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ON NON-NEWTONIAN FLUIDS WITH CONVECTIVE EFFECTS

SIGIFREDO HERRON, ELDER J. VILLAMIZAR-ROA

ABSTRACT. We study a system of partial differential equations describing a
steady thermoconvective flow of a non-Newtonian fluid. We assume that the
stress tensor and the heat flux depend on temperature and satisfy the condi-

tions of p, g-coercivity with p > nQ—fQ, q > #, respectively. Consider-

ing Dirichlet boundary conditions for the velocity and a mixed and nonlinear
boundary condition for the temperature, we prove the existence of weak so-
lutions. We also analyze the existence and uniqueness of strong solutions for
small and suitably regular data.

1. INTRODUCTION

This article analyzes a system of partial differential equations describing a steady
thermoconvective flow of a non-Newtonian fluid in a bounded domain Q of R™,
n = 2,3, with smooth enough boundary 92. The model is given by the system of
PDEs

—div (u(-,0)T(D(un))) + div(lu®@u) + Vr = 6f in Q,
divu=0 in Q, (1.1)
—div(k(-,0)a(Ve)) +u-VO =g inQ,

where the unknowns are u : @ — R", # : Q@ — R and 7 : 2 — R denoting
the velocity, the temperature and the pressure of the fluid, respectively. The field f
denotes the given external body forces and g represents the heat source. The symbol
T : Mgt — M denotes the extra stress tensor and a indicates the constitutive
law for diffusivity. The symbol D(u) represents the symmetric part of the velocity
gradient Vu, that is, D(u) = %(Vu + V7Tu); the functions u(-,0) > 0, k(-,0) > 0
denote the kinematic viscosity and thermal conductivity, respectively. Equations
1 and 3 correspond to the momentum and heat equations respectively;
the second equation in corresponds to the incompressibility condition. We
assume that the functions n — T(n) and x — a(x) are continuous in M and
R™ respectively, and satisty the following conditions for some p, ¢ > 1 (see notation
in Section 2):

i) (Coercivity) There exist 74,1 > 0 such that
T(n):n = nnl",

1.2
a(x) - x > auxl, 42
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for all n € MPX", x € R

sym

(ii) (Polynomial growth) There exist 72, g > 0 such that
T(n)] < 21+ )P,

1.3
200l < aslxl? ™, -
for all n € ML, x € R™.
(ili) (Strict monotonicity)
(T(T’) - T(&)) : (T’ - E) > 07 VT]aﬁ € M?yfr?’ n 7& 67 (1 4)

(a(s) —a(x)) - (s —x) >0, Ve, x €R", ¢#x.

The general non-linear tensor function T and constitutive law for the heat flux
a allow to consider a large class of non-Newtonian fluids subjected to heat effects,
which have physical motivations as described in [6, 19 20] and references therein.
Typical prototypes of extra stress tensors used in applications are Tq(n) = 2u(1 +
In|?)P=2)/2 and Ty(n) = 2u(1 + |n|)P~2n with p > 1. In these cases, if p = 2
and a is the identity, we obtain the classical Boussinesq equation (see [0l [8, @]
10, 22, 23]). We also consider the following hypotheses on the viscosity and the
thermal conductivity functions p, k. It is assumed that p,k : © x R — R are
Carathéodory functions (i.e., for each fixed 6 the functions z — u(z,0), © — k(z, )
are (Lebesgue) measurable in © and, the functions 6 — p(x,0), 6 — r(z,0) are
continuous for almost every x € Q) such that

0<p <p(z,0) <py ae xze VIeR,

1.5
0< k1 <k(z,0) <Ky ae xze€Q, V0eR (1.5)
System ([1.1)) is complemented with the mixed boundary conditions
u=0 on 09,
(1.6)

0=0onTy, «(-0)a(Vl) -n+~0=honT :=00\Ty,

where 7 is a non-negative constant, n denotes the unit outward normal on the
boundary 909, and Ty is a open subset of 9{2. Boundary conditions (1.6 in-
clude several physical boundary conditions like those appearing in several natural
convection problems [9] 22]. The existence of weak solutions in the case of Navier-
Stokes equations for flows with shear-dependent viscosity is known in WP (Q) for
p > 2n/(n + 2). For the case p > 3n/(n + 2), the existence of weak solutions was
obtained by Lions [I§] and Ladyzhenskaya [I7] by using monotone operators the-
ory. In [21], using the L*°-truncation method, the authors obtained the existence
of weak solutions for p > 2n/(n+1). This method is based on the construction of a
special class of test functions, and a characterization of the pressure, which permit
the almost everywhere convergence of D(u™) to D(u), where u™ corresponds to
a sequence of approximated solutions u™ of the original problem. However, this
method only works for p > 2n/(n + 1) because of the required L!-integrability of
the nonlinear term (u - V)u. To consider the case p > 2n/(n + 2), in [II] the
Lipschitz truncation method was applied, which permits controling the nonlinear
term (u- V)u using a test function class smoother than the test functions used
in the L*-truncation method. On the other hand, focusing on the boundary-
value problem (L.I)-(1.6), the existence of weak solutions for p > 2n/(n + 1) and
q > np/(p(n + 1) — n) was obtained in [6]. Motivated by this facts, in the first
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part of this paper, we extend the results of [6] to the case p > 2n/(n + 2) and
q>np/(p(n+1) —n).

The second part of this article concentrates on the existence of regular solutions
to the boundary value problem —. In the case of Navier-Stokes equa-
tions for flows with shear-dependent viscosity, there are few works concerning the
regularity of weak solutions (cf. [2, [ [7, [I5] and some references therein). The
most recent results for the steady Navier-Stokes equations for flows with shear-
dependent viscosity are due to Arada [2]. In [2], the author assumed that T is a
classical power law stress tensor of the form T(n) = Ti(n) = 2u(l + |77|2)L;2n
or T(n) = Ta(n) := 2u(1 + |n|)P~2n, where u > 0 is a viscosity coefficient and
p > 1. He proved the existence of strong solutions u € W24(Q), ¢ > n, by assum-
ing that ||f||,/p is small enough. Some uniqueness results were also established.
However, to the best of our knowledge, there are no results of existence of strong
solutions for the steady problem —. In the second part of this paper, we
will study the existence of a strong solution for small and suitably regular data by
taking T = Ty or T = Ts. To ease the exposition, we also simplify the boundary
conditions on temperature #; however, a similar analysis can be adapted for other
types of boundary data. Our approach is based on regularity results for the Stokes
problem and the Laplace equation, as well as a fixed-point argument. Observe that
T, depends on the differentiable term |D(u)|? while Ty depends merely on the
Lipschitz continuous term |D(u)|; thus, in the case T = T; we can use the classical
regularity results for the Stokes system to solve the velocity equation for a fixed
temperature. However, in the case T = T5, to overcome the difficulty caused by
the lack of regularity of T, we first introduce a family of penalized problems, then,
we establish the existence of penalized strong solutions and finally, we carry out the
pass to the limit in the sequence of penalized problems, as the penalization term
goes to zero.

This article is organized as follows. In Section 2, we introduce the notation.
Section 3 is devoted to the existence of weak solutions. In Section 4, we analyze
the existence of strong solutions in both cases: with the differentiable stress tensor
T, and with the Lipschitz continuous stress tensor Ts. In Section 4, we also give
conditions on the data which ensure that the obtained strong solution agrees with
weak solutions.

