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OBSERVABILITY INEQUALITY AND DECAY RATE FOR WAVE
EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS
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Abstract. We study a class of wave propagation problems concerning the
nonlinearity of dynamic evolution for boundary material. We establish an

observability inequality for the related linear system, and make a connection

between the linear system and the original nonlinear coupled system. Also, we
obtain the desired energy decay rate for the original nonlinear boundary value

problem.

1. Introduction

We are concerned with the nonlinear boundary value problem

utt(x, t) = ∆u(x, t), x ∈ Ω, t > 0; (1.1)

u(x, t) = 0, x ∈ Γ0, t > 0; (1.2)

ut(x, t) + f(zt) + g(z) = 0 x ∈ Γ1, t > 0; (1.3)
∂u

∂ν
= zt x ∈ Γ1, t > 0; (1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, z(x, 0) = z0(x), x ∈ Γ1; (1.5)

where ∆ is the Laplacian operator, Ω is a bounded domain in Rn with a boundary
Γ = Γ0∪Γ1 (disjoint, closed, and nonempty) of class C2, and f, g are given functions
on R.

For some similar systems with or without source terms in (1.1), there exist several
results about uniform decay rate of the solutions to these systems. For instance,
[6, 9, 10, 11] study the porous boundary condition with the interface described by

ut + f(x)zt + g(x)z = 0, x ∈ Γ1, t > 0;
∂u

∂ν
+ ρ(ut) = zt, x ∈ Γ1, t > 0,

where ρ is a given function. In this paper, we focus on the investigation of the prob-
lem above concerning the nonlinearity of dynamic evolution for boundary material,
which is always described by boundary displacement z. We allow for nonlinear
damping f(zt) and nonlinear potential g(z) (f and g may depend on x also, which
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can be handled similarly) in the boundary displacement equation (1.3). Such non-
linearity enables our results to possess wide applicability.

Since our system is a coupled system and we hope to control the whole coupled
system by only using a single boundary damping, which is different from and much
more complex than the case of single equations, we will make efforts to establish
the observability of the related linear system, to find a useful connection between
the linear system and the original nonlinear system, and finally to obtain the decay
rate of the energy. We also would like to state that our idea is stimulated by the
significant papers [1, 2, 4, 6, 7, 8, 10, 13, 14].

We first present some notation, basic definitions and assumptions (cf., e.g., [1, 8]).
Throughout this paper, c, ci are as generic constants whose values may change from
line to line. We make the following assumptions:

(H1) there exists x0 ∈ Rn such that m(x) · ν(x) ≤ 0 for x ∈ Γ0, where m(x) =
x− x0 and ν(x) is the unit normal vector pointing to the exterior of Ω.

(H2) The function g ∈ C(R) is monotone nondecreasing such that g(0) = 0; the
function f ∈ C1(R) satisfies f(0) = 0 and infs∈R f

′(s) > 0, and there exists
a continuous strictly increasing odd function ρ ∈ C([−1, 1]; R), which is
continuously differentiable in a neighbourhood of 0 with ρ(0) = ρ′(0) = 0,
such that

c1ρ(|v|) ≤ |f(v)| ≤ c2ρ−1(|v|), |v| ≤ 1, a.e. on Γ1,

c1|v| ≤ |f(v)| ≤ c2|v|, |v| ≥ 1, a.e. on Γ1.
(1.6)

Moreover, g(s) is locally Lipschitz continuous such that

c1|v| ≤ |g(v)| ≤ c2|v|, |v| ≥ 1, a.e. Γ1. (1.7)

Also we define
H(x) :=

√
xρ(
√
x), x ∈ [0, r2

0], (1.8)

r0 > 0 being small enough such that H is strictly convex on [0, r2
0]. We define

L(y) :=

{
Ĥ?(y)/y, if y ∈ (0,∞),
0, if y = 0.

