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POSITIVE GROUND STATE SOLUTIONS FOR QUASICRITICAL
KLEIN-GORDON-MAXWELL TYPE SYSTEMS WITH
POTENTIAL VANISHING AT INFINITY

ELSON LEAL DE MOURA, OLIMPIO HIROSHI MIYAGAKI, RICARDO RUVIARO

Communicated by Vicentiu Radulescu

ABSTRACT. This article concerns the Klein-Gordon-Maxwell type system when
the nonlinearity has a quasicritical growth at infinity, involving zero mass
potential, that is, V(z) — 0, as |z| — oo. The interaction of the behavior of
the potential and nonlinearity recover the lack of the compactness of Sobolev
embedding in whole space. The positive ground state solution is obtained by
proving that the solution satisfies Mountain Pass level.

1. INTRODUCTION

This article concerns the existence of nontrivial solution to the Klein-Gordon-
Maxwell system

—Au+V(z)u — (2w + ¢)pu = K(z)f(u), in R3,

Ap = (w+¢)u?, inR? (1)

where u € H'(R3) := H, w > 0 is a parameter, and we assume that V, K :
R?> - R and f : R — R are continuous functions, with V, K nonnegative and f
having a quasicritical growth at infinity. We will treat problem with zero mass
potential, that is, V(z) — 0, as |z| — oo. Problems involving zero mass potential,
with ¢ = 0, have been studied by several researchers, and extended or improved in
several ways; see for instance [T}, 2] [3, [6, @, 14}, (5], 16l 23] [26] and reference therein.
In all these papers above, there are restrictions on V and K to get some compact
embedding into a weighted LP space.

In a remarkable work, Benci and Fortunato in [I1] considered problem ,
with V(z) = m3 — w?, as a model describing nonlinear Klein-Gordon fields in R3
interacting with the electromagnetic field. Thus the solution represents a solitary
wave of the type ®(x,t) = u(z)e™? in equilibrium with a purely electrostatic field
E = —V¢(x). There are a lot of works devoted to system (.1)), and we would like to
cite some of them. Benci and Fortunato [12] proved the existence of infinitely many
radially symmetric solutions when my > w and K(z)f(u) = |u[P7%u, 4 < p < 6.
D’Aprile and Mugnai [21, 22] covered the case 2 < p < 4 and established some
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non-existence results for p > 6. For the critical nonlinearity K (z)f(u) = |u|P~2u,
with p = 6, Cassani [I9] obtained a non-existence result for the above system, and
he showed the existence of radially symmetric solution when 4 < p < 6 or p = 4.
In the critical case, radially symmetric solutions for this system were studied in
[T7, 18], 211, 28] and references therein. With respect to the existence of a ground
state solution, that is, a couple (u, ¢) which solves and minimize the action
functional associated to among all possible nontrivial solutions, we mention
[7,[8, 18], 27] and theirs references. In [24] 25] were considered systems imposing
a coercivity condition, as that in [I0], to recover the lack of compactness of the
Sobolev space embedding.

The interest in this kind of problem is twofold: on the one hand the vast range
of applications, and on the other hand the mathematical challenge of solving a
nonlocal problem and zero mass potential.

First of all, we would like to study the case in which V is bounded and then, in
Section 5, we treat problem with zero mass potential, that is, when V(z) — 0,
as |z| — oo.

We will work with the following assumptions:

(A1) V,K : R?® — R are smooth functions, K € L>(R?) and there are constants

&o,a1,as, Vo > 0 such that

0<Vy<V(z)<ay, VreR? (1.2)
and if 2 < 6 < 4, then
2(4 - 6)

< 3. .
0< 05 <V, VxeR?; (1.3)
also as
0< K(z) < —=2— VxcR53. 14
<K@ S i Vie (14)

(A2) If {A,} C R? is a sequence of Borel sets such that the Lebesgue measure
of A,, is bounded uniformly, that is, u(A,) < R, for all n and some R > 0,
then

lim K(z)dr =0, uniformly for n € N. (1.5)
Tt A, N By (0)

(A3) (behavior at zero) limsup,_,o+ f(s)/s =0,

(A3’) (behavior at zero) there is a constant p € (2, 6) such that limsup,_,q+ jp(f)l <
400,

(A4) (quasicritical growth) limsup,_, | f(s)/s® =0,

(A5) (Ambrosetti-Rabinowitz) there exists 8 > 4, such that 0 < 0F(u) < f(u)u
for all u > 0, where F(u) = [ f(s)ds.

