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ASYMPTOTIC BEHAVIOR FOR DIRICHLET PROBLEMS OF
NONLINEAR SCHRODINGER EQUATIONS WITH LANDAU
DAMPING ON A HALF LINE

LILIANA ESQUIVEL

ABSTRACT. This article is a continuation of the study in [5], where we proved
the existence of solutions, global in time, for the initial-boundary value problem
Ut + Uze +i|u|2u + \Bw\l/zu =0, t>0, z>0;
u(z,0) =up(z), x>0
uz(0,t) = h(t), t>0,
where |8;|1/? is the module-fractional derivative operator defined by the mod-
ified Riesz Potential

1 > sign(x —
EAREE Y (y)dy.

= — — "
VarJoo le—yl !

Here, we study the asymptotic behavior of the solution.

1. INTRODUCTION

Consider the initial-boundary value problem for a modified Schrédinger equation
with Landau damping on a half-line

ug + Ku +ijulu=0, t>0, 2>0;
u(z,0) = up(x), x>0 (1.1)
w(0,t) = h(t), t>0,
where the operator K is defined as
K = qugz, + A0 u, (1.2)

with a, A € C, v € R and |9,]” is the module-fractional derivative operator given
by |0z|Tu = RY0,u. Here RY is the modified Riesz Potential

1 °° sign(x — y)
R'u = — / u(y)dy.
)53 Jo oy OV

In [5] we prove the existence solutions, global in time, to this initial-boundary
value problem (IBV problem), as a continuation of this study in the present paper,
we show the asymptotic expansion for the solutions to . More precisely, the
principal result in [5] is the following.
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Theorem 1.1. Suppose that u € L**(RT) N L®°(RT) and h € Y = HLP with
lluollz + ||h|ly; <€, where e > 0 is sufficiently small and 3 > 1. Then there exist a
unique global solution

we C(tl0,00); LAR*) N C((0,00): L ®F) N L=(RY)),
with p € (0,1/2) to the initial-boundary value problem (1.1).

Here LP* denote the function space LP* := {¢ € S’ : ||§||Lr.n < 00}, with the
norm

follrs = ( [ lalolotapas) "

for 1 <p < oo and ||@]|pee.r = sup,ep+ |(1 4 |2])#d(x)| for p = co. We also use the
notation LP = LP-0,

The theory of asymptotic methods for nonlinear evolution equations is relatively
young and traditional questions of general theory are far from being answered. A
description of the large time asymptotic behavior of solutions of nonlinear evolution
equations requires principally new approaches and the reorientation of points of
view in the asymptotic methods.

The difficulty of the asymptotic methods is explained by the fact that they
need not only a global existence of solutions, but also a number of additional a
priori estimates of the difference between the solution an the approximate solution
(usually in the weighted norms). Some key developments can be found in the book
[16], which is the first attempt to give a systematic approach for obtaining the
large asymptotic representation of solutions to the nonlinear evolution equation
with dissipation.

Some previous results concerning the nonlinear Schrédinger equation (NLS) ag =
0, which is the most closely related to our problem, include [4], [22] and [24]. In [13]
it was shown that with oy = 0, g = ¢ admits global solutions whose long-time
behavior is not linear. For IBV-problems for the nonlinear Schrodinger equation,
there are fewer amount of literature, in papers [2] and [I7] with inhomogeneous
Dirichlet boundary conditions there were certain results. Local existence in some
Sobolev spaces. Weder [28] proved that the Dirichlet IBV-problem for the forced
nonlinear Schrédinger equation with a potential on the half-line, is locally and
(under stronger conditions) globally well posed. Bu and Strauss [3] proved the
existence of global-in-time solution in the energy space for initial data in H! and
the boundary data from C? with a compact support.

Fokas[8], assuming that a solution of the nonlinear Schrodinger equation on the
half-line exists, showed that the solution can be represented in terms of the solution
of a matrix Riemann Hilbert, and in [9] the authors prove that given appropriate
initial and boundary conditions, the solution of the nonlinear Schrédinger equation
exists globally. However, in spite of the importance, few works have considered the
IBV-problems for partial differential evolution equations with a fractional deriva-
tive. Some key developments include the book [I4]. This book is the first attempt
to develop systematically a general theory of IBV-problems for evolution equations
with pseudo-differential operators on a half-line.The results of this book can be ap-
plied directly to study the initial-boundary value problem for differential equations
with fractional Riemann-Liouville and Caputo derivatives.