(1.9)

Here
Ĥ? := sup

x∈R
{xy − Ĥ(x)}

stands for the convex conjugate function of Ĥ (the extension of H to R in which
Ĥ(x) = +∞ for x ∈ R \ [0, r2

0]). Moreover, we define a function ΛH on (0, r2
0] by

ΛH(x) :=
H(x)
xH ′(x)

,

and write

ψ(x) :=
1

H ′(r2
0)

+
∫ H′(r20)

1/x

1
v2(1− ΛH((H ′)−1(v)))

dv, x ≥ 1
H ′(r2

0)
.

Then, there exists δ > 0 such that ψ is strictly increasing on [0, δ].
Let

V (Ω) = {u(x) ∈ H1(Ω), u|Γ0 = 0},
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and define the inner products and norms on V (Ω), L2(Ω), and L2(Γ1) respectively
as follows

((u, v))V =
∫

Ω

∇u(x) · ∇v(x)dx, ‖u‖V =
(∫

Ω

|∇u (x) |2dx
)1/2

,

(u, v) =
∫

Ω

u(x)v(x)dx, |u| = (
∫

Ω

(u(x))2dx)1/2,

〈φ, ψ〉 =
∫

Γ1

φ(x)ψ(x)dΓ, |φ|Γ1 = (
∫

Γ1

(φ(x))2dx)1/2.

Clearly, the ‖ · ‖V is equivalent to the usual H1 norm.
Define the “finite energy space” by

H := V (Ω)× L2(Ω)× L2(Γ1),

where the norm on H is given by

|(u, v, z)|2H = ‖u|2V + |v|2 + |z|2Γ1
.

Define the energy of system (1.1)-(1.5) by

E(t) :=
1
2

∫
Ω

|∇u|2 + u2
tdx+

1
2

∫
Γ1

z2
t dΓ +

∫
Γ1

G(z)dΓ,

where G(x) =
∫ x

0
g(s)ds is the anti-derivative of g.

2. Main results and proofs

Rewrite the system (1.1)-(1.5) as

∂

∂t

 u
ut
z

 =

 ut
∆u

f−1(−ut|Γ1 − g(z))

 = A

 u
ut
z

 . (2.1)

The action of the operator A is given by the matrix of operators that appears in
(2.1). The remaining boundary conditions are encoded in the domain of A, given
by

D(A) =
{uv

z

 ∈ H; v ∈ V (Ω),∆u ∈ L2(Ω),
∂u

∂ν

∣∣∣
Γ1

= f−1(−v|Γ1 − g(z))
}
.

From (H2), one knows that f is strictly increasing, and its inverse function f−1

is Lipschitz continuous. Thus, using the standard method of nonlinear monotone
operators and the semigroup theory (cf. [3]), we can obtain wellposedness of the
system.

To study the energy decay rates of (1.1)-(1.5), we first give an observability
inequality of the following linear system, which has the same initial values as the
original nonlinear system:

Ptt(x, t) = ∆P (x, t), x ∈ Ω, t > 0; (2.2)

P (x, t) = 0, x ∈ Γ0, t > 0; (2.3)

Pt(x, t) +Mt(x, t) +M(x, t) = 0, x ∈ Γ1, t > 0; (2.4)

∂P (x, t)
∂ν

= Mt, x ∈ Γ1, t > 0; (2.5)

P (x, 0) = u0(x), Pt(x, 0) = u1(x), x ∈ Ω; (2.6)
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M(x, 0) = z0(x), x ∈ Γ1. (2.7)

Using the multiplier method (cf., e.g., [2, 14]), we can prove the following ob-
servability inequality.

Theorem 2.1 (Observability inequality). There is a constant T0 > 0, depending
only on Ω, such that for T ≥ T0, there corresponds a positive constant CT satisfying

CTEp(0) ≤
∫ T

0

∫
Γ1

M2
t dx dt, (2.8)

where

Ep(t) :=
1
2

∫
Ω

P 2
t + |∇P |2dx+

1
2

∫
Γ1

M2dΓ

is the energy of (2.2)-(2.7).