2. NOTATION

In this section, we establish some general notation to be used throughout this
article. As usual, C5°(£2) denotes the set of all C*°-functions with compact support
in Q, while C§°,(€2) consists of functions ® € C§°(2) such that div® = 0. For
p,q > 1 we set

H, := Cg?U(Q)H“Iq ={uel?Q):divu=0, u-n=0on 0N},

V, =G @ " = fue WP (@) : divu=0},

X, ={0 e Wh(Q)NL*T):0=0onTy}.
Here V, and X, are Banach spaces with the norms || D(u)l|, and [|0]|x, = [|V0]|, +
[10]l2,r- As usual, ||-||, denotes the LP-norm. Notice that, due to the trace theorem,

X, =1{0 e Wh(Q) : 6 = 0on o} if ¢ > 2n/(n+1). For x,y € R we denote
(z,y)" = max{z,y}, 27 = max{z,0}, S, = (|]p — 2|,2)". Frequently, we will
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use the notation (-, -)xs (or simply (-,-) if there is no ambiguity) to represent the
duality product between X’ and X, for the Banach space X. We also introduce
the constants

+_2
_ _aVF (o AVF _ (p,3)" —2]®3
2r, =1+ (p—3) =47, »p= [(p,3)+ — 13" -1~

For m € N and 1 < p < oo, the standard Sobolev Spaces are denoted by WP ()
and their norms by || - ||lmp. In particular, W~=?(Q) denotes the dual of W,?(Q).
We also consider the space

Vip = {v € WgP(Q) n W™P(Q) : div v = 0 in Q},

equipped with the usual norm || [ p := || [lwm.»(q). Notice that Vy , = V,,. Also,
for r,q > n and § > 0, let us denote by Bs the convex set defined by
Bs = {[€,0] € Voo x W27(Q) : Cp[|[VE|l1,q <6, Cpl| Vel <6}, (2.1)

where Cg is the norm of the embedding of W14(Q) into L>(Q) and Cj is the
norm of the embedding of W1 (2) into L>°(£2). Also, we consider the space Vg 4 X
(W27(Q) N Wy () endowed with the norm

1€, wlll1,g.r 3= max{[[VE|l1q, [Vwll1r}-
nxn

Throughout the paper, M"*" denotes the space of all real n x n matrices and Mg
its subspace of all symmetric n x n matrices. We use the following summation
convention on repeated indices: 1 : £ := 1;;€;; for n: £ € M, (u® v);; = u'v’
for u,v € R” and u - v := u'v’. Also we set |u| := (u-u)'/? and || := (n : n)'/?
for u € R, n € M"*™. Finally, the letter C stands for several positive constants
that may change line by line; also Cp = Cp(n, s,2) denotes the Poincaré constant
corresponding to the general Poincaré inequality | - ||s < Cp||V(")|s-

3. WEAK SOLUTIONS

The aim of this section is to prove the existence of weak solutions to prob-
lem (1.1)-(1.6) for the case n2-i7-L2 <p< n%’l, q > W. The existence of

weak solutions for p > % was analyzed in [6]. We assume that f € L>(Q),g €

n

(WLa(Q))',h € L3(T'). First we establish the notion of weak solution to (1.1))-(T.6)).

Definition 3.1. We say that a pair [u,6] € V,, x X, is a weak solution to problem

@D i

/Qu(~,9)T (D(u)) : D(®) dx —/(u® u): D(®)dx = / of - @ dzx,

Q Q
ve € Cg, (),
/ k(-,0)a(Vl) - Vodx —|—/ ou-Vodx —|—'y/ 0¢dl' = (g, d) (wr.a()y —|—/ hodr,
Q Q r r
Vo € C5° ().

The purpose of this section is to prove the following theorem on existence of
weak solutions.

Theorem 3.2. Letp > %, 4> sorn— FeL™(Q), g€ (Wha(Q))',h € L3(T).

There exists a weak solution [u, 8] € V, x X, to problem (1.1)-(L.6).
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To prove Theorem [3.2] we first consider a suitable sequence of approximate prob-
lems (see — below); we establish the existence of approximate solutions,
as well as some a priori estimates. In a second step, we describe the passing to
the limit of the sequence of approximate solutions. Finally, we analyze the almost
everywhere convergence in {2 of [D(u™), V6™] — [D(u), V0] through the Lipschitz
truncation method.

3.1. Approximate solutions. For m € N and ¢ > max{szpl, q(nfﬁ}, we de-

fine the approximated problem: Find a weak solution [u™, §™] of the system

—div (u(-,0™)T(D(u™))) + div(u™ @ u™) + l|um\t_2um +Vr=60"f inQ,
m
div u™ =0 in Q,
—div(k(-,0™)a(Ve™)) +u™ - VO™ =g in Q,
(3.1)
with the boundary conditions
u” =0 on 09,

— 3.2
0" =0onTy, k(-,0™)a(Ve") n+~+40" =honT :=90\T,. (32)

Following the ideas presented in [T}, [I2], we obtain the existence of a weak solution

[u, 0] of (1.1)-(1.6) as the limit of a sequence of weak solutions [u™,8™] of (3.1))-
(3-2). A weak solution of the system (3.1)-(3.2)) is a pair [u™,0™] € V, x X,
satisfying

/ (-, 0™T (D(u™)) : D(®)de — / (W ®@u™): D(®P)dx
Q Q

1
+— [ [um ™ @ de (3.3)
m.Jja

:/Gmf-{)dx,
Q

i . : (3.4)
= <97¢>(leQ(Q))/ Jr/h(;SdF,
r

for all ® € C§,(2), ¢ € CF°(92).
The following lemma provides the existence of a weak solution to (3.1))-(3.2).

Lemma 3.3. Letp > 2n/(n+2),t>2p', ¢ > ﬁ. Assume that £ € L>°(),

g € (WH4(Q)), h € L3(T"). Then, there exists a unique weak solution [u™,0™] €
(VpNHy) x X, of (3.3)-(3.4). Moreover, the following uniform estimates hold

T1M1 1 ’ ’ P’/‘I

Bl i, + — [ < CulIEN (gl +1RIBE) ", (35)
Q1K1 m Y gm '
L0 1+ 210730 < Co (g ey + 1013 r) (3.6)

for some constants C1,Cy > 0 independent on m.

Proof. The proof follows by standard arguments of the monotone operator theory
(cf. [I1, 12]). The uniform estimates (3.5)-(3.6) follow by taking & = u™ and
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¢ = 6™ in (3.3) and (3.4)), respectively, and using the assumptions on T, a, f, g and
h. ([

3.2. Existence of weak solutions. The existence of a weak solution to the prob-
lem — will be obtained as the limit, as m goes to infinity, in the sequence
of solutions [u™,6™] of ([3.3)-(3.4). We use the Lipschitz truncation method used
previously in [I1] in the context of incompressible fluids with shear-dependent vis-
cosity (without heat effects). Following [I1], we introduce the sequence of approx-
imate pressures 7", observing that in we can consider test functions ® from
V,NV, =V, with r = np/[(n + 2)p — 2n]. Notice that for this value of r and
2n/(n+2) < p < 2n/(n+ 1), it holds that V, —<— LY for all y € [1,00). Then,
defining

(" ) ey = [ p 0T (D) s D(®) o~ [ (") D®) ds

1
_’_7/ |um|t_2um-<1>dx—/9mf-¢'dx,
m Jo Q

it holds that <Fm7¢>(wol,7‘(9))/ = 0, for all & € C§°, (). Furthermore, F™ €

W17 (Q). Thus, because of the De Rham Theorem (cf. [I]), there exists 7™ €
L™ (Q) such that

(E™, @) yy = (VT @) wrr(qyy :/”mdivq’dﬂﬂ and |||, < C.

