the second equation in (3.2)) we obtain
A" 2a’ Jda"" ', ¢
Wan i = Pa Lj=o Z Wa(n—1)+i> (3.6)
forn e Nandi= —1,0.
From (3.6) and by induction it is proved that
n—1 1 n—1 I n—1—2 45 gS =1, 0,n=1-1 n
Wap i = FEI0 ¢ @ D ¢ B el R w’, (3.7)
forn e Nand i = —1,0.
Case a # 1 # ¢ # a. From (3.7) and by Lemma in this case, we have
n—1 1 n—1 I n—1-2 j g5 =1, lgn-1-1 n
Wappi =PEi=0 @ qd Lizo @ Zjmo @’ 4 izo wy
_en _ _gn—l-1 a—cm "
:ﬁ ll—c ad Z?:Ol ctd 1—a sz a—-e wlc
3.8
1-c™ 4 1-c a e a —c" n ( )
:ﬁ T—c (yT-a\1-¢c a—c Jz. o7 ¢
K3 7
1—c" d(a—ct+(l—a)c™+(c—1)a™) gal—c” "
:ﬁ I—c (v (I—a)(I—c)(a—c) z; a—c wf ,

forn € Nand ¢ = —1,0.
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Case a = ¢ # 1. From (3.7) and by Lemma[2.2] in this case, we have

n—1 1 n—1 1§ n=1-2 j g3 n-lglgn=i=1  n
> a' d> a Y UT a 1=0 @ @ a
J— - 1= j=0
Wapyi =P=1=0 “ a 0 I Z; w;
1—a™ g5 n-l 11—aqn—t-1 n—1 n
a dna a
=T« 2o =a 2z w;

1—a™ d (1—a™ n—1 n—1
=(@T-a aT=a(=a —na )sz”a w
_an d((n—1)a™—na""141) _
117aa (1—a)2 dna™ 1 a

o 2z

=p
forn e Nand i = —1,0.
Case a # 1 = c. From (.7) and by Lemma[2.2] in this case, we have

n—1 n—1n—1—2 j n—1 n—l—-1

Yo 1 d> i ol A3, a

Wani =PLi=0 Lot Xizo Lizo @ 4 w;
ne11_qn—l-1 gat-—1

:ﬁ”adzzzo —a gz a—1 w;

e (3.10)

a—1

wj

d "—1y d
:ﬁna 1—a(n_ aa—l )Zz

gat—antn—1 qelt—1

:ﬂna (1—a)2 z; a—1 Wy,

forn € Nand ¢ = —1,0.
Case a = 1 # ¢. From (3.7) and by Lemma in this case, we have

n—1 1 n—1 1 n—1 .1
Won+i :ﬁ21=0 ¢ adzz=o ¢ (”*lfl)zjzlzo ¢

1o _yl=e™ _ 1-ne"Tl4(n-1)c  gloc™
:ﬂ e Oéd((n D=5 —c (1—0)2 z, T—c ,wzg" (311)

n
c
w;

we"

n " —netn— 1—c™
1—c de netn—1 =
] [

:/6 T—c v (1—c)2 2

forn e Nandi=—1,0.
Case a = ¢ = 1. From (3.7) and by a well-known formula, in this case, we have

ne ne n—1
W2n+4i 252’:“1 ladzl:‘]l(n_l_l)zga:o i (3.12)
(n—1)n '
g at i i,
forn e Nand i = —1,0.
From all above mentioned the theorem follows. O

Corollary 3.2. Assume that a,c,d € Z, b = 0, «a,3,z_1,20,w_1,wy € C\ {0}.
Then the following statements are true.
(a) If a # 1 # ¢ # a, then the general solution to system (1.2)) is given by

formulas (3.4]) and (3.8).
(b) If a =c# 1, then the general solution to system (1.2)) is given by formulas

B4) and BI).
(¢) If a # 1 =c, then the general solution to system (1.2)) is given by formulas

(BA) and (B10).
(d) If a =1 # ¢, then the general solution to system (1.2)) is given by formulas

and (BTI).

(e) If a =c =1, then the general solution to system (1.2)) is given by formulas

and .
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Theorem 3.3. Assume that a,b,c € Z, d = 0, o, 3,2_1, 20, w—1,we € C\ {0}.
Then system ([L.2)) is solvable in closed form.
Proof. Using the condition d = 0 in (1.2]) we have

Zng1 = ozl _qwl, w11 = PwS_,, n €N (3.13)

This system corresponds the one in [33, Theorem 2.3], where parameters a and b, as
well as ¢ and d are interchanged, respectively. Hence, all the formulas for solutions
to (3.13) are obtained from [33, Theorem 2.2 and Corollary 2.2]. O

Theorem 3.4. Assume that b,c,d € Z, bd # 0, a = 0, o, 3,2_1, 29, w_1,wg €
C\ {0}. Then system (1.2)) is solvable in closed form.