A method for solving IBV-problems for linear partial differential evolution equa-
tions with a general fractional derivative operator, based on the Riemann-Hilbert
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theory, was introduced in [I§] and further developed in [19]. It was proved in [5l []
that the above approach can be used to the establish global existence in time of
the solutions of with Neumann and Dirichlet boundary data.

In this article, we use the factorization technique from paper [6] for the free
Schrodinger evolution group

G(t) = BAe" OB}, K(z2) =i2® — V= (1.3)

Formula is useful for studying the large time asymptotic behavior of solutions
of Fractional Schrodinger equations. The distorted operators Bi and By will be
defined in the following section. Formula is obtained by using the Hilbert
transform with respect to the space variable and by the use of techniques of complex
analysis. Our main goal is to evaluate the influence of the boundary data on the
asymptotic behavior of solutions. Theorem shows that admits global
solutions and Theorem [2.I] shows that its long-time behavior essentially depends
on the scattering properties of the boundary data.

We believe that the results of this paper could be applied to study a wide class
of dissipative nonlinear equations with a fractional derivative on a half-line.

2. PRELIMINARIES

2.1. Notation and main results. To state our results precisely, we introduce
notation and function spaces. We denote the usual Fourier transform and inverse
Fourier transform by F and F~! respectively. The Fourier sine transform F, and
the Fourier cosine transform F. are defined by

Fsp = \/Z - o(x)sinprdr, F.p= \/Z - o(x) cos px dx.

The usual direct and inverse Laplace transformation we denote by £ and £~!
Lo=d() = [ e rowin o= [ e
0 T JiRr
For a complex value function ¢, which satisfies the Holder condition on the
imaginary axis, we define sectionally analytic function ®(z) via the Cauchy type
integral
D(z) = i qu, Rez # 0.
27 Jip q — 2
We note that ®(z) constitutes a function analytic in the left and right semi-planes.
Here and below these functions will be denoted ®*(z) and ®~(z) respectively.
These functions can be defined for all points of the imaginary axis Rep = 0 via their
limiting values ®*(p) and ®~(p), which are obtained on approaching to contour
from the left and from the right, respectively. First, we define the sectionally
analytic function
1 e~ 1%~ T(q,K(2))

Ew(z) = /R ———dg, (2.1)

T 2mi qg—w
for Rew # 0, K(2) = iz? — \/z, 2 > 0, where

L T w (K0 KW
F(wvf)*2ﬂ_i/0 In(g )<K+(q)+§ K—(q)+5)dq’

K*(q) = iq* + \/Fiq.

(2.2)
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We make a cut along to negative axis w < 0. Denote by

I'f(s,&) = lim OI‘(w,f),s >0

w—s,Imw>

' (s,&) = lim OI‘(w,f),s > 0.

w—s,Imw<

Define the “distorted” Fourier sine transform B, and the inverse “distorted” Fourier
sine transform B} as follows

o) =Bo= [ vieoslo)n, ole) =Bio=5- [ iz adia 23

where
Vs(z,2) = & (x) — €25, (), (2.4)
@(Z,SE) _ eizxeF(iz,K(z)) _ e—izmeF(—iz,K(z)) + K/(Z)®($,2)7 (25)
1 oo
Ow.2) = o [ el (26)
2 0
N T(-PK(2)

Y(p,z) = (2.7)

2 (ip? + (ip)/? + K (2))(ip® + (=ip) /2 + K(2))’

For a detailed study of properties of Bs¢ and B’S*(E see below in Lemmas We
introduce the Green operator on a half-line as

G(t) = Bi{e N CIB,}, (2.8)
Moreover, denoting
. . , . . 5
,(/)S(ij) _ ezzweF(zz,K(z)) _ e—zzweF(—zz,K(z)) + i(, /|Z| _ 222)@(1,72)7 (29)
K(z) 2
we introduce the operator
oo
Bao=2i [ @)ooz, (2.10)
0
and the Boundary operator on a half- line
(K ¢
H(t)p = Bs{ﬁ/ eK<Z><t-T>h(T)dT}. (2.11)
z 0