Q
(3.7)
Therefore, we obtain the following weak formulation (for the velocity u™) equivalent

to :

/ w(+,0™)T (D(u™)) : D(®)dx — / (W ®@u™): D(®)dx
Q Q

1
+7/ lu™[*2u™ - & dx (3.8)
mJa

- / 6f - <I>dx+/ ™ div ® der,
Q Q
for all ® € W5 (Q). Now we pass to the limit in as m — o0o. From the uniform
estimates (3.5), and there exists a subsequence of ([u™, 7™, 0™])nmen C
V, x L’“I(Q) x X, still denoted by ([u”, 7™, 0™])men, and [u, 7,0, X, x1] € Vp X
L™ (Q) x X, x LP (Q) x L4 (Q) such that as m — oo the following holds

D(u™) — D(u) weakly in LP, (3.9)

[u™, 0™ 7™ — [u,6,7] weakly in V, x X, x L, (3.10)
u” — u  strongly in L*(Q) for all s € [1,27"), (3.11)
u™ —u a.e. in(, (3.12)

0™ — 6 ae. in(, and a.e. in T, (3.13)
T(D(u}")) — x weakly in L” (1), (3.14)
a(Vo') — x; weakly in Lq/(Q). (3.15)
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From (3.10)), for any ® € C3°(£2) and letting m — oo it holds

1 m|t—2 1 1 t (t_l)/t
|g/ﬂ|u F2u™ - @dr| < m(g”um\h) |®[]; — 0, (3.16)

and

/9"lf-'1>dx+/7r"‘div<1>dx—>/9f~<I’d$—|—/7rdiv<I>dx.
Q Q Q Q

On the other hand, since W'P(Q) << L?(Q) for p > 2n/(n + 2), and writing
u™ = (u™ —u) + u, for ® € CF(N) and letting m — co we obtain

/(um @u™): D(®)dr — / (u®u): D(P)dz.
Q Q

Also, since ™ — 0 in L'(Q) and a.e. in 2, and p is a Carathéodory function, then
w(+,0™) — u(-,0) ae. in Q. Then, collecting the last convergences, we have

[ uteorx: D@+ |

(u®‘I>):D(u)dx:/9f-<I>dx—|—/7rdiv‘I>dx, (3.17)
Q Q Q

for all ® € C°(2) and consequently for all & € W' ().

As before, since ™ — 6 in L'(Q) and a.e. in Q, and & is a Carathéodory
function, then x(-,0™) — k(-,0) a.e. in Q. Then, from the uniform estimates
(3.10), (3.13)) and (3.15]) we also get

/Q(K(.,e)x1 ~ ou) .v¢dx+7/re¢dr= (g,¢)(W1,q(Q))/+Ah¢dr, (3.18)

for all ¢ € C§°(2) and consequently for all ¢ € X,. It remains to prove that
x =T (D(u™)) and x; = a(V#™). To this end, it is sufficient to prove that

[D(u™),V0™] — [D(u), VA] in measure on {2, (3.19)

or almost everywhere convergence on compact subsets of Q. Having proved (3.19)),
through a diagonal procedure, we can find a subsequence of ([u™,6™])en, still
denoted by ([u™, 6™])men, such that

[D(u™),VO™] — [D(u), V0] almost everywhere in . (3.20)

Thus, by using Vitali’s theorem we obtain
/Qu(~,em>T<D<um>>  D(®) dz — /Qm-,e)T (D(w): D(®)dw,  (3.21)

/K(-,Gm)a(VGm)-V¢dx—>/n(-,@)a(Vﬁ)-Vqﬁdx. (3.22)
Q Q

Once we have (3.21)) and we conclude the proof of Theorem In Subsec-
tions 3.3 and 3.4, we analyze the convergence of [D(u™), V(0™)] to [D(u), 0] almost
everywhere in . This part is closely related to [11, Sections 3 and 4]; however, we
expose it with some details for the reader’s convenience.

3.3. Almost everywhere convergence of D(u™) to D(u). To prove the con-
vergence of D(u™) to D(u) almost everywhere in €2, we prove that for an arbitrary
71 > 0, there exists a subsequence of (U™ ),,¢n, still denoted by (u™),en, such that
for some p; € (0,1), it holds that

lim [ [(T(D(u™))—T(D(u))): D™ —u)]rdx < n. (3.23)

m—00 Q
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Following [T}, Section 3], we first consider a decomposition of the pressure. Consider
the Stokes problems

—Au'" 4+ Vrlm =H™ inQ, I=1,2,34,5,
div ul™ =0 in ©, (3:24)
ulm =0 on 99,
where
H' = —div (u(-,0™)T(D(u™))) € W17 (Q),
H>" = div (u™ @ (u™ —u)) € WH' (),
B = div ((u” — w) 9w) € W), HY = | e LY (@),
H°" = —9™f € LI(1).

It is well known that there exists a weak solution [ulm 7lm] of (3.24)), for I =
1,2,3,4,5; that is, there exist

1 2

[u'™, u 4 5 ]

m,ug’",u m™outm
€ WP (Q) x WH(0) x WL (Q) x W' (Q) x W29 (),
[l 2m gdm e wBm] e LP(Q) x L7 (Q) x L7 (Q) x Wh' () x Wh'(),

satisfying

/ Vul™ : V®dz — / mlm div ®@dr = (H™ &), V& c C°(Q), [ =1,2,3,4,5.
Q Q

(3.25)
Moreover, the following estimates hold:
7t |y < CIH" || -1, < Cpaz| T(D(™)) | (3.26)
|72 o < CIH"[|_1 0 < ClJu™ @ (0™ — )|, < Cllu™ |20 [u™ = ull2r, (3.27)
2l < CHEP [y 00 < Clu™ @ (™ = W)l < O™ o [0 — e, (3.28)
C 1 my \t—1

[Vt < CHE e < 2 (il (3.29)
V7o lg < CIEP™ [lg < 107 lqlIf]]oo- (3.30)
Since 21" = np/(n — p), from (3.11)), (3.27) and (3.28)), as m goes to 0o, we obtain
[72m 73m] — [0,0] in L*(Q) x L*(Q) for all s € [1,77). (3.31)

Furthermore, by using (3.5), as m goes to oo, it holds that
Valn -0 in LY(Q). (3.32)

Adding the weak formulations (3.25) and using (3.8]) we obtain

5
S / Vulm : V@dr — / wlm div ®dz)
=179 @ (3.33)

:/(u@u):D({))dx—i—/wmdivédaz, VP € W (Q).
Q Q
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Taking ® € V, in (3.33)) we obtain

5
Z/ vuln : V®dr = / (u®@u): D(®)dr VP eV,. (3.34)
=179 Q
From (3.34) and using that Z‘;’:l ulm € W(l)”’/(Q) we obtain
5
Suln=UewWy(Q), VmeN. (3.35)
=1

Finally, taking the term [, 7™ div ®dz in (3.33), replacing it in (3.8) and using
(3.35) we obtain

/,u(-,@m)T(D(u’")):D(@)dx—i—%/ [lu™|""2u™ - & dx
Q Q

_ /Q(um @u™) : D(®)dx — /Q(u ®@u) : D(®)dx (3.36)

5
+/VU:V<I>dx—Z/7rIm div<I>dx+/0mf-<I>dx,
Q AL Q

for all & € Wy (Q).
Now we are in a position to prove (3.23). Let us define

X™ = C(1+ D@ + |D@)[P + |z 7). (3.37)
Then, from (3.10) and (3.26)) we have
/ XMz < K, (3.38)
Q
for some positive constant K independent on m. Fixed p € (f—fé, %]’ let e1 >0

be small enough to be chosen below (see (3.53))). Then, from [I1l Proposition 4.1]
there exists a subsequence of (u™),,en, still denoted by (U™),,en, and A\ >

€1
(independent on m), such that

XMdr <ep, BY ={z€Q: A\ < M(VU" —u)ex)(z) < AT}, (3.39)
By
where M (V(u™ —1)ext) denotes the Hardy-Littlewood maximal function of V(u™—
Wext (cf. [II]), and (0™ — u)exs € WHP(R™) is the extension by zero of (u™ — u).
On the other hand, from [I1, Proposition 4.1], there exist a positive constant C' =
C(Q,n) and a sequence (U™ — )y, )men C Wy (Q) such that

(0™ —a)x,[l1,00 < CAr, (3.40)
(u™ —u)y, — 0, strongly in L*(Q2) Vs € [1, 00), (3.41)
(U™ —u)y, — 0, weakly in W3*(Q) Vs € [1, 00). (3.42)

Moreover, denoting
N = {r € Q: (0" —u)y, (v) # (" —u)(2)},
Oy = {r € Q: M(V(u™ —w))(z) > M},
it holds
A | < B[+ €3], (3.43)
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m m C m
|AG ]+ B3 < V@™ —u)|p, (3.44)
)\1
m C m p
C < Sap IV (™ — w5, (3.45)
1
V(™ =)y, ) < CV(@™ - )|y < K. (3.46)