Proof. Using the condition a = 0 in (|1.2)), we have

Znp1 = 0w, wni = PwS_12¢ |, n €N (3.14)
From we easily get
Wpy1 = apuwt_jwbd,, n>2. (3.15)
Let = a?p3,
a1 =0, by=¢, ¢ =bd, 1y =1. (3.16)
Then

bUow . n>2. (3.17)

a
Wn+1 = :u’yl u]n1 Wy 1

Similarly, implies
Wopr = P (g wpt pwit g) wpt wil sy,
= e ey ey (318)
= p” wfiilwﬁizwiig,
for n > 3, where
as :=ajay + by, bo:=biay +c¢1, c3:=cra1, Y2 =y +ag. (3.19)
Assume
Wo1 = pRwE L wt (3:20)
forak>2andalln>k+1, and

ar = ajap—1 +by_1, by =0brap_1 +cr_1, cr=crap_1, (3.21)
Yk = Yk—1 + Q-1 (3.22)
If we replace n by n — k in (3.17)), and employ it in (3.20]), we obtain
, b b
W1 = P (Pl wpt g it o) it pwt
= o (3.23)

Yk, @kl bRt Cht1
=H Wy g Wy 1 Wy 2>

for n > k + 2, where
apy1 = 10k + b, bpy1i=biag +cp,  Chy1 = C1Gk, Ykl = Yk +ak. (3.24)

Equalities (3.18)), (3.19), (3.23), (3.24) along with the induction show that (3.20])-

(3.22)) hold.
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Setting k =n — 1 in (3.20)) and using (3.1]), (3.21) and (3.22)), we have

Ap— by — Cp—
Wh1 :Myn,len 1w1n Lpln—t

= (@B)" 1 (Buwfzg) " (Bws 22 1) " wg

— adyn—l Byn—l +an—1 Zib1n71 Zgan71 wc_bin—lw(c)anfl'f‘cnfl (325)
_ adyn—lﬂyn Zial" Zganflwc_af‘ wgnJrl’
for n > 2.
From ([3.21)) we obtain
ar = biag_o +crag_3, for k> 4. (3.26)
Since ¢; = bd # 0, from (3.26) it follows that
ap — biag—s
Qg = ——————=.
C1
Using this equality, a;j-s can be calculated for j < 0, and, as in [28] and [35], we
obtain
a_1 = Q_2 = 0, ag = 1. (327)
From (3.16)), (3.22) and (3.27), it follows that
Y-—2=Y-1=Y = 07 Y1 = 17 (328)
k—1
ye =Y aj, kel (3.29)
7=0

Since the initial-value problem ([3.26)-(3.27) is solvable, formula for a; can be
found, from which along with (3.29) and by Lemma is obtained a formula for
Y, (the form of ay, is well-known, see [I], 12]). Using the formulas for a; and y; in
(3.25) we have a closed form formula for the solution to equation .

Using (3.25) in the first equation in (3.14)), we obtain

Zp = a1+bdyn73 5byn72Zlidlan—zngan—swliciln—2wgan—1 ’ (33())

for n € N.
It is not difficult to see that formulas (3.25) and (3.30) present a solution to
system ([3.14). This completes the proof. |

Now we specify the form of the solutions to (1.2) when @ = 0 and bd # 0. The
characteristic polynomial associated to (3.26) is

p3(A) = A3 — e\ — bd. (3.31)
The zeros of (3.31]) are
R P _ 2 _AA3 4 = 2 _ 4A3 _
Ajf?’e@<s \/A1 NIN BN \/A1+,/A1 183), j=0.2, (3.32)
where
Ag=3c=:-3p and A;=27bd =: —27q, (3.33)

and €3 =1, # 1 ([4]).

Zeros of p3 are different and none of them is 1. In this case it must be
A = (A2 —4A})/27 # 0, that is, 27(bd)? # 4c3. If also ¢ + bd # 1, then 1 is not a
zero of p3. These conditions are satisfied, for example, if ¢ = bd € N.
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Zeros of p; are different and one of them is 1. Since p3(1) = 0, we have that
c+bd = 1. Hence
P3N =X —cAte—1=AN-1DN+A+1-0),
and the zeros of p3 are
—1++v4c—-3
A2 = s
Note also that it must be ¢ # 3, from the condition p5(1) =3 — ¢ # 0.
Since in these two cases all the zeros of ps are different, the general solution to