Proof. The proof is divided into the following 5 steps.
Step 1: Let ξ(t) ∈ C∞0 (R) be the cutoff function defined by

ξ(t) =


1, t ∈ [ε0, T − ε0]
a C∞ function with range in (0, 1), t ∈ (0, ε0) ∪ (T − ε0, T )
0, t ∈ (−∞, 0) ∪ (T,∞),

for ε0 ∈ (0, T/2).
Let h be a [C2(Ω̄)]n-vector field, which will be specified later. Then, multiplying

(2.2) by h · ∇P , integrating in time and space and using the boundary condition,
we obtain

0 =
∫ T−ε0

ε0

∫
Ω

h · ∇P (Ptt −∆P ) dx dt

= (h · ∇P, Pt)L2(Ω)

∣∣∣T−ε0
ε0

−
∫ T−ε0

ε0

∫
Ω

[
∇ · (h

2
(P 2
t ))− ∇ · h

2
P 2
t

−∇ · (h
2
|∇P |2)

]
dx dt−

∫
Γ1

∫ T−ε0

ε0

h · ∇PMtdΓdt

+
∫ T−ε0

ε0

∫
Ω

J |∇P |2 dx dt−
∫ T−ε0

ε0

∫
Ω

∇ · h
2
|∇P |2 dx dt

= (h · ∇P, Pt)L2(Ω)

∣∣∣T−ε0
ε0

−
∫

Γ

∫ T−ε0

ε0

h · ν
2

(P 2
t − |∇P |2)dΓdt

+
∫ T−ε0

ε0

∫
Ω

∇ · h
2

(P 2
t − |∇P |2) dx dt+

∫ T−ε0

ε0

∫
Ω

J |∇P |2 dx dt

−
∫

Γ1

∫ T−ε0

ε0

h · ∇PMtdΓdt,

where J := ∂hi(x)
∂xj

.
By (H1) we can take h such that

h · ν = 0 on Γ0,

J =
∂hi(x)
∂xj

≥ ρ0I on Ω,
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for some constant ρ0 > 0. Hence,

ρ0

∫ T−ε0

ε0

∫
Ω

|∇P |2 dx dt

≤
∫ T−ε0

ε0

∫
Ω

J |∇P |2 dx dt

≤
∫ T−ε0

ε0

∫
Γ1

h · ∇PMtdΓdt+
∫ T−ε0

ε0

∫
Γ1

h · ν
2

(P 2
t − |∇P |2)dΓdt

− (h · ∇P, Pt)L2(Ω)

∣∣∣T−ε0
ε0

−
∫ T−ε0

ε0

∫
Ω

∇ · h
2

(P 2
t − |∇P |2) dx dt.

Since

|∇P |2 = (M2
t + |∂P

∂τ
|2), E′p = −

∫
Γ1

M2
t dΓ ≤ 0,

we have

ρ0

∫ T−ε0

ε0

∫
Ω

|∇P |2 dx dt

≤
∣∣∣ ∫ T−ε0

ε0

∫
Ω

∇ · h
2

(P 2
t − |∇P |2) dx dt

∣∣∣
+ Ch

[ ∫
Σ1

M2
t dΓdt+

∫ T−ε0

ε0

∫
Γ1

P 2
t + |∂P

∂τ
|2dΓdt

]
+ ChEp(0),

(2.9)

where Σ1 := (0, T )× Γ1, and Ch is a positive constant depending on h. Write

l.o.t(P,M) := ‖(P, Pt,M)‖C([0,T ];H1−ε(Ω)×H−ε(Ω)×H−ε(Γ1)),

for ε > 0.
Multiplying (2.2) by P∇·h, integrating in time and space, and using the bound-

ary condition and Sobolev Trace Theory, we obtain∣∣∣ ∫ T−ε0

ε0

∫
Ω

∇ · h(P 2
t − |∇P |2) dx dt

∣∣∣
=
∣∣∣〈Pt, P∇ · h〉H−ε(Ω)×Hε(Ω)

∣∣∣T−ε0
ε0

+
∫ T−ε0

ε0

∫
Ω

P∇P · ∇(∇ · h) dx dt

−
∫ T−ε0

ε0

∫
Γ1

P∇ · hMtdΓdt
∣∣∣

≤ Cε
∫

Σ1

M2
t dΓdt+ ε

∫ T−ε0

ε0

∫
Ω

|∇P |2 dx dt+ l.o.t(P,M).