Now, we consider (u™ — u)y, as a test function in (3.36) and add in both sides of
the obtained equation the term

— /Q,u(-,@m)T (D(u)) : D((u™ —u)y,) dz, (3.47)
to obtain
/Qﬂ(vem)[T (D(u™)) = T (D(u))] : D((u™ —u)y,) dz
+%/ﬂ|um|t*2um-(um—u),\l dx
= [l oum) e ) D" ), da (3.48)
Jr/VU:V(umfu)Aldx
0
5
— alm div((u™ —u x mf (W™ —u x.
D [ i —ws ek [0 (7w

Notice that u™ —u = (u™ —u)y, on Q\ A}, and then, div(u™ —u),, = 0 almost
everywhere on 2\ AY'. Therefore, from (3.48) we obtain

2= [ T (D) - T (D) D" - w)do
Q\AT1
—- /,4 (0T (D) — T (D())] - D((u™ —u)y,)d
- /A mlm div((u™ — u)y, ) dz
+ /Q[(um @U™—u)+ U —u)@u]: D((u™ —u)y,)dz
+ [ IVU =0 T (D) V(™ = ) da

1
+ / [Vatn — — [ [u™"2u™] - (u™ — u)y,dz
o

m Jq
/A;ﬂl

7
= ZZZ”
i=1

From (3.10), (3.11), (3.16), (3.31)), (3.32), (3.40), (3.42) we obtain
lim (Z5" + Z5" + Z§" + Z7") = 0. (3.49)

m—00

(m2m 4 3m 7P div((u™ — )y, ) dz +/ 0™f - (U™ —u),, dx
Q
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Moreover, from (3.42) and since VU € L™ (Q), u1 < u(z,0) < pa, ae. x €
and T(D(u)) € L? (), we obtain that lim,, .., Z = 0. Now we deal with
lim, oo Z7* + Z5*. From the Holder inequality, (3.40) and (3.43))-(3.46) it holds
that

1z + Z3'|
< ‘ Lm Lem (p,(’ gm)[T (D(um)) - T (D(u))] . D((um N u))\l)
—rtm div((u™ — )y, ) )dx’

1/p'
<ponC( [ xmde) TV = )y, s,

BTII
A1

+ MQTQC)\l(/
C

< Cpama(e)/V KL/7 + ON KLY (N2 E)YP)
Ky
)

1
S CﬂQTQ(&i/p/Kll/p + 81K1).

(3.50)
m 1/’ m1/p
xmd) s

:
S C‘UQTQ(é’i/p/Kll/p 4

In (3.50), [V(u™ —u)y, ||p73;n1 denotes the LP(BY')-norm of V(u™ — u)y,,. Since
limy, 00 Z7* = 0, from (3.49)) and (3.50) we obtain

lim Z™ < Cpama(e/? KYP + 61 Ky). (3.51)

m—00

Therefore, fixed p; € (0,1), by using the Holder inequality and (3.38) we obtain
smimpt [ (T (D@™) = T (D) : D™ — w)do
Q
< [ oM T (D) - T(DW)) s D™ — wds
2\AY, (3.52)
[ o) (T (D) T (D) = Dl — e
A1
S (Zm)pl ‘Q \ _At\nl |1—P1 + C(M27_2K1)p1 |A§\n1 |1—pl.
Then, taking £; > 0 small enough such that
Cluam)? |97 (e KY/P 4 e K1) + Cluama) K} ™) < o1, (3.53)

from (3.51)-(3.53]) we have
lim S™
<O Cpama)” (2} K7+ e1 K1)t + Cluama K1) (CATP ) ™7 (3.54)
< C(pam)™ 97 (e} KP4 61 K0 )P + Cpaama) " K 0) < .

Thus, we conclude (3.23)) and therefore the convergence of D(u™) to D(u) almost
everywhere in €.
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3.4. Almost everywhere convergence of V0™ to V6@. Let be a fixed value
p € (2n/(n+2),2n/(n+1)] and ¢ > p(ni%. To prove the convergence of V™
to V6 almost everywhere in €2, we proceed in the same spirit of Subsection 3.3.
We prove that for an arbitrary ne > 0, there exists a subsequence of (8),,¢n, still

denoted by (0™),,en, such that for some po € (0,1), it holds that

lim [ [(a(VO™) — a (V) V(0™ — 0)]P2dz < 1. (3.55)

m—00 O

Let us define
EM=CA+|VOm|T+ Vo). (3.56)

Then, from (3.10)) we have
/ £mdz < Ky, (3.57)
Q

for some positive constant K5 independent on m. Let €2 > 0 small enough to be
chosen below (see (3.72])). Reasoning as in Subsection 3.3 (see also [L1], Proposition
4.1]), there exists a subsequence of (0™),,cn, still denoted by (6™)men, and Ay > é
(independent on m), such that

EMdr < ey, DY :={z€Q: A < M(V(0" — O)ex)(z) < A3},  (3.58)
’D;\"z
where M (V (0™ — 0)cxt) denotes the Hardy-Littlewood maximal function of V(6™ —
0)ext, and (0™ — ) exs € WH9(R™) is the extension by zero of (8™ — ). Also, there
exist a positive constant C' = C(2,n) and a sequence (6™ — 6)x,)Jmen C Wy > (2)
such that

||('9m - 0))\2”1,()0 S O)‘27 (359)
(0™ —0)x, — 0, strongly in L*(Q) Vs € [1, 00), (3.60)
(6™ — )5, — 0, weakly in W,*(Q) Vs € [1,00). (3.61)

Moreover, denoting
IR i={r e Q: (0™ = 0)x,(z) # (0™ = 0)(2)},
G i={z e Q: M(V(0™ —0))(z) > A3},

it holds
|7 < DX+ 16,1 (3.62)
DT+ 17 < fgnvwm — o)1, (3.63)
o7 < gqvwm o), (3.64)
IV (0™ = )5, 12 < CIV(O™ - 0)]2 < K. (3.65)

Now we consider (8™ —8),, as a test function in (3.4)), and add in both sides of the
obtained equation the term

- /Qn(-ﬁm)a(VG) V(0™ - 0),) do, (3.66)
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this gives

/Qm(.,em)[awem) —a(VO)]- V(0™ — 0),,) dz

_ /(9muM) V(0™ — 0)y,) dz — / k(- 0™)a (V) - V(0™ — 0),) da
@ @ (3.67)
— fy/FGm(Qm - 9)>\2 dl’ + <g, (9m - 6)>\2>(W1,Q(Q))/

+/h(em — 0y, dr.
r
Notice that ™ — 6 = (0™ — 0)x, on Q\ F3.. Therefore, from (3.67) we obtain
ym.= / k(- 0™)[a(Ve™) —a(VO)] - V(0™ — 0) dx
oFp

_ /fm k(- 0™ [a(VO™) — a(V0)] - V(6™ — 0),) da

A2

+ [y V(o = 0),,) do (3.68)

- / K-, 67)a (V6) - V(0™ — 0)5,) dz — / 07(0™ — 0), dT
Q I

6
+ <g, (9m - 9))\2>(le‘1(9))’ + / h(9m - 9))\2 dr’ := ZY;m
r i=1

Using (3.10) we obtain

lim (V5" +Y," +Y" +Y5") =0. (3.69)

m— 00

Moreover, from (3.61)) and since x1 < k(z,0) < kg, a.e. 2 € Q and a(Vh) € L7 (),
we obtain that lim,, .. ¥Y3" = 0. Now we deal with lim,, . ¥Y{". From the
properties of (™ — 0),,, the Holder inequality and (3.65]) it holds

¥y < | (5(-,0™)[a(VO™) — a(VO)] - V((0™ — 0),,))dx|

m m
DAz Ug)\2

m l/ql m
SﬁgazC( € dw) V(0™ = O)xs llq.op

oy

1/q
+/€2a2C’)\2</ 5%) G|/ e
g

m
A2

(3.70)