For a Hélder continuous function ¢ on the imaginary axis, we define the operator

1 [ _
Johe) = —1 [ (T T, (22

To state the results of the present paper we give some notations. We denote (t) =
1+t {t} = <Tt> Moreover, we introduce the functional S on L (R) as

Suo= [ fwualv)dy.
0
with f(y) =y +J{e PY — 1}|,—0. The weighted Sobolev space is
Hy* ={¢ €S+ |[¢ll e = [{2)*(i0)"8|» },

k,s € R, 1 <p<oo. We also use the notation H** = Hf’s and H* = Hf’o.
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Different constants might be denoted by the same letter C. For simplicity we
put a; = 1,5 = 1,23 = 1. Denote by

o(s) {17 s> 1,

0, s<1
Our main results read as follows.

Theorem 2.1. Let ug € Z = H'(RT) N HY'(RT), h e Y = HL?, 8> 1/2, be
such that ||uol|lz + ||h|ly < €, where e > 0 is sufficiently small, and the compatibility
condition ug(0) = h(0) is fulfilled. Then there exists a unique global solution

u € C([0,00); 2).
Moreover the following asymptotic statement is valid,
w(z,t) = h(t)By{z"'} + 0(B)t " h(0)W (xt~2) + t 3 AA(z) + R. (2.13)
uniformly with respect t — oo, where W, A € L>°(R™)

U(s) = —4F,{e V212 }(s)

VI [ g VP
so= ) o e
A:s(uo+/0 |u|2u(T)dT),

R =0t ) (Juollz + llulk +t~ P IRlly).

From this Theorem we conclude that the solution possesses the following modi-
fied scattering behavior:

o If 3 < 1, then there exist a function ¥ € L*> such that

sup()P [ — h(t)Bo{z~"}||p~ < Ce.
t>0

e If 5 > 1 then there exist a constant B and a function 1~\(§) € L*° such that

sup(t)! 7w — 7 BA (et ™)l < Ce,
>

2.2. Linear problem. Consider the linear fractional NLS equation posed on a
half-line
up+Ku=0, t>0, z>0;

u(z,0) =up(x), x>0, u(0,t) =h(t), t>0,

In the next lemma we prove that G(t) and H(¢) given by (2.8) and (2.11)) are the
Green and boundary operators of the problem (2.14)).

(2.14)

Lemma 2.2. Let the initial data ug € Z = H'(RY) N HY'(RT), and boundary
data h€Y = HLP, > % Then the solution u(z,t) of the initial-boundary value
problem (2.14)) has the following integral representation

u(z,t) = G(t)uo + H(t)h,
where the operators G(t) and H(t) are given by (2.8) and (2.11).
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Proof. In [5] we proved that the unique solution u(x,t) to (2.14) has the integral
representation

[ee) t
uet) = [ Gy iy + [t =i
where
— 1 2 t pT Y(p7£) — _
Glz,y,1) = (3) /iRef /ZRe m(@@(yé)*% (y,§)> dy dp dg,

_ L2 t pT Y(p7€) — _
Hw.) =~(50)" [ & [ 2B (1000, - T (.0)) dps.

(2.15)
with
1 e” 1
209 = 55 = v
) Ja1 (2.16)
I(z,€) =i ’ dg,

T Jpalg—2) V(g6

and the “analyticity switching” function Y (w,&) = e'(®€ Re¢ > 0, where T is
defined in (2.2) and (&) is the only one root of the equation K (p) + & = 0 in the

right-half complex plane, with the analytic extension of the function K (p) is given
by

K(p) = K*(p)=ip> ++/—ip ifImp>0
PNk =ip+ Vip ifImp<o.