(2.10)

Let min{∇h} = d0 > 0. Combining (2.10) and (2.9) gives∫ T−ε0

ε0

∫
Ω

|∇P |2 + P 2
t dx dt

≤ Cε,h
{∫

Σ1

M2
t dΓdt+

∫ T−ε0

ε0

∫
Γ1

(P 2
t + |∂P

∂τ
|2)dΓdt

}
+ ChEp(0) + l.o.t(P,M).

(2.11)



6 YUAN GAO, JIN LIANG, TI-JUN XIAO EJDE-2017/161

Using [2, Lemma 4] to estimate
∫ T−ε0
ε0

∫
Γ1
|∂P∂τ |

2dΓdt in (2.11), we obtain∫ T−ε0

ε0

∫
Ω

|∇P |2 + P 2
t dx dt

≤ CT,ε0,h
{∫

Σ1

M2
t + ξ2P 2

t dΓdt+
∫ T−ε0

ε0

∫
Γ1

P 2
t dΓdt

}
+ ChEp(0) + l.o.t(P,M).

(2.12)

Step 2: We estimate
∫ T−ε0
ε0

∫
Γ1
P 2
t dΓdt +

∫
Σ1
ξ2P 2

t dΓdt. The boundary condition
on Γ1 shows that∫ T−ε0

ε0

∫
Γ1

P 2
t dΓdt ≤

∫
Σ1

ξ2P 2
t dΓdt ≤ 2

∫
Σ1

M2
t +M2dΓdt.

By (2.12), we have∫ T−ε0

ε0

Ep(t)dt ≤ CT,ε0,h,f
∫

Σ1

(M2
t +M2)dΓdt+ ChEp(0) + l.o.t(P,M). (2.13)

From E′p = −
∫

Γ1
M2
t dΓ, it follows that

(T − 2ε0)
[
Ep(0)−

∫
Σ1

M2
t dΓdt

]
≤ (T − 2ε0)Ep(T )

≤
∫ T−ε0

ε0

Epdt

≤ CT,ε0,h,f
∫

Σ1

(M2
t +M2)dΓdt+ ChEp(0) + l.o.t(P,M).

(2.14)

Step 3: We estimate
∫

Σ1
M2dΓdt. Multiplying (2.4) by M and integrating in time

and space, we obtain

0 =
∫

Σ1

M(Pt −Mt +M)dΓdt

=
∫

Γ1

MPdΓ
∣∣∣t=T
t=0
−
∫

Σ1

(MtP +MMt −M2)dΓdt.

Hence∫
Σ1

M2dΓdt =
∣∣∣ ∫

Σ1

MMtdΓdt+
∫

Σ1

MtPdΓdt−
∫

Γ1

MPdΓ
∣∣∣t=T
t=0

∣∣
≤ ε1

∫
Σ1

M2dΓdt+ Cε1

∫
Σ1

M2
t dΓdt+ l.o.t.(P,M),

(2.15)

where ε1 is arbitrarily small. Combining this with (2.14), we obtain

(T − 2ε0 − Ch)Ep(0) ≤ CT,ε0,h
∫

Σ1

M2
t dΓdt+ l.o.t(P,M). (2.16)

Therefore, for T > T0 := 2ε0 − Ch, we almost get (2.8) except for the lower-order
terms l.o.t(P,M).
Step 5: We claim that for

T > T1 = max{T0, 2diam(Ω)},
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there exists a constant CT > 0 such that the solution of (2.2)-(2.7) satisfies the
inequality

l.o.t(P,M) ≤ CT ‖Mt‖2L2(Σ1). (2.17)

Suppose this is false. Then there exists a sequence

(P (0)n, Pt(0)n,M(0)n) ⊂ H,

and a corresponding solution sequence (Pn, Pnt ,M
n) of (2.2)-(2.7) such that

l.o.t(Pn,Mn) = 1 ∀n,
‖Mn

t ‖2L2(Σ1) → 0 n→∞.