< C@ag(sé/q/Kg/q + )\ngl/q/(C’/\z_QqKz)l/q)
!/ K ’
< CHQOZQ(E;/(I Kzl/q + )\—2) < 0/4320[2(5;/(1 K21/q + 9 K5).
2
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Thus, since lim,, o Y3 = 0, from (3.69) and (3.70) we obtain lim,, . Y™ <
Clﬁgag(€%/q K;/q + e9K3). Therefore, fixed ps € (0,1) we obtain

L™= kf? /Q[(a(VGm) —a(Ve)) V(O™ —0)]dx

= / [£(-,0™)(a(VO™) —a (V) - V(0™ — )] dx

NFL, (3.71)

+/ [K(-,0™)(a(VO™) —a (V) - V(™ — 0)]*dx
F
< (Y™MP2QN\ FRT P2 + CroanKa) P2 | FL P2

Then, taking €2 > 0 small enough such that

C'|Q|1_p2 (lﬁgag)pz (Eé/q/K;/q + 52K2)p2 + C(HQO(Q)pQKQSg(lim) < P2, (372)
we have

lim Y™

< Ol P2 (ankn)? (e T KM 4 e3K5)P2 + ClkaanK2)P2(CAa ™)1 P2 (3.73)
S C|Q|1ip2 (K?QOZQ)’UQ (Eé/q,Kzl/q + €2K2)p2 + C(KQO[Q)szQeg(l_pZ) < P2

Thus, we conclude (3.55) and therefore the convergence of VO™ to V6 almost
everywhere in €.

4. STRONG SOLUTIONS

In this section we analyze the existence of a strong solution considering the tensor
stress T(n) = Ty(n) = 2u(1 + [n[*)*= n or T(n) = Ta(n) := 2u(1 + |n)*~>n,
with p > 1. We also simplify the boundary conditions on the temperature 6. In
fact, we assume Dirichlet boundary condition for the temperature; however, our
approach can be adapted in order to analyze other boundary conditions. Indeed,
we want to study the existence of strong solution for the problem

—div(T(Du)) + div(u®@u) + Vr =0f in Q,
divau=0 1in Q,

—div(k(-,0)VO) +u-Vd =g in Q, (4.1)
u=0 on 99,
0 =0 on 09,

with T defined as above. Also, throughout this section we assume that x : Q@ xR —
R is a C'-function such that 0 < k1 < k(z,0) < ko ae. x € Q and for all € R
and, it satisfies |&/(-,a) — £'(-, )] < Ml|a — b], for all a,b € R and «'(-,0) = 0, with
k1, K2 and A are positive constants. Under mild conditions on the data f € LY, g €
L™(9), we obtain the existence of strong solution [u, 8] € W24(Q) x W27 (Q), for
q,7 > n. Our approach is based on regularity results for the Stokes problem and
Laplace equation, and a fixed-point argument. Observe that T; depends on the
differentiable term |D(u)|?> while Ty depends on the merely Lipschitz continuous
term |D(u)|; thus, in case T = T; we can use the classical regularity results for the
Stokes system to solve the velocity equation for a fixed temperature. However, in the
case T = T, in order to overcome the difficulty caused by the lack of regularity of
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T2, we first introduce a family of penalized problems, then, we establish existence
of penalized strong solutions and finally, we pass to the limit in the sequence of
penalized problems, as the penalization term goes to zero.

Next, we recall a classical result concerning the existence and uniqueness of
solutions to the Stokes system, as well as some technical results.

Lemma 4.1 ([I3, Theorem 6.1]). Let m > —1 be an integer and let Q be a bounded
domain in R™ (n = 2,3) with boundary O of class C* with k = (m+2,2)*. Then
for any T € W™P(Q), the following system
—Au+Vr=T1 1in(,

divu=0 1in €,

u=0 on 09,
admits a unique solution [u, 7] € Wm2P(Q)x W™ +LP(Q). Moreover, the following
estimate holds

IVullms1,o + [17llms1,0/m < ConllT [l

where Cy, = Cp(n, p, Q) is a positive constant.

[(p.3)+ —2)@¥" 2

[(p,3)+ —1]@3) T —1 and let F :

Proposition 4.2 (|2, Proposition A.4]). Let v, =
Rt — R be defined by

F(6) = Ad* — 6 + ESF(6) + D,
where A, E, D are positive constants and F(x) = x?™»(1 + :17)(”74)+. Thus, if the
following assertion holds

AD + ED¥»(1+ D)P=9" <

then F' possesses at least one root §g. Moreover, ég > D and for every 8 € [1,2]
the following estimate holds

-1 2 — 2 1-— E(p—4)T o
ﬂﬁ 50+Tﬂ,453+7”” +ﬁ BESOJ-‘(é()Hi(pﬁ )T 522 (1) =" -1 < .
p,3)T —
Proposition 4.3 ([2 Proposition A.5]). Let v, = (3" =2 "D 72 g e I

[(p3) T LTI T
Rt — R be defined by

L(p) = Ap® — p+ EpG(p) + D,
where A, E,D are positive constants and G(z) = z(1 + z)®=3" . Hence, if the
following assertion holds

AD + ED(1+ D)?9" <4,

then L possesses at least one root p1. Moreover, p1 > D and for every 3 € [1,2]
the following estimate holds
p-1 2-0 49,28 E(p —
+ = Apt+ S EpG(pr) + ——
ﬁ P1 ﬁ P1 ﬁ P1 (pl) B
Theorem 4.4 ([16]). Let X and Y be Banach spaces such that X is reflexive and
X < Y. Let B be a non-empty, closed, convexr and bounded subset of X and let
A: B — B be a mapping such that

[A(u) — A)|ly < K|lu—v|y VYu,v€ B (0< K <1),

)+

P31+ p) P~ 1 < D
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then A has a unique fized point in B.

4.1. Power law stress for T = T;. In this section we analyze the existence of
strong solutions for the boundary-value problem (4.1)) in the case T(n) = T1(n) =
2u(1 + |n|?)P=2)/25. We aim to prove the following theorem.

Theorem 4.5. Let f € L((2),g € L"(2) with g, >n and T="Ty, p>1, p>
0. There exist positive constants C = C(X,k1,C_1,Cy,Cg,Cf,Cp) and my =
ma(N, ca, Cp,Cp) such that if ||g||,/K3 < ma and

_ C|f)|? f _|I£II2\ 27» _|If112
C[(Hl/“)”quJrHu”q +S”(C”u||q> <1+Cllu||q
then, problem has a strong solution [u,0] € Vy , x (W27(Q) N Wy ().
Proof. First, we reformulate the problem as follows:
—2pAu + V7 + div(u @ u) = 0f + div(2uc(|Dul?)Du) in Q,
divau=0 1in €,
—div(k(-,0)VO) +u-VO =g inQ, (4.3)
u=0 on 09,
0 =0 on 09,

)(1’—4)+ 1

< oz (42)

where o(z) = (1+x)P~2)/2—1. We solve (.3)) using a fixed point argument. To that
end, given [£,w] € Vg, x (W7 (Q)NW,""(€2)), and taking into account the identity
div(k(-,0)V0) = k(-,0)A0 + k'(-,0)|V0|?, we define the mapping A[¢,w] = [u, 0]
through the system
—2uAu + V7 = wf — div(€ @ &) + div(2uo(|DE|?)DE)  in Q,
divu=0 inQ,
—k(,0)A0 = K'(,w)|Vw|* —€ - Vw+g inQ, (4.4)
u=0 on 99,
=0 on0NQ.

Our purpose now is to prove that 4] By, is a contraction from B, to itself.