Now we simplify the representation of G(x,y,t). Via the Sokhotski-Plemelj
formula we obtain

K(p) +

5o epw*K(p)tdp'
T JiR

Y
Glant) = (o) [ e [ e B8 (70 0.9~ T )y dp a
1

Remember that (&) is the only root of the equation K (p)+ ¢ = 0 on the right half

plane, using this, we change of variables £ = —K (z) and we obtain
VI Y(p, K (2))
_ (12 —K(2)t gt / pT »
t) = K
Gl v) (27Ti) /—iooe*“%)*‘ ‘ =) iRe K(p) — K(2)

x (€7 (y,—K(2)) = & (y, —K(2)))dy dp d=

1
= 6PI*K(p)tdp,

21 iR
with
1 e 1
Euly) = — dq, for R 0.
W)= om /i]R ¢~ wY(p, K@) 7
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To change the contour of integration with respect to p variable we apply Cauchy

Theorem. Taking residue in the point p = —z we obtain
1 .
Glryt) = ()" [ e KO TR ) e, )
2’ Jim
1 oo
+ (7)2/ e_K(z)tzK'(z)é'Z_(y)/ e P*(p, z)dp dz (2.17)
2mi iR 0
1 oo
o) [ e ) [T e ap de
211 iR 0 p
where
V2 L' (=p,K(2))
o) = e (215)
2 (K*(p) — K(2))(K~(p) — K(2))
Note that since integrand function is even with respect to z variable
/ 67K(z)tK'(z)/ efpmcf;r(y)w(p,z)dp dz = 0.
iR 0
Consequently changing z +— iz into (2.17)) we obtain
1 e ,
Glaant) = (5) [ KO0 (e o (2.19)
n 0
where the functions ¢ and ¥ was defined in (2.4)), (2.5). Therefore, we obtain
G(t)p = B:{eXP'Bg}, K(z)=ip* — \/p. (2.20)
For the operator H(t) we note that
: 1 vatl 1
T(0(6).€) ~ (0. = i(0() - p)[1 - 5~ [ dq].
(ple),2) = 2{p: ) = ilelt) >{ 2mi Jiw q(q — p)(q — ¢(&)) Y(q,§) }

Denoting K1(q) = iq? + +/|q| we have

[,
& (g =) =&)Y (q,6)

:/ Ki(q) +¢ 1 dqﬁ/ iq® + € 1
& ala—p)(a— (&) Y(g,€) i® 0(q—p)(q— (&) Y(q,6)

Recalling that function [1(,(('_ g is analytic on the right half-plane, via the Cauchy

theorem we have

/ K(q) +¢ 1 dq = Kp+e 1 1 ¢ 11
& 4@ —p)(a—0(&)Y(q,6) p(p =) Y, &)  2pp() Y(0,8) 2’
/ iq® +¢ 1 1.1 & 1

2 dd—p)a—2©) Y (09T 27 2pp(©) V(0,8
Therefore,
/ Vidl L g- K+e 1 & 1
® 4(@—p)(a—9(&)Y(q,6) p(p— ) Y(p,&)  pe§) Y(0,8)

and as consequence

T(p(€),€) — I(p, &) = i(p(€) — p) K(p)+¢ 1 3 1

P - 2@ Y1.8) | pp(@) Y(0.6)
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Thus using the Cauchy Theorem we obtain

H(z,t) = Hy(x,t) + Hy(z, 1), (2.22)

o _ 1 et go (L2 &t oz Y (2, €) 1
o) = g [ e (o) [ o] o g dnde

_ TN AR G AT
Hy(a,1) = (5.7) / so(@J{R V0.0 K e (2.23)

Using analytic properties of the integrand function via Jordan Lemma we have
= 1 / —p(e)e Y (=0(£):§) ¢ 1
Hi(z,t) = —— eStee(8)z d€

{0 =50 i V(0.6 28 K(o(©)
1 oY V(=ip) — /(i
_ (7)2/ egt&/ epm (p7 E) ( Zp) _(lp) dpdé-

2mi (K*(p) + (K~ (p) +§)

(2.24)
Changing of variable { = —K(z) and remembering Y (0, —K(z)) = 1 (see Lemma
we rewrite Hy as
§1<$7t) = _i/ e—K(z)te—zx-l—l"(_z,_K(z))@dz
i Jig .