Thus, by (2.16), we see that ‖(P (0)n, Pt(0)n,M(0)n)‖H is bounded for T large
enough. Hence there is a subsequence, still denoted by

(P (0)n, Pt(0)n,M(0)n), (P (0)∗, Pt(0)∗,M(0)∗),

such that

(P (0)n, Pt(0)n,M(0)n)→ (P (0)∗, Pt(0)∗,M(0)∗), in H weakly. (2.18)

Let (P ∗, P ∗t ,M
∗) be the solution corresponding to (P (0)∗, Pt(0)∗,M(0)∗). Then

from

E′p = −
∫

Γ1

M2
t dΓ < 0,

it follows that

(Pn, Pnt ,M
n)→ (P ∗, P ∗t ,M

∗), weak star in L∞(0, T ;H). (2.19)

Clearly, ‖(Pn, Pnt ,Mn)‖C(0,T ;H) is bounded by the wellposedness of the system.
Let

X := H1(Ω)× L2(Ω)× L2(Γ1),

B := H1−ε(Ω)×H−ε(Ω)×H−ε(Γ1),

Y := H−ε(Ω)× (H1(Ω))′ ×H−ε(Γ1).

We claim that X ↪→ B compactly. Indeed, for all s, t ∈ R with s > t, for an
arbitrary bounded set {ψn} ⊂ Hs(Ω), we can extend the domain of ψn to Ω̂, such
that ψn|∂Ω̂ = 0. It is known that Hs

0(Ω̂) is compactly embedded in Ht
0(Ω̂). Hence,

there exists a ψ ∈ Ht
0(Ω̂) such that ‖ψni−ψ‖Ht0(Ω̂) → 0. Hence ‖ψni−ψ‖Ht(Ω) → 0.

We also claim that

‖(Pnt , Pntt,Mn
t )‖L2(0,T ;Y ) ≤ C uniformly.

Indeed, it suffices to estimate ‖Pntt‖L2(0,T ;(H1(Ω))′). By (2.2) and the boundary
condition, we see that for all t ∈ (0, T ) and u ∈ H1(Ω),

〈Ptt, u〉 =
∫

Ω

∆Pudx =
∫

Γ1

MtudΓ−
∫

Ω

∇P · ∇udx (2.20)

is meaningful. Hence Ptt ∈ L∞(0, T ; (H1(Ω))′).
We deduce then by a classic compactness result (see [12]) that

(Pn, Pnt ,M
n)→ (P ∗, P ∗t ,M

∗) in L∞(0, T ;B) strongly.

Therefore,
‖(P ∗, P ∗t ,M∗)‖C([0,T ];H1−ε(Ω)×H−ε(Ω)×H−ε(Γ1)) = 1. (2.21)
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On the other hand, by (2.18), we have M∗t = 0. Differentiating (2.4) in time, we
obtain P ∗tt|Γ1 = 0. Let a(t, x) = P ∗tt(t, x) such that

att = ∆a, in Ω× (0, T ),
∂a

∂ν
= (

∂P

∂ν
)tt = 0, on Γ× (0, T ),

a = 0, on Γ1.

Using Holmgren’s Uniqueness Theorem [10], with T > 2diam(Ω),

a(t, x) = P ∗tt(t, x) = 0, in Ω× (0, T ).

Then from

∆P ∗ = 0, in Ω,

P ∗|Γ0 = 0,
∂P ∗

∂ν
|Γ1 = 0,

we know that P ∗ = 0. So we obtain M∗ = 0 due to (2.4). Thus (P ∗,M∗) = (0, 0)
contradicts (2.21). A combination of Steps 1-5 completes the proof. �

Next we show a connection between linear and nonlinear systems.