Remark 1.1. From (T.2), and p € (2,6), we have
K(x)
[V (z)](6—»/4
Our main results are as follows.

Theorem 1.2. Suppose that (A1)-(A5) hold. Then problem (1.1|) possess a positive
ground state solution.

Theorem 1.3. Suppose that (A1), (A2), (A3’), (A4), (A5) hold. Then problem
(1.1)) possess a positive ground state solution.

— 0, as|z|] — 4oo. (1.6)
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Let us briefly sketch the contents of this article. In the next section we present
some preliminaries. In Section 3, we prove the boundedness of the Cerami sequence
and in the Section 4, we prove of the main results. In the Section 5, we analyze the
case when V(x) — 0, as |z| — oo.

2. PRELIMINARY RESULTS
By the reduction method described in [13], the Euler-Lagrange functional asso-
ciated with the system (1.1), J : H = HY(R?) — R, is
1 1

I = glulP =5 [ woutde~ [ K@F@a,

where F(u) = fou f(s)ds. From the conditions on f and by standard arguments,
the functional J € C'(H,R) has Frechet derivative

J (u)v = /R3 (VuVo + V(z)uv) de — /RS(%} + du)ppuvdr — | K(x)f(u)vde,

R3
for all v € H. The norm in H given by

Jull? = [ (Val? 4+ V@)a?)do
R3
is equivalent to the usual norm in H. The induced inner product is
(u,v) := / (VuVo + V(z)uw) dx,
R3

We recall that the critical points of functional J are precisely the weak solutions of
(1.1)). We also assume that f(s) =0 for all s € (—o0,0].
A fundamental tool in our analysis will be the following Lemma.

Lemma 2.1. For every u € H, there exists a unique ¢, € DV2(R3) which solves
Ap = (w+ o)u?. (2.1)
Furthermore, in the set {z : u(x) # 0} we have —w < ¢, <0 if w > 0.

For a proof of the above lemma, see [22] Proposition 2.1]. From assumption
(A3) and (A4) [or (A3’) and (A4)] and combining with Lemma[2.1] follows that the
functional J satisfies the geometric conditions of the Mountain Pass Theorem of
Ambrosetti and Rabinowitz in [5]. So, there is a sequence (u,) C H such that

J(up) — ¢ and (1 + ||u, DI (wn)]] — 0, n — oo, (2.2)

where

= inf t
¢ = Inf max J((1))

is the Mountain Pass level, with
I = {y € C([0,1], H (R?));(0) = 0, J(y(1)) < 0}.
The second result in this section is the following Hardy-type inequality.

Lemma 2.2. Suppose that (A1)—(A4) or (Al), (A3), (A4) hold. Then, H is com-
pactly embedded into

T9(R?) := {p : R* — R; ¢ is measurable and / K(x)|p|?dx < oo},
R3

for all g € (2,6).
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Proof. Consider (A1), (A3) and (A4); thus fixed ¢ € (2,6) and given € > 0, there
are 0 < sg < s1 and C' > 0 such that

K(x)|s]? < eC(V(2)[s]* +[5]°) + OK(2) X5 5,1(|8])]s[°, Vs € R. (2.3)

Hence,

K(x)|u|?dx <eCQ(u) + C K(z)dx, Yue H (2.4)
B:(0) ANBE(0)

where

QW = [ V@t [l d
A={zeR3: sy < |u(z)| < 51}

If (v,) is a sequence such that v, — v weakly in H, as n — oo, there is some
constant M; > 0 such that

lomll? = / (IVonl2 + V(@)|on]2) dz < My, / loaSdz < My, V¥n €N,
R3 R3
implying that (Q(v,,)) is bounded. On the other hand, setting