(3-26) must have the form
an, = AT + Ay + a3y, neN, (3.35)
where «;, i = 1,3, are constants [T}, [12].
As it was explained, for example, in [28], the solution to ([3.26)) satisfying (3.27)
is given by

A3 = 1. (3.34)

3 )\7}+2
e Z p;()‘J)
Jj=1 (336)
>\n+2 )\n+2 )\n+2
_ 1 I 2 n 3 7
(A =A2)(A = Az) A2 = A )(A2—A3)  (As = A1)(As — A2)
and the formula holds for every n € Z.
From ([3.29) and (3.36)), it follows that
n=1 3 \k+2
yn:zz I neN (3.37)
k=0 j=1 pé(AJ)
The formula holds also for n > —2 (|28]).
If \; #1, j =1,3, then from (3.37) and Lemma we obtain
SR 10V VNP V16 Vi )
T =)0 =) — 1) e —a)(a — g — 1)
. (3.38)
As(A5 —1)
+ )
A3 —=A1) (A3 —A)(A3—1)
while if one of the zeros is 1, say Az, then 1 # Ay £ Ay # 1, and we have
AT —1) A3(A3 —1) n
= n 3.39
U= =)0 - 12 T O = A0 - 12 (3.39)

A =D - 1)
for n € N. Formulas (3.38)) and (3.39)) holds for every n > —2 ([2§]).

Corollary 3.5. Assume that b,c,d € Z, a = 0, bd # 0, o, 3,2_1, 20, wW_1,wy €
C\ {0} and A #0. Then the following statements are true.

(a) Ifc+bd # 1, then the general solution to is given by and ,
where (an)n>—2 is given by B36), (yn)n>—2 is given by (3.38), while A;-s,
7 =1,3, are given by and .

(b) If c+bd =1 and c # 3, then ps has a unique zero equal to 1, say A3, and
the gemeral solution to (L.2)) is given by formulas and (3.30), where
(an)n>—2 is given by with A3 =1, (Yn)n>—2 is given by, while

-5

Aj-s, 5 = 1,3, are given by (3.34).
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One of the zeros is double. In this case it must be A = 0, that is, ¢® = 27(bd)?/4.
If m is a double zero of ps, then

m?>—em—bd=0 and 3m?—c=0.
Hence
p3(A) = A% = 3m2\ 4+ 2m> = (A — m)?(\ 4 2m). (3.40)
Since bd # 0, we have m # 0. From this and (3.40) we see that ps cannot have a
triple zero. It also cannot have a unique zero equal to 1, otherwise we would have
2m = 1 and consequently ¢ = 3/4 ¢ Z, which is impossible. Note also that 1 is a
double zero if and only if ¢ = 3 and bd = —2.
If A\ # Ay = A3, then the general solution to (3.26]) has the form
ap = AT + (G2 + agn)Ay, neN, (3.41)
where &;, i = 1, 3, are constants.
The solution of the form in (3.41]) satisfying (3.27) is
AT 4 (A2 = 201 +n(Ae — A1) A5
Ap = y
(A2 — A1)?
and also holds for every n > —2 (|2§]).
Since, in the case, A = 0, from (3.32)), we have

(3.42)

2 1
M= /A, Aos=———3/AL 3.43
L= 3 1 2,3 39 1 (3.43)
From (3.29) and (3.42)), we have
n—1 n—1 \j+2 . i+1
M7 Ao — 2\ +](>\2_)\1) pY/
Un = a; =) ( Do )2 ) , neN. (3.44)
=0 i=0

The formula holds also for n > —2 (|28]).

From (3.44) and by Lemma it follows that
- (AT - 1) (A2 —2M1)A2(A5 — 1)

oo =M —1) 0 (e = M) - 1)

A1 —nXy~" 4+ (n—1)A3)
(A2 — A1) (Ag — 1)2 ’
If we assume that A\; # 1 and A2 = A3 = 1, then from (3.44) it follows that
MO -1)  (1=-2X\)n  (n—1)n
L G W R S W S PR TE R W

Formulas (3.45) and (3.46) hold also for n > —2 ([28]).

Corollary 3.6. Assume that b,c,d € Z, a = 0, bd # 0, o, 3,2_1, 20, W_1, Wy €
C\ {0} and A =0. Then the following statements are true.

(a) Ifc+bd # 1, then the general solution to is given by and ,
where (an)n>—2 is given by , (Yn)n>—2 is given by (3.45), while \j-s,
j =1,3, are given by (3.43) and (3.33).

(b) If c =3 and bd = —2, then two zeros of (3.31) are equal to 1, say, A2 and
A3, and the general solution to system (L.2)) is given by and (3.30)),
where (an)n>—2 is given by with A2 =1, (Yn)n>—2 is given by (3.46),
while \1 = —2.