Theorem 2.2. Assume that (u, ut, z) and (P, Pt,M) are solutions of system (1.1)-
(1.5) and (2.2)-(2.7) respectively. Then∫

Σ1

M2
t dΓdt ≤ C

∫
Σ1

z2
t + f(zt)2dΓdt. (2.22)

Proof. Set ξ = u− P , η = z −M . Then (ξ, ξt, η) is the solution of

ξtt(x, t) = ∆ξ(x, t), x ∈ Ω, t > 0;

∂ξ(x, t)
∂ν

= 0 x ∈ Γ0, t > 0;

ξt(x, t) + f(zt)−Mt + g(z)−M = 0 x ∈ Γ1, t > 0;
∂ξ

∂ν
(x, t) = ηt(x, t) x ∈ Γ1, t > 0;

ξ(x, 0) = 0, ξt(x, 0) = 0, x ∈ Ω;

η(x, 0) = 0, x ∈ Γ1.

(2.23)

Multiplying (2.23) by ξt, integrating in time and space, we obtain∫ t

0

∫
Ω

(
ξ2
t

2
+
|∇ξ|2

2
)t dx dt

=
∫ t

0

∫
Γ1

∂ξ

∂ν
ξtdΓdt

=
∫ ∫

Γ1

η(Mt − f(zt) +M − g(z))dΓdt

=
∫ ∫

Γ1

(zt −Mt)[Mt − f(zt) +M − g(z)]dΓdt.

(2.24)

Take ε > 0 small enough. (1.7) implies that there exist c1 > 0, c2 > 0 such that

c1|v| ≤ |g(v)| ≤ c2|v|, |v| ≥ ε, a.e. Γ1.
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Assuming z > ε, we have, by (2.24) and
∫

Γ1
−ztf(zt)dΓ ≤ 0,∫ t

0

∫
Ω

(
ξ2
t

2
+
|∇ξ|2

2
)t dx dt ≤

∫ t

0

∫
Γ1

−M2
t +Mtf(zt) + ztMtdΓdt

+
∫ t

0

∫
Γ1∩{ηt≥0}

max{−ηηt,−c1ηηt}dΓdt

+
∫ t

0

∫
Γ1∩{ηt<0}

max{−ηηt,−c2ηηt}dΓdt.

Therefore ∫ t

0

∫
Ω

(
ξ2
t

2
+
|∇ξ|2

2
)t dx dt+

∫ t

0

∫
Γ1

M2
t dΓdt

≤
∫ t

0

∫
Γ1

Mtf(zt) + ztMtdΓdt

+
∫ t

0

∫
Γ1∩{ηt≥0}

max{−(
η2

2
)t,−c1(

η2

2
)t}dΓdt

+
∫ t

0

∫
Γ1∩{ηt<0}

max{−(
η2

2
)t,−c2(

η2

2
)t}dΓdt.

Noting the initial values and using Young’s inequality, we obtain∫ t

0

∫
Ω

(
ξ2
t

2
+
|∇ξ|2

2
)t dx dt+

∫ t

0

∫
Γ1

M2
t dΓdt

≤ c
∫ t

0

∫
Γ1

f(zt)2 + z2
t dΓdt

, (2.25)

giving (2.22). Similarly, we obtain (2.22) for z < −ε.
Finally, choose ε small enough such that |g(z)| ≤ cε and |z| ≤ ε. By (2.24) we

have∫ t

0

∫
Ω

(
ξ2
t

2
+
|∇ξ|2

2
)t dx dt =

∫ t

0

∫
Γ1

(zt −Mt)[Mt − f(zt) +M − z + z − g(z)]dΓdt,

and ∫ t

0

∫
Ω

(
ξ2
t

2
+
|∇ξ|2

2
+
η2

2
)t dx dt

≤
∫ t

0

∫
Γ1

[−M2
t + ztMt +Mtf(zt) + zzt −Mtz − ztg(z) +Mtg(z)]dΓdt.