. (2.25)
C (A2 e KK (K (2 e P z 2
(55) /ﬂR K( )K()/O U(p, z)dpdz,

271

since the integrand in the second integral expression is an odd function with respect
to z variables we conclude

(i)2 /i]R e—K(Z)tK(Z)K/(Z) /oo e_lﬂw(pwz)dp dz — 07

21 0
and as a consequence
. 1 100 K
Hi(z,1) = %/0 e—K(z)t¥ |:ezx+F(z,—K(z)) _ e—zw—‘rl“(—z,—K(z))} dz. (2.26)

In a similar form we obtain

~ 1 [ K
Hy(z,t) = 5 / e~ K ()t (2) [e—zt+r(—z,—K(z)) o ezt—&-l“(z,—K(z))}dZ
T Jo z

| i K(2) (2.27)
_ —K(Z)t Z K/ @ d
+ 2m.][_me — (2)0(z, 2)dz.
Since K(2)K'(2) = ~22* + §2/[2] + § and
rm/f,m e " ~6(@,2)dz = 0,
we reduce the function ﬁg as
. 1 100 K
Hy(z,t) = %/ e K@)t ;EZ) [e=2tHT (=2 =K () _ o2t4T (- K()]g,
0
- 7K(z)t e _ 2 2
to5 e (2 V02| = 22%)0(z, 2)dz.

—100
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Applying (2.26)—(2.28)) into ([2.22)) we obtain

H(z,t) = 2i/ e K&
0

From this we conclude

H(t)h = BS{@ /Ot eK(p)(t*T)h(T)dT},

@ﬁs(x, z)dz.

where K (p) = ip® — \/p and the operator B, was defined in (2.10). O

2.3. Large time asymptotic behavior for the evolution group and the
boundary operator.

Lemma 2.3. For K(z) = —/z + 2%, and v given by ([2.4) we have
77[}3(271,) _ efizzefF(fiz,K(z)) - eizxefF(iz,K(z)) + ZJ{@ipz}(Z%
where J was given by (2.12]).

The proof of the above lemma is obtained using analytic properties of the inte-
grand function via Jordan Lemma, and the Cauchy Theorem.

Lemma 2.4. Forug € Z = HY(RT) N HY'(RT), the Green operator G(t) satisfies
the asymptotic expansion

G(t)ug = t > A(x)Sug + O(t_(3+7))||u0||z,
where A € L®(R™),

V21T T 0z
A(z) = 87[/0 e f\/EdZ} [/0 ‘ (z‘p2+(ip)l/z)(z'];?+(—z’p)1/2)dp£ 20)

and -
Sug = dy,
o /O f)uo(y)dy
with f(y) =y + J{e ™ —1}|.—0.

Proof. From the equality obtained in Lemma [2:3] for the function v, and Cauchy
Theorem we obtain

1/fs(Z,y) = sin 2y + (eiF(iZ’K(z)) _ 1)(€7izy N 1)
_ (e—F(—iz,K(Z)) _ 1)(eizy _ 1) + ZW(Z, y>7
where W(z,y) = J{e P — 1}(z). Via Taylor theorem we have

WO < Cy [ < €,
moreover
W (z,y) = W(0,y)| < Cyz. (2.30)
Via Lemma we have
e TE=KE) _1=0(27), §>0.
Combining this with we conclude

Vs(z,y) = 2f(y) + O(yz"17),  fy) =y+W(0,y), (2.31)
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and as a consequence
Boug = 2Sug + O(z*)||uo ||z 1, (2.32)
where the functional § is given by
S RO
On the other hand, from the definition of the function ¥, given by , we note
V21, VP

* , e d
e G @ T (239
+ R1($7 Z) + RQ(xa Z)a
where
Ri(x,z2) = iz AT (2) _ gmizatlT(=2) 4 20(x, 2),
Ra(a,2) = ——= / ey [ AP, 2) = T EONp,0)] dp
b) 4’7T \/E 0 ) b .
Using
= VP
O(z,2)| < C , , - - <C,
0@ <C | o
and via Lemma |eize 4T (2) _ o=izadT7(=2)| < O, we conclude
Ri(z,2) = O((2)).
Now, we estimate Ro. We have
I (p,2) ) _ @O N (p. 0
€ b,z € b,
(v, 2) (v,0) .