Proposition 4.6. Letp > 1, u >0, f € L1(Q),g € L"(Q), ¢, > n. There exist
positive constants My = M1 (Co, Cg,Cp) and my = ma(X,c2,Cp,Cg) such that if
lgll-/K% < mso and

fl|2 fl|2\ 2r £112\ (p—0)*
M12||’u!q +M15p<M1 ”Jq) p(l +M1”'uq) < ps (4.5)

then A(Bs,) C Bs, for some dg > 0. Here Bs, is the closed ball defined in (2.1)).
Proof. Let [€,w] € Bs. From Lemma u € Vy, and it satisfies

C
V(1,4 <

ﬁ (Il + 1€ - VEll, + || div (2uo (|IDEP)DE) ) . (4.6)

Notice that
[wfllq < lwllsollfllg < C(Cp + D[Vl [Ifllq
(Cp +1)2482 N I1£]12 (4.7)
2 2

<4(Cp +1)|fllg <
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On the other hand, reasoning as in [2, Proposition 3.1] (also see [3]), we obtain

1€ - VE&llg + [ div (2pe(|DE|*) DE) ||y < HSPCW((S) P52, (4.8)

+ (CP+1) l},

where F(z) = 22 (1 + 2)®=9". Thus, if M; = S max{ 4 oo .

from (4.6)-(4.8]) we obtain

M
IVulliq < =5 (I£1 + #S,07(8) + %)

’CE

On the other hand, from classical elliptic regularity (see [14]), there exists a constant
¢y > 0 such that

Co C2 C2
IVOll1,r < =8 (@) [Vl + =€ - Vol + =gl
K1 K1 K1

IA

Co C2 €2
= NwlloolIVell3, + fHﬁHooHlelr +—llgll»
K1 R1

c2Cp(Cp+1)N
< 2R 2 DX i 9wl + 2 (Cp + DCEIVENIVel (49
C
+ =gl
K1
CQC(CP+1))\/ 3 02(5
< 1) C 1 —
< 2GS DY oy 2 ot 1)+ 2ol

It can be assumed that § < 1. Thus, in order to ensure that A(Bs) C By it is
enough to observe that

M
Va1 < 71 (I£112 + 1S, 0F(8) + 6%) < 6,

CQ(CP+1) cN 9 Co
2P T (Z2 0 1)62 4+ 24|, < 6.
e (CE +1)8%+ 2 gl <

(4.10)
IVO]l1,r <

My |3

Using Proposition E with A = %,E = M;S, and D = ¢ there exists

MuIfl such that
I

51 >
M
~ 0 (IFIZ + 15,0076 + 83) < du,
provided that
2|| ||2 I£113 I£]12\ ="
<
M?5% 4+ My S, (Ml ) (1t ; ) <Y,

which holds from the hypothesis (4.5 . Also, it holds (# = 2 in Proposition
that

2M1||f||(21
L

On the other hand, we will consider ||g||,- such that | ZQT <
and 6~ < D < §%, where '

2
+_ KO A2 / ~ 212
5 = sm e Tog (L1~ 48Cr + DO + Cplglh/ricy)

- 2m2(1 +,/1- ||g||r/,i§m2).

01 <

c?
E

= M2




18 S. HERRON, E. J. VILLAMIZAR-ROA EJDE-2017/155

Moreover, given that for every § € [6~,7], the second inequality in ([4.10) is valid,
we can choose 2 € (07, D) such that

c2(Cp +1)(CN +Cp)

C2
62+ =gl < do.
K1

IﬁCE
It follows that ) )
My||f 2M||f
5, 2 Ml o 2nn e
Thus, taking dp = 01 we obtain that A(Bs,) C Bs,. O

Proposition 4.7. There is a positive constant Cy = Co(N,k1,C_1,Cg,Cg,Cp)
such that if

- MiIEZ 1l €17\ 27 [£]]7\ =7 1
02[(1+1/u)7u s +S,,(MlT ) (1+M17 ) < o

(4.11)
then A : Bs, — By, is a contraction in W§(Q) x Wy (2).

Proof. Let [€,w], [é,d}] € Bs, and let [u,d],[q, é} be their respective images under
A. Then, from we obtain
—2puA(u—0)+V(r—7)=F inQ,
diviu—a)=0 inQ,
k(L OAWD —0) = G+ K (,w)|Vw|? — & (-,@)|Ve]? i Q,
—ua=0 on0J9Q,
0

where
F=div (§2&-€w€)+2pudiv (o DEF)DE - o(|DE)DE) + (w - &),
G=¢-Vo—£¢- V.
Applying Lemma [4.1] with 7 = F we obtain
[V(a—1a),
< Ghldiv (@&~ € &) + 20 div (o(1DEP)DE - o(IDERIDE) |-,

C .
+ WH(W - w)fol,q (4_12)

CcC_,

<

1€ &~ ¢@¢+ 20 (o(|DEP)DE — o(IDEP)DE) |,
cC_

"
Working in a similar way as in [2] Proposition 3.3], we obtain

IE®& — €@ &lly < 2Cp(CH+1)950]| V(€ — &)lq, (4.13)
|lo(|DE|*) DE — o(|DE|*)DE) |4 < SpF(280)|IV (€ — &)l - (4.14)

+ [(w = @)l -

Moreover,

lw = @)flly < llw = @llollflly < Cp(Cr +D[V(w =)l [I]l- (4.15)



EJDE-2017/155 NON-NEWTONIAN FLUIDS 19

Then, from (4.12)-(4.15)) we conclude that

IV(u -,
< " (2 + 1S, (260) + 1] max (V€ = &) [V (- D)) . (4.16)
where m; = C' C_y max{2,Cp(C% + 1)/, Cx(Cp + 1)}.
On the other hand,
1Gllr < 1€ — E)Vl, + €V (@ - w)]|,
<@ - O)llsol V@] + [Elocll V@ — @)l
5 Cg(C
< OE(C;”W& O+ (Co+ DIVELIVG - @)l (4 1m,
5 Cg(C
< 2L D@ - )l + ho(Cr + DIV @ =)l

< Mydo max{[|V (& = &)]lg, V(& — w)|lr},
with My = 2(Cp + 1) max{g—? 1}.
Now, using the assumptions on x we obtain
INCRUIR
1 1 . .
< —[IGll; + —[I&'(-,w)|[Vw|* = (-, &) V&[],
K1 K1

1 1 . . .
< CIGH 4+ =l w) — K (@) Vwl? + 8 (L ) (IVwl? = [V,

1 1
< — Gl + — (Xl = @lloclI Vel
K1 K1

+ 1, @) = /(L 0) (Vw2 = Va2,

1 N . 4.18
< NG+ =-Cp(Cp + DIV &), Vel (419

X . . ~
+ = Cpllalh IV @ = &) - Vi + &)1,
1 N .
< =Gl + =Cp(Cr + DO Tl T = &),

/

A . .
+ E(CP + 1)do[|V(w = @) |- V(w + @)
1 N 2\ 5
< ;lHGllrJr;lC(CPﬂLl)cSoIIV(w )||r+*(CP+1)5 [V(w =)
Combining (4.16))—(4.18) and the fact dg < 1, we deduce that

max{[|[V(u— )|, [|V(@ - )|}

/
X(Cp+1)(C +2) +M2250)

mi I£llq
< —
< ( . (200) + m1.S,F(280) + maq . + o

x max { [ V(€ = &)1,V (w = &)1,
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From here, and taking into account that o < 2M,||f||2/u, F is nondecreasing,

F(4y) < 4@=217 F(y) and defining Cy = max{m;, A (CPH%fSHHMQ} we arrive
at

max{||V(u —a)lq, V(6 — )] }
< O [(1+1/1)(260) + SpF(260) + [I£ /1] max { V(€ = E)llq. IV (w — &)}

— AMIENZ | I o)+ €117
< et L L AT Ll 117 (p—2,1)
,CQ[(1+1/M) S ]—'( )}

x max {||V(& = &)||q. [V(w — @)}

M ||f|2 Hfll €112

(p 21) q q

<4 |1+ 1 /)= ke +Sp}"<M1—M )]

x max {||V(& = &)llq, IV (w — &)}

Considering the space Y = W{4(Q) x Wy (€2), with norm max{[|[V - ||, ||V - [},
the last inequality implies that

|4&.&] — Alg. oy
MJENE Il
I

S(MleH?) ( M1||f||2)(p 4)+]||[é,@]—[£,w}||y.