By Young’s inequality and Hölder’s inequality, we obtain∫ t

0

∫
Ω

(
ξ2
t

2
+
|∇ξ|2

2
+
η2

2
)t dx dt+

∫ t

0

∫
Γ1

M2
t dΓdt

≤
∫ t

0

∫
Γ1

[ε0M2
t + C(ε0)(z2

t + f(zt)2 + ε2)]dΓdt.
(2.26)

Since the constant in (2.25) dose not depend on ε, we can let ε → 0 in (2.26).
Noticing the initial values, we then obtain (2.22). �
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Theorem 2.3 (Decay rate). Suppose that

lim
x→0+

H ′(x)
ΛH(x)

= 0,

and T is a time such that (2.8) holds. Then the energy of system (1.1)-(1.5) satisfies

E(t) ≤ C(T,E(0))L
( 1
ψ−1( t−TT? )

)
,

for t large enough; moreover, if

lim sup
x→0+

ΛH(x) < 1,

then we have

E(t) ≤ C(T,E(0))(H ′)−1

(
c0

t− T

)
, for t large enough.

Here, C(T,E(0)) is a positive constant depending on T and E(0), and T? > 0
depends on T .

Proof. Clearly, we see that∫
Γ1

G(z)dΓ =
∫

Γ1

∫ z

0

g(s)ds

≤
∫

Γ1∩{z≥1}

∫ z

0

c2sdsdΓ +
∫

Γ1∩{z≤−1}

∫ z

0

c1sdsdΓ

+
∫

Γ1∩{|z|≤1}

∫ z

0

g(s)dsdΓ

≤ c

2

∫
Γ1

z2dΓ.

Setting c0 = max(c, 1), we have

E(0) ≤ c0Ep(0). (2.27)

Let w satisfy

H?(w(s)) =
sw(s)
β

, s ∈ [0, βr2
0),

where

β > max
{ E(0)
c0L(H ′(r2

0))
,
E(0)
c0δ

}
, (2.28)

r0 is as in (1.8), and δ > 0 is a constant such that ψ is strictly increasing on [0, δ].
Then the definition of L implies

w(s) = L−1

(
s

β

)
, ∀s ∈ [0, βr2

0). (2.29)

From the property of L, it follows that w is a strictly increasing function from
[0, βr2

0) onto [0,+∞). Thus, by using the optimal-weight convexity method (cf. [1,
Lemma 2.1]), we deduce that

w(Ep(0))
∫

Σ1

z2
t + f(zt)2dΓdt

≤ c3TH?(w(Ep(0))) + c4(w(Ep(0)) + 1)
∫

Σ1

ztf(zt)dΓdt.
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This and Theorems 2.1 and 2.2 yield

CTEp(0)w(Ep(0))

≤ w(Ep(0))
∫ T

0

∫
Γ1

M2
t dΓdt ≤ Cw(Ep(0))

∫ T

0

∫
Γ1

z2
t + f(zt)2dΓdt

≤ T c̃3H?(w(Ep(0))) + c6(w(Ep(0)) + 1)
∫

Σ1

ztf(zt)dΓdt

≤ Tc5
Ep(0)w(Ep(0))

β
+ c6(H ′(r2

0) + 1)
∫

Σ1

ztf(zt)dΓdt,

where we used (2.29) and β > E(0)
c0L(H′(r20))

in the last inequality. From this and
(2.27), we have (

C̃T −
c̃5T

β

)E(0)
c0

w
(E(0)

c0

)
≤ E(0)− E(T ).

Thanks to β > T c̃5
C̃T

, we set

ρT :=
1
c0

(
C̃T −

T c̃5
β

)
> 0 (2.30)

and deduce that

E(T ) ≤ E(0)
[
1− ρTw(

E(0)
c0

)
]

= E(0)
[
1− ρTL−1(

E(0)
c0β

)
]
.

Denoting Ek := E(kT )
c0β

, we obtain

E1 ≤ E0[1− ρTL−1(E0)].

From the invariance by time translation t−kT for system (1.1)-(1.5) and (2.2)-(2.7),
we have

Ek+1 ≤ Ek[1− ρTL−1(Ek)].

Because β > E(0)
c0δ

, we can apply [1, Theorem 1.5] to complete the proof. �

Remark 2.4. Under the assumptions of Theorem 2.3, we have

L
( 1
ψ−1( t−TT? )

)
→ 0, as t→ 0.

Moreover, by taking special f and g, we can see clearly the meaning of the decay
rate (please see the examples in [1, Section 4]).
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