(3.45)
n € N.

n €N, (3.46)
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(¢) Polynomial (3.31)) cannot have 1 as a simple zero.
(d) Polynomial (3.31]) cannot have a triple zero.

EJDE-2017/153

Theorem 3.7. Assume that a,b,d € Z, bd #0, ¢ =0, «a, 3,2_1, 29, wy € C\ {0}.

Then system ([L.2)) is solvable in closed form.
Proof. The condition ¢ = 0 implies that
Znp1 = az®_qwl, wpy = B2¢ |, neN.

From ([3.47) we obtain

Znp1 =Bl 20, neN.
Let i = af?,
a; = O, b1 = a, C1 = bd, Y1 = 1
Then

bl C1
e 1%no, M E€N.

As in the proof of Theorem [3.4] we obtain

— Yk 0k b _ck
A+l = P20 kPnkPn—k—1>

Zny1 = pr 2tz

ar = a1ak—1 +bp—1, by =brax—1 +cp—1, cr=ciap_1,

Yk = Yk—1 + Qk—1,
for each £ > 2 and all n > k.

Setting k£ = n in (3.51)) and using (3.1)), (3.52)) and (3.53)), we have

ZTL+1 — uyn Z?n Zgn Zinl

= (af®)¥" (az wg) " 2" 2%

_ Yn-ta byn a0n+Cn by, bany
o¥nTan Gon Z 47 20" Wy

— Yn+t1 RbYn L On+2 ant1, ba
=« n+ /8 nzfl ZO wo n’

for n € N.
From (3.52)),
ar = biag_o + crag_s, for k > 4.
Since ¢; = bd # 0, (3.58)) yields
ar — brag_»
ap_g = ————.
C1

Using (3.49), (3.53) and (3.59)), we obtain

a_1 =0a-2 = 0, ag = 1,

Yyo2=y-1=y =0, y1=1,

k—1
Y = Zaj, ke N.
j=0

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
(3.52)
(3.53)

(3.62)

By using ([3.58)), (3.60), (3.62)) and Lemma it follows that closed form formulas
for ax and y can be found and consequently a closed form formula for the solution

to equation ((3.48)).
Employing (3.57) in the second equation in (3.47)) we obtain

dap_—1 da,_— bda,, —
wy, = Oédyn,2ﬂlerdyn,gZ . 120 2’100 3 )

(3.63)
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Some calculation show that formulas (3.57) and (3.63)) present a solution to system
(3.47), completing the proof of the theorem. O

The characteristic polynomial associated with equation is
p3(A) =A% —a\ —bd. (3.64)
The zeros of the polynomial are given by with
Ag=3a=:-3p and A;=27bd =: —27q. (3.65)
Hence, the analysis following Theorem also holds here, with the difference pa-

rameter ¢ replaced by a.

Zeros of p3 are different and none of them is 1. In this case it must be A # 0,
that is, 27(bd)? # 4a3. If also a + bd # 1, then p3(1) # 0. These conditions are
satisfied, for example, if a = bd € N.

Zeros of p3 are different and one of them is 1. Polynomial p3 has a zero equal
to 1 if a + bd = 1. From this we have

psN) =X —ad+a—-1=N-1D)N+A+1—-a),

—1++v4a—-3

At = Y

are the zeros of (3.64). Since 1 is a simple zero, then it must be p5(1) =3 —a # 0,
that is, we also have a # 3.

A3 =1, (3.66)

Corollary 3.8. Assume that a,b,d € Z, ¢ =0, bd # 0, «a, 3,2_1,20,wp € C\ {0}
and A # 0. Then the following statements are true.

(a) Ifa+bd # 1, then the general solution to s given by and ,
where (ay)n>—2 is given by [B36), (yn)n>—2 is given by (3.38), while A;-s,
7 =1,3, are given by and .
(b) If a+bd =1 and a # 3, then ps has a unique zero equal to 1, say A3, and
the gemeral solution to (L.2)) is given by formulas and (3.63), where
i

(an)n>—2 is given by ( with A3 = 1, (Yn)n>—2 is given by while

Aj-s, j =1,3, are given by (3.66)).

Corollary 3.9. Assume that a,b,d € Z, ¢ =0, bd # 0, o, 3,2z_1, 20, wo € C\ {0}
and A = 0. Then the following statements are true.

(a) Ifa+bd # 1, then the general solution to is given by and (3.63),
where (an)n>—2 is given by , (Yn)n>—2 is given by (3.49), while A;-s,
j=1,3, are given by and .

(b) If a = 3 and bd = —2, then two zeros of (3.64)) are equal to 1, say, Ao and
A3, and the general solution to system (L.2)) is given by and (3.63)),
where (an)n>_2 is given by with A2 = 1, (Yn)n>—2 is given by (3.46),
while \y = —2.