= [FT P2 L0\ (p, 2) 4 7 PO [\ (p, 2) — A(p, 0)],

Using

K (2)]*|p|
A —Ap,0)| < C
| (p, Z) (p7 )‘ = |Zp2 + (_ip)1/2|2|ip2 + (7;1))1/2|27’y7

and via Lemma
L) _ I (p0) _ 0(2"),

therefore
Ry (z, 2)
_ 11~
Am \/z Jo
=0(2772),
Thus via 2.33]
NPT PR CJ0 Sy [ S/ —
87 vz Jo (ip? + (ip)/2)(ip? + (—ip)*/?)
Combining and we conclude
G(t)uo = =3 A(2)Suo + Ot ) Jug]| 11, (2.36)

efpm([eﬁ(p,z) — OO, 2) + PO [ (p, 2) — (p, 0)])dp

dp+O(z7"%). (2.35)
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where A € L™,

V[ R VP
sa=g [ el i ®
Su = [ rwuty) dv

(2.37)
Thus, Lemma (2.4)) is proved. O

Lemma 2.5. Let h € Y = HLP(RT), B > 1/2, then the following asymptotic
expansion for large time t holds

H(t)h = h(t)B{z7'} + 0(8)t h(0) ¥ (at~2) + Ot~ 7) |y, (2.38)
where 0 is the characteristic function of the interval [1,00) and ¥ € L>®(R™") is

given by
U(s) = —4F e V212 (s). (2.39)

Proof. First, we recall the definition of the operator H given in (2.11)):

H(t)

(z,t) + ha(z,1)]}, (2.40)

where
t t/2
hi(z,t) = / KA ()dr,  ho(z,t) = / K@ (1) dr.
/2 0

Integrating by parts,

t
K(2)hi(2,8) = h(t) — KLy - / KON gy, (2.41)
t)2

Recalling that h € HL?,

B{ Loxen ! 5} =0t~y

t (2.42)
t/2
and therefore .
B’S{l/ eK(Z)(t—T)h/(T)dT} — O(hl(t)) (243)
Z Jt)2
Thus, @) @) imply
Yhi(z,t 3
B, {%} h(t)Bo{z71} + O((t) ") |h]ly. (2.44)

On the other hand
t/2 t/2
ha(z,t) = K2t / h(T)dT + / K@) (1 — KT (7)dr, (2.45)
0 0

now, from the definition of the function v, (z,z) given by (2.10) we have
K(z) » _ 2isinzz

(Z,ZL')— \/2

+ Ra(z,2) + Ra(z,7) + Ry(z, 1),

with
Ri(z,7) = z(eix2+F(iz7—K(Z)) _ e—i$z+F(—iz,—K(z)))7
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eirz eF(iz,—K(z)) —1) = g~z eF(—iz,—K(z)) -1
oz, 7) = ( ) - ( )

)
Rs(z,x) = (5\/ 2| — 22%)O(z, 2)
From Lemma el Fi2=K() — O(1) and eI *F==K() — 1 = O(27), v € (0,1)

and as consequence R (z,z) + Ra(z,2) = O(z7~2). Using
oo \/ﬁ
O(z,2)| < C . . . . <C,
w2l = /0 (ip? + (=ip)/2)(ip* + (p)1/?)

we conclude R3(z,z) = O(z7). Therefore

K(z) - 2isinzz Y1
, = . 2.4
(a0 = 2 0 (2.46)
From (2.45), (2.46) and |1 — eX(*)7| < C2377 we conclude
s K (2)ha(z,t)
B{—""""}

z
; 2 2.47
:t‘lh(O)\II(a:t_Q)+O(t_(1+7))||h||y+/ O((t — )2y n(rydr (A7)
0
=t 1(0) W (xt2) + Ot~ ) [Ally +max(¢>77, e ) Ay,
where ¥(s) = —4F,{e~V?2~1/2}(s). Finally, from (2.40) along to (2.41)-(2.47) we

have
H(t)h = h(t)B{z""} +6(8)t h(0)¥ (2t ~2) + Ot~ 7)|hlly,
where 6 is the characteristic function of the interval [1,00). The proof is complete.
O

In this Lemma we exhibit several properties of the “analyticity switching” func-
tion Y (w, K(2)) = e" (@K () where

L[> K*'(q) K~'(q)
Fw,ﬁ:—,/ In(qg —w — dq.
WO =5y M Qe K@
We make a cut along to negative axis w < 0. Denote by

I'f(s,&) = lim OF(w,f), s>0

w—s,Imw>

'(s,¢)= lim T'(w,§), s>0.

w—s,Im w<0

Lemma 2.6. We have for s >0, argé € (-5 — 5,5+ %)

BECRI G
eFf(Svg) K-

(p) +¢
() +&
Moreover the following formula is valid for z € R and w € C/w > 0,
Y(w K@) <0, | =KD <
I'(w,-K(z)) = O({w}” +{2}"),
0.0(iz, K (2)) = O({z} () 7?).