A, ={x € R?: 50 < |v,(2)| < 51},

the above inequality implies

sou(Ay,) < / |v,|®de < My, Vn €N,

n

showing that sup,, ey pt(A4,) < 4+00. Therefore, from (II), there is a 7 > 0 such that

/ K(x)dr < =, VneN. (2.5)
AnNBE(0) 51
Now, (2.4) and (2.5) lead to
K(x)|vn|qu§sCM1+s?/ K(z)dr < (CM; +1)e, VYneNlN.
Bg(0) A,NBg(0)
(2.6)

Since ¢ € (2,6) and K is a continuous function, from the Sobolev embeddings it
follows that

lim K(x)|vp|?de = / K(x)|v|? dz. (2.7
n—+o0 /B (0) B,(0)

In light of (2.6] and, we have
lim K(x)|v,|?de = / K(x)|v]? dz. (2.8)
R3 RS

n—+oo
This means that
v, — v, inTIYR3), n — oo, Vg€ (2,6).
Now, we fix € R? and Vs > 0 there is a constant C = C(p) such that
C’V(m)¥ < V(x)s* P 4+ 5P,
it follows from the fact that the function

h(s) =V (z)s* P+ 7, s>0,

—-P

has the minimum value CV (z) s
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Using (A1), (A3’) and (A4),and choosing ¢ € (0, C) for some C' > 0 we infer that
K(z)|s|P <e(V(2)|s)® + |s|®), VseR,|z|>r.
Consequently, for all u € H we have

K(az)|5|pdm§/ (V)]s + |s]°) da.

Be(0) B;(0)

If (v,) is a sequence such that v, — v weakly in H, as n — oo, there is My > 0
such that

/ K () [vn|" dz < 25 Mp. (2.9)
B:(0)

Since ¢ € (2,6) and K is a continuous function, it follows from the Sobolev embed-
dings

lim K(x)\vn|qu:/ K ()[o] dz. (2.10)
n—=+% Jp,(0) B,.(0)

From (2.9) and (2.10)), we obtain
im [ K)o de :/ K (x)[v] dz.
n—+00 Jp3 R3
implying that
v, — v inT9YR3), n — oo, Vg€ (2,6).
O

Lemma 2.3. Suppose that (A1)—(A4) are satisfied, and consider a sequence (vy,)
in H such that v, — v weakly in H, as n — co. Then

lim K(z)f(vp)v, dax = K(z)f(v)vdz.
n—+00 /p3 R3

Proof. Assuming (A1), (A3) and (A4), for a fixed ¢ € (2,6) and € > 0, there is
C > 0 such that

|K (x)f(s)s] < eC(V(z)|s]* + [s]°) + K(z)|s]?, Vse€R. (2.11)
From Lemma [2.2] we have

K(x)|vp|?de — / K(x)|v| dz,
RS RS

then there exists r > 0 such that

/ K(z)|vp|?de <e, VneNlN. (2.12)
B;(0)
Since (vy,) is bounded in H, there exists M3 > 0 such that

V(x)|vn|*dr < Mz and / V(2)|vn|® de < Ms.
R3 R3

Combining the last two inequalities with (2.11)) and (2.12)), we obtain
K(z)f(vp)vn da:’ < (2CM3+1)e, VneN.
B (0)
To complete the proof we need to show that

lim K(x)f(vp)vn de = / K(z)f(v)vdz.

n—+o0 Jp (0) B,(0)
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However, this limit is obtained by using hypothesis (A4) and arguing as in [20],
setting
P(z,s) = K(x)f(s)s, Q(z,un(x)) = |un(z)[°.
(I

Lemma 2.4. Suppose that f satisfies (A1), (A3’), (A4), and consider a sequence
(vn) in H such that v, — v weakly in H, as n — oo. Then

lim K(z)f(vp)v, dx = K(z)f(v)vdz.

n—-+4o0o R3 R3

Proof. Using the Lemma for r > 0 sufficiently small, arguing as in ([2.11]) we
infer that

K(z) <e(V(2)[s|* P+ [s|°77),  V]a| >
The rest of the proof follows similarly to the proof of Lemma [2.3] a

3. BOUNDEDNESS OF CERAMI SEQUENCE

Lemma 3.1. The Cerami sequence (uy) C H given in (2.2) is bounded.