(¢) Polynomial (3.64) cannot have 1 as a simple zero.

(d) Polynomial (3.64]) cannot have a triple zero.

Theorem 3.10. Assume that a,b,c,d € Z, abed # 0, o, 3,21, 20, w_1,wg € C\
{0}. Then system (1.2)) is solvable in closed form.
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Proof. The condition «, 8, 2_1, 2z, w_1, wg € C\ {0} along with (1.2)) imply z,w, #

0 for n > —1. Hence

b= Gbgbe  zbd
Wy 1 = 12,21, mn € Ng.

Using (3.67) in (3.68) we obtain

_ J1—cpb a+c —ac
Zngo = alTopbRATe mac neN.

Let 6 = a'—¢3?,
a1 =0, by=a+c¢, cp=0bd, dy=—-ac, y =1

Then
= gY1 M by c1 di eN
Zn+2 = Zn+1%n Fn—17pn—2> 1 .

We have

dy )al b1 c1 dy
-3

Znyo = 0¥ (02t zn 12 oz Zptzet et .

— Syita a1a1+b1 biai+ecr jcra1+dy diay
=9 Zn—1  %n—2  “p-3
_ SY2 da

=90 Z Zn lzn 2271 3

for n > 2, where

az = aiay +by, by :=brai +c1, c2 = cra; +di, dp == dia1, Y2 ==y +ar.

Assume
. b dy
fn42 = 5 n+2 kzn+1 an an k—1»
for a k > 2 and every n > k, and that
ar = a1ak—1 +brp_1, by =biag_1+cp_1,
ek = c1ap—1 +dp—1, dp=diag_1,

Yk = Yk—1 + Qp—1.
Using (3.71)) in (3.74)), it follows that

Y by dy dy,
Zn+2_5 (5’Zn+1 kzn an k— 1Zn k— 2) Zn—i—l an an k—1
— §yrTtak Zalak+bk biagp+ck crap+di diag
n+1—

ag

k “n—k  “n—k—1 “n—k—2
= U T
for n > k + 1, where
apy1 = aray + by, bry1 = biag + cy,
Cht1 = C10 + di,  dpy1 = dyag,

Yk+1 = Yk + Q.-

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

From (3.72)), (3.73), (3.77)-(3.79)), the inductive argument shows that (3.74)-(3.76)

hold for 2 < k < n.
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Setting k = n in (3.74), then using (3.75)) and (3.76]) in the obtained equality,

we have

an Lbn Cn dn
Znyo =09m 25" 2 20 20

:(alicﬂb)y"( b bclzbdlz )a"(aza—lwl(;)bnzgnzdl

— (1= an b G b bdantaba-tdn aanteny bean o (3.80)
=q¥n+27CYn 3OYni1 ZnteTCdn Zgn+2—can wb_cizn wga"’“, n e N.
From we obtain
ap = brag_o +crag_3 +diag_g, k> 5. (3.81)
Equalities (3.76]) and (3.81]) yield
a_z3=a_s=a_1=0, ag=1; (3.82)
Yy-3=Y-2=y-1=4% =0, =1, (3.83)

k—1
vk =Y a;. (3.84)
§=0

Since the initial-value problem — is solvable, a formula for a; can be
found. Using it in and applying Lemma a formula for gy is found. By
using these two formulas in we obtain a formula for z,. So, is solvable.

On the other hand, we have

d Wn41

Zpo1 = Bue n € No, (3.85)
23 =at28d whi, ne N, (3.86)
and consequently
Wty = B WS wb w25, n € Ny, (3.87)
As above, we have
Wn+3 = nykw?Li:s—kwfz’:LQ—kai—l—ka’ik’ nzk-1, (3.88)

where n = a?B'=?, (ar)ren, (b )ren, (ck)ren and (di)ren are defined by (3.70) and

(3.75), while (yx)ren is defined by (3.76]) and (3.83]).
From (3.88) with £k = n 4+ 1 and by using (3.1]), we obtain

_ Ant1 bni1 Cnt1 o dnt1
Wy = 17" wy" wy " wg"

= (g (Bugad) e (B 2

3.89
= qyn+1 B(l_a)yn,+1+an+l+bn+lZibfl+1 dan+1wan+1+dn+1w8an+l+cn+l ( )

_ da da c(a aa a —aa
= qWnt1 gynts ynt1 dants "Hw,(l n+2—0an) g T

for n € Ny.