The proof of the above Lemma can be found in [6].
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Lemma 2.7. For w € C/w > 0 we have

I'(~w,-K(2)) =T'(w, —K(2)),
a s consequence Y (0, —K(z)) = 1.

Proof. Integrating by parts and via Cauchy Theorem we rewrite I' as

1o/~ 1 K(q) — K(2)
F(w,—K(z))——% ; q—wln( o )dq
As consequence, via the change of variables v = —¢, we obtain
L~ 1 K@) - K(2)
D(—w, —K(2)) = —— 1 d
(=K ) = 5 [ =T
1 [~ 1 Kw)—K(z 2.48
_L (KO =K (2.45)
)y v—w v2—z
= —I(w,—K(2)).
Therefore T'(0, —K (z)) = 0, this guarantees that Y (0, —K(z)) = 1. O

3. PROOF OF THEOREM [2.7]
It follows from Lemma [2.2] and Duhamel principle that the solution of (I.1)) is
given by
t
w(z, t) = G(t)uo + H(t)h + / Gt — )N (u)(r)dr, (3.1)
0
Let us define the function spaces Z = H*(RT) N H>}(RT)
X ={¢ € C([0,00); 2) : ||9]lx < o0},

where

ollx = %g§{<t>l/2||¢(t)\\m + lle@lor + 7Nl L},

with p = min{1, 8}. By the contraction mapping principle we can prove that there
exist an unique solution w to (L.1)) in X, since

2,4 +mw

X € €([0,00); LA(RT)) N C((0,00): L (R)N L*(RY))

the uniqueness guarantee that the solution given by Theorem is the same solu-
tion u € X.

Now we prove the asymptotic formula for the solution. From Lemmas and
we obtain

G(t)ug + H(t)h = h(t)Bo{z~'} + 0(3)t " h(0)W (2t~ 2) + t 3A(x)Suo + R, (3.2)
with 6(8) = 1 for B>1and 6(3) =0 for 8 <1, h(p) = Lh, A, ¥ € L>®(R*) defined

by (2.29 -, 2.39) respectively and

R=t"C* Jlugl|z + =D n]ly.
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Thus we observe for ¢t > 1,

/O Gt — )N (u)(7) dr

t/2

t/2
= GON (u)(7)dr + / [G(t—7) = GOIN(u)(7) dr (3.3)
0 0

+ Gt — )N (u)(7) dr.

t/2

Via [3.2] we note that
t/2

GON (u)(T) dr

0

=t3A\(x) /000 SN (u)(t)dr — t3A(z) - SN (u)(T)dr

t/2
/2
0= [N g+ IN @)

since |S¢| < C||¢|| 1.1 we observe
[SNu| < C|Nul| g < Cllull = fJull g < C{r) =+ ulk,

and as consequence

t/2 0o
GON (u) (1) dr = t3A(x) / SN (@) (r)dr + Ot~ |ul%, ~>0

0 0
(3.4)
By Lemma |2.4] we have

G(t)uo =t >A(@)Sug + Ot~ ) Jug| 2,

by properties of asymptotic representation we obtain ||3;G(t)¢||cc < Ct~*(||¢|| o1 +
l¢llz1) we obtain

t/2
/O [G(t —7) = GOIN (u)(7) dr = Ot~ )||ul%- (3.5)

By Lemma [2.4] we have
t

G(t — N () dr = ulk | Ol =717

t/2
= Ot~ ) lul%

From (3.1)-(3.6) we obtain

w(x,t) = h(t)B{z~'} + 0(8)t " h(0)¥(2t~2) + t 3 AA(z) + R. (3.7)
where

A = S(ug +/ ful?u(r)dr),
0
and
R =0t ") (JJuollz + [[ul%)-

Hence, Theorem is proved.
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