Proof. We have a positive constant M such that
M + 0, (V) |Junl| = 0J(un) — J' (un)un, (3.1)

for 2 < ¢ < 6. From (A1), (A5) and Lemma [2.1] the Cerami sequence (u,) is such
that
0—2

0J (up) — J' (un)u, = (T)HunHQ + (

—0+4
i)/ w¢unuidx+/ ¢2 u? da
2 R3 ) R

+ . K(2)(f(up)up — 0F (uy,)) dx
> (G;J)Huﬂu% if 9 > 4.

Similarly, if 2 < 8 < 4 we use the hypothesis

2(4—-0)
< <
0< == Vo < Vi),
and Lemma [2.1] to obtain
0J (upn) — J' (un)un
0—2 0—2 —0+4
> (7)/ |Vu,|? de + (7)/ V(a:)ui da:—l—w( + )/ (bunui dx
2 RS 2 ]RS 2 RS

) -2 — 4

> (9;2)/ |Vun\2dx+(9;2)/ Vouidm—sz(u)/ u? dx
2 R3 2 R3 2 R3

:(“’;2)/ |Vun2dz+[(92)V0+(04)wQ]/ W2 d
2 ]RB 2 Rs

> Cllun|.

In light of (3.1) and (3.2]) we conclude that (u,) is bounded. O
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Lemma 3.2. If u,, — u weakly in H, as n — oo, then passing to a subsequence if
necessary, ¢,, — ¢, weakly in DV2(R3), as n — oo.

Proof. Consider (uy,),u € H such that u,, — u weakly in H, as n — oo. It follows
that

u, —u weakly in LP(R%), as n — o0, 2 < p < 6,

up, —u in L’ (R®), asn — 00,2 <p<6.

loc

From Lemma [2.1] note that for all n > 1 we have

—/ W, uZ dr — / 2 u? dx
R3 R3S
< [ o de < Clu, lpra unl%.
R3 g
It means that (¢, ) is bounded in DY2(R3). Since D*?(R?) is a Hilbert space,
there is a ¢ € DY2(R?) such that
bu, — & weakly in LP(R?), as n — 00, 2 < p <6,

¢y, — & in LV

loc

[P,

2
D1.2(R3)

(R3), asn — 00, 2<p<6.

We desire to prove the following equality ¢, = £. For this, it is necessary to show,
in the sense of distributions,

A¢ = (w+&u?
and use the uniqueness of the solution given in Lemma, 2.1
Consider a test function ¢ € C§°(R3). We know by Lemma we have

A¢u, = (w4 ¢y, Ju?.

Then we just need to see how each term of the equality above converges. To verify
that

/ V¢unvwdx—>/ VEVY dr, asn — oo,

R3 R3

/ ¢unu%¢dx—>/ Eutrpdr, asn — oo,
R3 R3

it is sufficient to note that it is a consequence of the definition the weak convergence.
By the strong convergence in L (R?),2 < p < 6, we obtain

/ uii/} dr — u?pdr, asn — oco.
R3 R3
We consider a test function ¢ € C§°(R?). Using boundedness of (¢, ), the

strong convergences in Lfoc(R3),2 < p < 6 and the Sobolev embeddings follows
that as n — +o0, we have

/ (buntin — Eu)pdz = / G (1 — u)p d + / W(du, — E)pdr
R3 R3 R3
5/6
< Clln, Ipragesy ([l = w11 dz)
R3

+/(¢un*£)wpdeO, as n — 0o — +00.
R3
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For the same reasons, it follows that

/(¢inun—£2uwdx:/ o2 (un — )sod:H/ u(¢l —&)pda
R3 R3

32, 132 5.\ 2/°
D1:2(R3) /RS lun — ul*" "] d:v)

+ / (62— E)upds 0, asn— +oo.
R3

< Cll¢u,

From density, for all ¢ € H we infer that

/ (Vu, Vo + V(x)u,p) de — / (VuVp + V(z)up) dz,
R3 RN

/ 2w + du,, ) Pu, Unp dx — / (2w + &)Eup dx,
R3 R3
as n — +oo, thus we prove the lemma. ([l

4. PROOF OF THE MAIN RESULTS

Proof of Theorem[I.3 Let (u,) be a Cerami sequence as given in (2.2). From
Lemma follows that (u,) is bounded and, up to subsequence, we can assume
that there is u € H, such that

U, — u, weakly in H, as n — oo.