The formulas for a; and y;, are obtained as above. Using them in is get
a formula for a solution to . By some calculation it is checked that
and are formulas for a solution to . Thus, the system is also solvable,
as claimed. (]
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Corollary 3.11. Assume that a,b,c,d € Z, abed # 0, a,3,2_1,20,w_1, Wy €

C\ {0}. Then the general solution to system (1.2)) is given by (3.80) and (3.89),
where (ar)ren is defined by (3.81) and (3.82), while (yr)ren is defined by (3.83)

and (3.84).
The characteristic polynomial associated to (3.81)) is
pa(A) = A — (a + c)A? — bd\ + ac. (3.90)

Since ac # 0, it is of the forth order.
The equation ps(A) = 0 can be written as

o atc  s\Z /., s—(a+c)\2 _
(» < 2) (542 4+ bax + (72 ) —ac) =o0. (3.91)
Let s satisfy (bd)? = s(s — a — ¢)? — 4acs, that is,

s3 —2(a+c)s* + (a —c)?s — (bd)* = 0. (3.92)

For such s, (3.91)) becomes

g _a+c s
(-5 2) (Vor+ \[) =0,
which is equivalent to the following two quadratic equations
s—a—c bd
—\/E)\#—#—ﬁ—(), (3.93)
9 s—a—c bd
A+ Vs A+ 5 +2\/§ 0 (3.94)

By using the change of variables s =t + 2(‘”6) in we obtain

4(a+c)? 16(a+c)®  2(a+c)(a—rc)?
3_ (et 2\, (b2 —
¢ ( . (a—c) )t o+ ; (bd)? = 0. (3.95)
Let

a® + ldac + ¢? 2a3 + 2¢3 — 66ac(a + c) — 27(bd)?

e ———— d =
p 3 and g 27

Then, we can choose ¢ as one of the three possible values of the quantity

S I fg e

If we use the change p = —A(/3 and ¢ = —A;/27 in we obtain

t= 3%(6/& — /A —aAd + §/A1+,/A§—4Ag).

Solutions to (3.93)) and (3.94]) are the zeros of polynomial (3.90) and they are

1 2(a+¢) 1 |4(a+c) Q
Alz\/t+ 4o P S— (3.97)
2 3 2 3 4 /t-l- 2(a3+c)
1 2(a+c¢) 1 |4(a+c) Q
Ay = [t + - S — 3.98
2 2 3 2 3 4 /t—i- 2(a3+c) ( )
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1 2(a+c) 1 |4(a+c) Q

A3 = ——A/t+ = R T ————N (3.99)
2 3 2 3 2(a+c)
4/t + ==
1 2 1 |4
M= t+$—5 (a;C)—t-i- Q( =, (3.100)
[, | 2(atc
4 t+ (l3 C
where
Q := —8bd. (3.101)
The nature of \;, j = 1,4, depends on the sign of
1
A= - (4A% — AD), (3.102)
27
where
Ag :=a? + ldac + ¢, (3.103)
Ay = —2a® — 2¢® 4 66ac(a + c) + 27(bd)?, (3.104)
and the signs of
P:=-8(a+c) (3.105)
and
D := —16(a — ¢)*. (3.106)

Zeros of p, are different and none of them is 1. If a, b, ¢ and d are chosen
such that Ag < 0, that is, a® + 14ac + ¢ < 0, then it will be A < 0, from which by
Lemma, it follows that ps has four different zeros. Let t1 2 = -7+ V/48. Then
if we choose a,c € Z\ {0} such that a/c € (t1,t2), then we have such a situation.

Zeros of p, are different and one of them is 1. Polynomial (3.90) has a zero
equal to 1if p4(1) =1 —a — ¢ — bd + ac = 0, that is, if

(a—1)(c—1) =bd, (3.107)
so that
pa(N) = A — (a+e)A? — (a—1)(c — )X + ac. (3.108)

Thus, if we choose a and ¢ such that p) (1) = 3—a—c—ac # 0, that is, (a+1)(c+1) #
4, then py will be such a polynomial if A £ 0. For example, if a = —3 and ¢ = 2,
then bd = —4 # 0, A # 0 which means that the characteristic polynomial has all
zeros mutually different and exactly one of them is equal to 1

paA) = A XN AN 6= (A - 1N+ 22+ 21 +6). (3.109)
Since in these two cases A\j # \;, ¢ # 7, then the general solution to (3.81) is
ap, = V1AL + 72 A8 + 9305 + 4y, neN, (3.110)

where ~y;, i = 1,4, are arbitrary constants.
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The solution to (3.81)) satisfying (3.82)) is