<4020 Ty 1+ 1/p)

From which and (4.11)) follow that A is a contraction. O

We observe that for p < 3,7, = 1/4 = 1/4°=21" and for p > 3, Vo >
1/4(p*2’1)+. Therefore, setting C = (M7, C3)* and because of implies
and , we see that the proof of Theorem is a consequence of Proposi-
tions 47 and Theorem [£.4] To apply Theorem E we consider the spaces
X =V, x (W2 (Q)NW,"(Q)) and Y = W) x W, (). O

4.2. Power law stress for T = T5. In this subsection we prove the existence of
strong solutions for the boundary-value problem (4.1)) in the case T(n) = T2(n) =
21(1 + |n|)?~2n. The purpose of this subsection is prove the following theorem.

Theorem 4.8. Let f € L(2),g € L"(Q) with ¢,7 > n and T = Ty, p > 1,
p > 0. There exist positive constants X = A(X', k1,Co,C_1,Cg,Cp,Cz) and mg =
ma(N, co,Cp,Cp) such that if ||g||, /K3 < m2 and,

+SpA

-2
A||f)|2 < Ifllg

R L=
T <

I 4-20F

then problem (1) has a strong solution [u,0] € Vg, x (W27(Q) N W, " (Q)).
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Following [2, Theorem 2.2], for 0 < ¢ < 1 we consider the family of penalized
problems
—div (2,41 +VE T |Du|2)”’2Du> +diviu®u) + Va =0f in Q,
divau=0 1in €,
—div(k(-,0)VO) +u-Vo =g in Q, (4.19)
u=0 on 09,
0 =0 on 09.
To prove Theorem [£.8] we first study the existence of strong solutions of the family
of penalized problems 7 € > 0. This is the content of the next theorem.

Theorem 4.9. Let f € LI(2),g € Ij(Ql with ¢,v >n, p > 1,u >0, and 0 <
e < 1. There exist positive constants X = AN(N', k1,Co,C_1,Cg,Cp,Cf) and mg =
ma(N, c2,Cp,Cg), such that if |g||-/k3 < ma and,

—2
A1 N 2 |I£1l7

EI2\ -0 1
(1+1/1) ) =

then problem ([&19) has a strong solution [u.,0.] € Vi, x (W™ (Q) N W, (Q)).

We first prove the existence of a strong solution [u., §.] for (4.19)) as well as deriv-
ing uniform estimates with respect to parameter . To solve (4.19) we reformulate

_IIf o _
. qu +5,2 (1 £ (4.20)

the problem as
—2u(1+ &)’ 2Au+ Vr = 0f — div(u ® u) + div (2uo-(|Dul*)Du)  in €,
divau=0 1in Q,
—k(-,0)A0 = K'(-,0)|VO* —u-VO+g inQ,
u=0 on 09,
=0 on 09,

with o.(z) = (1 4+ /22 + [2]2)" > = (1 + e)P~2.

Now, we define the operator A. : Vo, x (W27(Q) N Wy " () — Va, x
(W27(Q) N W, "(Q)) given by A.[€,w] = [u.,6.], where [u,6.] is the solution
of

—2u(1+&)P2Au, + V. = wf — div(§ ® &) + div (2uo.(|DE[*)DE)  in €,

divu, =0 in Q,
—k(+,0)A0. = K'(-,w)|Vw]? —€-Vw+g inQ,
u. =0 on 09,
0. =0 on 0N.
(4.21)

Proposition 4.10. Let f € L1(2),g € L"(Q) with ¢,r > n,p > 1 and pp > 0.
There exist constants Ay = X\ (Co,Cp,Cg) > 0 and my = ma(XN,c2,Cp,Cp) > 0
such that if ||g||-/Kx3 < mz2 and

2 —

DV [ [ —— A1 [[E]2\ e-3)*

LIl g 520G | 0%
1 t

then A.(B,) C B, for some p > 0. Here, B, is the closed ball defined in (2.1)).

< (4.22)
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Proof. From Lemma [4.1] and reasoning as in the proof of Proposition [4.6] and [2]
Proposition 4.2] we obtain that u. € Vy , and it satisfies

C
[Vu][1,4 < ﬁ (llwflq + 2p]| div(oe (| DE[)DE) |l + € - VEI )

C

< 70(||w||oc||f||q+2M\|d1V(Ue(\DE| )DE)lg + 1I€ - VEIl)
C

< (p(Cr+) e+ 2k o DEFIDEN + - el )

(4.23)

C (C C

< O (PO 08 W 5,901 0el 19l + )
Co CP+1 2 £ ||2

< e ,(0)/Cr)
A

< *1(Hqu+upS G(p) + %),

where \; = Comax{g,c%,w—i-%},g( ) =z(1 +2)®3" and Sy, =(p—

2,1)T 2=3" As in ([{I.9), we obtain
C(Cp+1)N .

c2C(Cp ) ps + 02/’

Vo1, <
Vb, < == o

Cp+1)+ *Ilgllr- (4.24)

As in the proof of Proposition we can assume p < 1. Thus, in order to have
A(B,) C B, it is sufficient to notice that

e2(Cp +1) (OX

Xl — C2
m (I£1I2 + 2pSpG(p) + p°) < p, and - 1)02 + gl < p.

chE CE
. . . N YT _ Mliflg
By the hypothesis, from Proposition 4.3| with A = e E=X\S,and D = —
there exists p; > LLH such that
A =
o IS+ #15,G(o1) + p7) < 1.
Moreover,
21 [|£])?
p1 < 2ulitly (4.25)
1
The proof follows in the same way as in the end of the proof the Proposmon

. Y
Namely, we consider ||g||, and x; such that % < mg and p~ < 1|L Iz pt.

Thus, taking ps € (p~, D) we have
SR SWITIIR
Mliflly _ o < 2A [l

p2 <
Then, we conclude that A.(B,) C B, for p = pi1, and the proof is complete. O

Proposition 4.11. There is a positive constant Ao = Ao(Cp,C—1,Cp,Cg, 1, )
such that, if

(4.26)

fl7 Ll HfH2 €[]\ =37 1
MR )T ] < e
0 I I 0 4(p=2,1)

Yo (1+1/n)
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then, A. : B, — B, is a contraction in W(l)’q(Q) X Wol’r(Q).

Proof. Let [€,w],[€,0] € B, and let [u., 6], [u., 0] be their respective images under

A.. Then, from we obtain

—2u(1+ )P ?A(ue —0.) + V(7 —#.) = F. in €,
div(ue — ) =0 in £,
—k(-,0)A0; + K(-,0.) A0 = K' (-, w)|[Vwl> = ()| VO> + G inQ, (4.27)

u. —u. =0 on 909,
057655:0 on 012,

where

F.=div (§@& - €@ ¢) +2pudiv (0.(1DEP)DE — 0. (| DE*)DE) + (w - D)F,
G=¢€ Vo—¢ V.

Then, using computations similar to those in (4.12)), (4.13), (4.15)) and taking into
account that G is a nondecreasing function, we have

[V(ue — 1)l

cC_ A . .