We will show that u,, — u, as n — +oo. From Lemma-, we have

lim K(z)f(up undﬂc—/ K(z)f(uw)udz.

n—-+o0o R3

On the other hand, we know that

J (u)v = /Rs(Vu.Vv + V(z)wv) de — /Rs(Qw + ¢u)Pyuv de — K(z)f(uw)vdx.

R3
Since J'(un)un, = 0n(1), we get

lim HUnH2 = lim [/ (2w+¢un)¢uﬂuidz+
n—-+o0o n—-+oo R3 v

By Lemma we have

K (@) f (un)u, dx] (4.1)
R3

lim K(z)f(up)ude = | K(z)f(u)udz
n—+0o0 Jps3 R3

and from Lemma [3.2] we obtain that

lim [ 2w+ by, )bu, u> de = / (2w + &)éu? de.
R3

n—oo [ps
Then

lim |u,|? = / (2w + &)éu?dr + | K(z)f(u)udz. (4.2)
n—-+400 R3 R3

Moreover, since J'(u,)u = 0,(1), we have
]| = / (20 + E)eu? dar + / K(2)f (u)u da. (4.3)
Therefore, from and (£.3)), we obtain lim, .4« [[u,]|* = |lul|?, showing that

U, — u, in H, asn — oo.
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Consequently,
J(u)=c and J'(u)=0,
implying that u is a ground state solution for J. Since u,, > 0, we have that u > 0.

The positivity of u follows by using the maximum principle. O
Proof of Theorem[1.3 1t is similar to that of Theorem However using the
Lemma [2.4] instead of Lemma [2.3] We omit the proof here. (I

5. CASE V() — 0, AS |z| — o©
In this section, we study the problem (|1.1)), inspired by [4], replacing the hy-
pothesis (Al) by
(A1) V,K : R?® — R are smooth functions, K € L>(R?) and there are constant
7,&1,01,as,as > 0, such that
as

al 3

<V(z) < d 0<K(z) < ——, VzxeR’ 5.1

Trar S (r) <az an < K(z) < T x € (5.1)
with 7, & satisfying

4
5—£<p7 if0<& <7, or 1<p, if& >r.
T

Also we assume that & € L>(R?).
In this case, the norm for H is

Julfy = [ (VuP + V(@) do

whose induced inner product is
(u,v)yy = / (VuVo + V(z)uv) dx.
R3

Remark 5.1. At this moment, it is important to observe that (|1.5) is weaker than
any one of the following conditions:

(a) there are 7 > 1 and p > 0 such that K € L"(R3\ B,(0));
(b) K(z) — 0 as |z| — oc;
(¢) K = Hy + Ho, with Hy; and Hj verifying (a) and (b) respectively.
In this section, all the past results achieved follow naturally by using the hypoth-
esis (A1’) instead of (Al), except of Lemma We would like to show another
statement for the boundedness Cerami sequence.

Lemma 5.2. The Cerami sequence (uy) C H given in (2.2) is bounded.

Proof. Once that (J(uy,)) is bounded and |J'(uy,)uy| < |luy||v for n large enough,
so there are some constant M > 0 and ng € N such that
1
J(up) — aJ’(un)un < M + Jup|lv, ¥n > no.

On the other hand, it is certain that w, > 0 for each 2 € R® and using the
assumption (f3) for § > 4 combined with Lemma [2.1] we have

1 1 1 1 2w
Tw) = 57w > (5= Pl =5 [ woniddo+ 2 [ oo

1
+7/ 2 u? dr
0 Jgs "
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11 ) 4-0 )
> (5 - §)||un||v ‘*‘W(W) /RS Pu,, U, T
1 1
which shows that (u,) is bounded. O

In this way, we obtained the same results as those presented of Theorems
and using (A1’) instead of (A1).
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