4 )\7}+3
J
ap, =
j; Pi(X)
_ At N AP (3.111)
(A= A2)A = A) (A = Aa) (A= A1) (A2 = A3) (A2 — Ag)
)\n+3 )\n+3
+ K + 4 ,
(A3 = A)(A3 = A2)(As = Aa)  (Aa = A1) (Aa — A2) (Mg — A3)
for n > —3 ([32]).
From (3.84) and (3.111]) it follows that
n—1 4 j 4
AT A2\ —1)
Yn = L = Lt , meN, (3.112)
= ; AR ; Pi(Ai)(Ai — 1)
when \; # 1,4 = 1,4, and
4
n A2 —1)
Yn = + WY, , neN, (3.113)
e ema T L AN
when one of the zeros of ps is 1 (here A\; = 1).
Note that if one of the zeros of py is 1, then we have
paAN) = A =1DN+ X~ (a+c— 1)\ —ac). (3.114)
The change of variables A =t — % transforms the following equation
MEA—(a+ec—1)A—ac=0,
into
B +pt+G=0, (3.115)
where
2 9 —-7-27
f):§—a—c and §= (a+c)27 =y (3.116)
The zeros of (3.115)) are

~ ) ~3 ~ 72 53
tl:{;‘l_li/—g— q4+]2)7+5l_1§/_g+ qZ‘f’%a l:1,3,

where €3 = 1 and € # 1. Hence,

1 ; 2 8 5 2 3
Aj:—3+eﬂ—2\3/—‘21—\/i+§7+eﬂ—2\3/—g+\/i+g7, (3.117)

for j = 2,4, are the other three zeros of py4, in this case.
The previous analysis along with Corollary implies the following corollary.

Corollary 3.12. Assume that a,b,c,d € Z, abed # 0, a,3,2_1,20,w_1,wy €
C\ {0} and A # 0. Then the following statements are true.

(a) If (a—1)(c—1) # bd, then the general solution to is given by (3.80) and

(3.89), where (an)n>—3 is given by (3.111), (yn)n>—3 is given by (3.112),
while \j-s, j = 1,4, are given by (3.97)-(3.100]).
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(b) If (a—1)(c —1) = bd and (a + 1)(c + 1) # 4, then the general solution

to (1.2) is given by (3.80) and (3.89), where (an)n>—3 is given by (3.111])
with A1 = 1, (Yn)n>—3 is given by (3.113), Ay = 1, while A;-s, j = 2,4, are

giwen by (3.117) and (3.116)).

p4 has only one double zero which is equal to 1. Polynomial (3.90f) will have
a double zero equal to 1 if (3.107)) holds and

(a+1)(c+1)=4. (3.118)

From we have that one of the following cases must occur: (1) a = 3 and

c=0,12)a=0andc=3;3)a=c=1;(4) a=—-5and ¢ = —2; (5) a = —2 and

¢c=-5;(6)a=c=-3. If a=0 or ¢ =0, then ac = 0, which is a contradiction.
If a =c=1, then

paN) = A =222 1= (A - 1)\ + 1),
and
Mao=1, Azq=-1 (3.119)
Ifa=-5and ¢c=—-2or a= -2 and ¢ = -5, then
pa(A) = AT+ 707 — 18X + 10 = (A — 1)*(A* + 2X + 10),
and
Mo2=1, A3g=—1+3. (3.120)
If a = c= —3, then
pa(A) = A+ 607 — 160+ 9= (A — 1)2 (A2 + 21 +9),
and
Mao2=1, A34=-1+2V2i (3.121)

From this, we have proved in passing, that there are no such a,c € Z\ {0}, such
that 1 is a triple zero of p4, or that ps has two pairs of double zeros such that one
of them is equal to 1.

In these four cases we have (see, for example, [30])

_ n(l — )\3)(1 — M) +3A3A — 203 — 20 + 1

n = 2 2
)\nJr(Bl )\3) (1 )\4) )\n+3 (3122)
+ 3 + 4
M3 —=1)2A3—X\) (=120 — A3)’
and
. el j(l — )\3)(1 - )\4) + 3A3Mg — 23 — 24+ 1
n = JZO( (1= 23)2(1 — Aa)?
N )\%-"—3 N )\i+3 )
(A3 =1)?(As —A) (A —1)*(As — A3) (3.123)
- (TL - 1)’]7, TL(3>\3)\4 - 2)\3 - 2)\4 + ].)
C2(1 = A3) (1= \g) (1—X3)2(1 — A\y)?
Aj(A5 — 1) ATAT —1)

(As =1)*Az = A1) (A= 1) — As)
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Exactly one double zero which is different from 1. According to Lemma
in this case it must be A = 0, that is,

. . 2
(a® + l4ac + ¢*)% = (ag +¢® = 33ac(a + ¢) — %(bdﬁ) , (3.124)
and that
(a—1)(c—1)#bd, a+c>0, a#ec (3.125)