< = (I © &~ € @€l + 2pll0-(1DEP) DE — o (1DE)DEll + I — 2,
CcC_ A _

< =2 (20p(Ch + 1)p1 [9(E =€)l + 208,51 DE 1o

CcC_,

+ | D€l IV (€ — €)||q> + Cp(Cr+D[V(w - o)l Ifllq

A = A
< 2 (201 + 15,6(201) +[18]1) max { IV € = Ol [V = Dl }

where Xy = CC_; max{Cp(C} + 1)1/9,2,C(Cp + 1)}. Now, we briefly describe
the computations to estimate ||V (6. — 0.)]|,, which are based on ([#.27)3. First,
notice that

—( 0:) A0 + K-, 0.) A0 = w(-,0-) A0, — 0.) + (k(-,0.) — K(-,0.)) A6
Then
IV (6-=62)|lr < %[\In’(nw)lvwlzﬂf’(»aD)\WI2+GIIT+II(H(»9s)fn(~ﬁs))A95llr]~

Recalling that |k(-,a) — &(-,b)] < X (Ja| +|b]) |a — b] Va,b € R, and ||Ab.], <
IV6.|1,» we conclude that

| (n(-,ég) - "‘3('766))A06”T <2Xpi(Cp +1)*| V(0. — éE)Hr
Similar procedures as those in (4.17) give ||G]|, < %EPH)HV(E—E)H(I—V—pl(C’p—!—
1||V(® — w)||». Finally, reasoning as in (4.18)) we obtain
1K', )Vl = (-, @) [V |
< CN(Cp+1)p1|[V(w = @)l + 2V (Cp + 1)p7 | V(w = @) |-

Combining these inequalities we obtain

2 ~
(1= =Npd(Cp+ 1)1V O - 0.)]l,
K1
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1 plCE(Cp + 1)
K1 CE

< pMymax{ || V(€ = &)l [IV(w = @)||:},

<— IVE—&)llq+ *p1(0p+1)(1+CA'+2A)IIV( @)l

where

M) = p (Cp+1)max{ E 140N +2X].
E

Then, if we take p; such that N%)\’/)%(Cp +1)% < 1/2, we have
max{ |V (u = a2) |, | V(0 = 02)],}
by _ 5 .
< (57 @00+ 18,6(21) + 1) + 201143) max {[ V€ = &)l |V (o — &) |

Consider the space Y = Wy4(Q) x Wy (Q), with norm max{||V - ||, |V - [l}.
We define \g = max{\y, M4}. Then, since p; < 2X1Hf|\3/,u,g is a nondecreasing
function and G(4y) < 4P=2D7G(y) we obtain
>\1||f||2 o Il

1

IR IR
FSh (1R el e vl

JAC[€, @] — Adlg, wllly < 402D K[ (14 1/p) =2

Therefore, A, : B, — B, is a contraction when taking p = p;.
Recall that for p < 3,7, = 1/4 = 1/47=21" and for p > 3,7 > 1/4=2D7"
The proof of Theorem [1.9]is a consequence of Propositions [£.10} [£.11] and Theorem

hen taking A = (A, A\o)* and keeping in mind that (4.20)) implies (4.22)) and
(14.26]) O

Proof of Theorem [].8 The existence of a strong solution [u, ] € Vg, x (W27 ()N
W,y (Q)) is obtained as the limit of a subsequence of the penalized solutions [u., 6]
provided by Theorem Notice that for each € > 0, [u., 0.] satisfies the following
weak formulation

/ (zu(1+ = |Du5\2)p*2pug) . D(®) dac—/(ug ®u.): D(®)dz
@ @ (4.28)
:/Ggf-'I'dx, VB €V,

Q

/ k(z,0:)VO. - Vodx +/ ou. - VO, dx = / godr, Yo e W, UQ). (4.29)
Q Q Q

From (4.23), (4 and we have that ([uc,0¢])c is uniformly bounded in
Va4 X (WQ’T'(Q) N W1 T(Q)) Then there exists a subsequence of ([ue, 6;])., still
denoted by ([ua,es])67 and [u, 0] such that

[us,6.] = [u,0] weakly in Vo, x (W27 (Q) N Wy " (),
[uc,0.] — [u,0] strongly in C1*1(Q) x CH*2(Q),a; < 1 — g,ag <1l- g
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Thus, recalling that x : Q x R — R is a C'-function and passing to the limit as ¢

tends to zero in (4.28)-(4.29)), we obtain

/ (21(1 + [Du|)P~2Du) : D(®) dz — / (u@u): D(®)dx
@ @ (4.30)
_ / Of - ®dz, V&€V,
Q

/ k(z,0)VO - Vo dx —|—/ pu-Vldr = / godz, Yo e Wy UQ). (4.31)
Q Q Q

The regularity of [u, 8] follows from (4.23)) and (4.24)). This completes the proof of
Theorem [.8 (]

4.3. Uniqueness. We finish this section with the following uniqueness result which
gives conditions on the data to ensure that the obtained strong solution agrees with
the weak solution.

Theorem 4.12. Let p > 2 and consider [uy, 61] a weak solution of (4.1) with
T = T4, T, and let [ug, 0] be a strong solution of (4.1) provided by Theorem
or Theorem[[.8 If

cLe? C%Cy, 3.0, 2N C3
1— ( PYk ¢ P £ P P ) >0,
o el + S + Sl + 2 gl
then [uy,01] = [ug,6s]. Here Cp denotes a general Poincaré constant and Cj

denotes the Korn constant.
Proof. First of all, [uy, 61] being a weak solution of (4.1)) implies that [u;,64] €
V, x W(Q) and it satisfies

[ T 0@): p@)ac - |

(u®u):D(<I>)dgc:/6’f-<1>dnc7 V& €V,
) Q

/ k(z,0)VO - Vodx —l—/ pu-Vodr = (g, (b)(Wl,q(Q)),, Yo € WOI’Q(Q).
Q Q °

Considering the difference between the weak formulations of [uy, 1], [ug, 62], we can
obtain

/Q(T (D(u1)) — T(D(ug))) : D(u; — ug)dz
= / (u; —uz)Vua(u; — ug)dx + / (01 — 62)f - (u; — ug)dx,
Q Q

/(K(JJ, 91)V91 - K(Z’, 92)V92) . V(91 - 92)d3: == / (U1 - U.Q) . V62(91 — eg)d{E
Q Q

Notice that since p > 2, we have the strict monotonicity condition (T(n) — T(£)) :
(n — &) > 2u|ln — €|?. Then, using the Hélder, Poincaré and Korn inequalities we
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obtain

2u)|D(uy) — D(uy)|3

< [ (T (D) - T(Dws)): Dl - wa)ds

Q

< Jur = wol§l[Vuz(lz + |61 — Ozl lus — uall2[£]2 (4.32)

< CR(IV(ur — wg) 3] Vuzl2 + | V(01 — 02) 12|V (uy — uz)|[a]|f]|2)

< CRCE|D(uy — ug)|3]|Dug||

+ CHCk|IV (61 — 62) |21 D(uy — ua)2]I£]]2.
On the other hand, since
/{(.’E, 91)V91 - /i(l‘, 92)V92 = Ii(l‘, 91)V(91 - 62) + (K(.’L‘, 91) - /@(l‘, 92))V92,

and using the assumptions on the boundedness and regularity of x, as well as the
Holder, Poincaré and Korn inequalities we obtain

k1| V(601 — 62) |3
< fluy — uall4]| V62 |[2]|61 — b2lls + N[|VO2|2]|61 — O2]|5(

[01(l6 + 1[62]l6)

, (4.33)
< CpCr|D(ur — u2)||2][ Vo2 |2]|V (61 — 02)]|2
+ NCB||VO:|2[|V (01 — 02)|13([[ V1|2 + [[VO2]|2).
Note that || Dug||2 satisfies the estimate
2u)| Duzlf3 < [luzlal|f2lla]|fll2 < CpCrl|Duall2||VOa2]If]|2,
which implies that
CpCh
[Dugl|2 < o V02 |l2]|£]]2- (4.34)
Moreover,
k1| Vi3 < / k(z,0;)|V0;|* < CpllgllalVOill2, i=1,2,
Q
which yields
k1([[VOil2 + [[VOi]2) < 2Cp|lgl|2- (4.35)
Thus, from (4.32))-(4.35)) we obtain
» _ O30 5
2ul|D(ur —u2)3 < THD(ul —w2)[3[| VO |2 £l
+ CRC[V (01 = 62)]2]| D(uy — ag)|l2]|f]2 (4.36)
o5 X0;: '
< ﬁHD(ul — )3 llgll2/I£]l2
+ CECKIIV (01 — 02) 2] D1 — ug)]l2|f]l2,
and
k1| [V (01 — 62)]15
3.0, 2N C5 (4.37)
< LD (uy — )2V (61 — 62)2llgll2 + LIV (61 — 62) 1511913

K1 H%
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Then, taking ||f]|2, ||lg|l2, 1, & such that

C3Cy,
2
from (4.36)), (4.37)) we obtain that [uj, 6] = [ug, o). O
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