The problem of the existence a,c € Z \ {0} such that (3.124)) and (3.125) hold

seems quite technical and we leave it to the reader as an open problem.
Since, in the case A1 = Ag, Ay # Ay, 2 < 4,5 < 4, we have that the general
solution to (3.81]) has the form
an = (71 +y2n)A\y + YA + 74Xy, neEN, (3.126)
where 7;, i = 1,4, are arbitrary constants, and the solution satisfying (3.82)) can be
obtained, for example, by letting Ay — Ao in (3.111]) [30],
_ AP (4 3) (A2 — A3) (A2 — M) — Xa(2h2 — A3 — A\a))
" (A2 = A3)2(A2 — A4)?
)\ngS )\2+3
2 + 2 :
(A3 = A2)? (A3 = A1) (A1 — A2)?(Ag — A3)
From (3.84), (3.127) and by Lemma we obtain
Yn = Ti:l ()\%H((J' +3)(A2 = Ag) (A2 — M) = Ao (200 — As — M)
" (A2 = A3)?(A2 = A\g)?

(3.127)
+

J=0

+

)\j+3 >\j+3
3 i 4 )
(A3 = A2)2(A3 = A1) (Mg — A2)? (Mg — A3)
A=\ (n— DAZT? (A3 = 20303 — 2X3 + 333\ (A5 — 1)
T (A2 = A3) (e = Aa)(1 - A2)? (A2 = A3)? (A2 = Aa)? (X2 — 1)
A3\ - 1) n AT - 1)
(A3 = A2)2(As = A)(As = 1) (A= A2)2 (A — A3) (A — 1)

+

(3.128)
From the previous analysis and Corollary we obtain the following result.

Corollary 3.13. Assume that a,b,c,d € Z, abed # 0 and o, 3,2_1, 29, w_1, Wy €
C\ {0}. Then the following statements are true.
(a) If only one of the zeros of polynomial (3.90) is double and different from
1, then the general solution to is given by (3.80) and (3.89), where
(an)n>—3 is given by , while (Yn)n>—3 s given by (3.128).
(b) If 1 is a unique double zero of polynomial ps, say \1 = A2 = 1, then the
general solution to is given by (3.80) and , where (G )n>—3
is given by , (Yn)n>—3 is giwven by (3.123), while A3 4 are given by

(13.119) if a=c=1, by (3.120) ifa = -5, c= -2 ora=—2, c= —5, and
by (3.121) if a = c = —3.

Two pairs of different double zeros. Let bd = 0, then
paN) =M —(a+ )N +ac= (N —a)(\2 —¢),
M2 =V, Aga=2/e
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Hence, if a = ¢ # 0, p4 in this case has two pairs of different double zeros
Mz =+Va, Aa=—Va (3.129)
The general solution to in this case has the form
an = (71 +12n) A8 + (v3 + van)Ay, neN, (3.130)

where ~y;, i = 1,4 are constants.
The solution to ([3.81)) of the form in (3.130) and satisfying (3.82)) is given by [30]
AP (n(Ag — M)? + A3 — 4o + 3M7)

" (2 = A (3.131)
N M2 (A — A2)? + A3 — 4doAg + :ug).
(Mg — A2)?
From , and by Lemma we obtain
o — Z_Zl (Aé”(j(& SO 4+ A — Adohs +3)
= (2 — M)
AP0 M) N — A+ 3)\§)>
(A =Xo)? (3.132)
- (- DA (A -4+ 30D (8 - 1)
(A2 = Ag)2(1 = Ag)? M2 — M) (Aa — 1)
A=A+ (n = DAY (O = 4] + 300D (0 - 1)
(A = A2)2(1— Ay)? (A — A2\ — 1)

Corollary 3.14. Assume that a,b,c,d € Z, ac # 0 and o, 3,2_1, 29, w_1, Wy €
C\ {0}. Then the following statements are true.

(a) If polynomial ps has two pairs of double zeros both different from 1, then the
general solution to is given by and (3.89), where (an)n>—3 is
given by (3.131)), while (y5)n>—3 is given by (3.132). If additionally bd = 0
and a = ¢, then \j-s, j = 1,4, are given by (3.129)).

(b) For a =c¢ =1 and bd = 0 the polynomial i can have two pairs of
double zeros such that one of them is equal to 1, and the general solution
to is given by (3.80) and (3.89), where (an)n>—3 is given by ,
while (Yn)n>—3 is giwen by (3.132)) with Ao =1 and Ay = —1.

Triple zero case. Since Ag # 0, when a, ¢ € Z\ {0}, by Lemma[2.3]it follows that
p4 cannot have a triple zero. Consequently, it cannot have a quadruple zero.
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