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SOLVABILITY OF BOUNDARY-VALUE PROBLEMS FOR A
LINEAR PARTIAL DIFFERENCE EQUATION

STEVO STEVIĆ

Communicated by Vicentiu Radulescu

Abstract. In this article we consider the two-dimensional boundary-value
problem

dm,n = dm−1,n + fndm−1,n−1, 1 ≤ n < m,

dm,0 = am, dm,m = bm, m ∈ N,
where am, bm, m ∈ N and fn, n ∈ N, are complex sequences. Employing
recently introduced method of half-lines, it is shown that the boundary-value

problem is solvable, by finding an explicit formula for its solution on the do-

main, the, so called, combinatorial domain. The problem is solved for each
complex sequence fn, n ∈ N, that is, even if some of its members are equal to

zero. The main result here extends a recent result in the topic.

1. Introduction

Let N be the set of all natural numbers, N0 = N ∪ {0} and Z the set of all
integers. If k, l ∈ Z and k ≤ l, then by k, l, we will denote the set of all integers j,
such that k ≤ j ≤ l.

It is well-known that the binomial coefficients Cm
n , where n, m ∈ N0 are such

that 0 ≤ n ≤ m, satisfy the following relations:

Cm
0 = Cm−1

0 , Cm
m = Cm−1

m−1 , (1.1)

for m ≥ 2 and
Cm

n = Cm−1
n + Cm−1

n−1 , (1.2)

for every m, n ∈ N such that 1 ≤ n ≤ m − 1 and m ≥ 2, (see for example the
books [11, 14, 15, 22, 31], where these and many other relations connected to the
binomial coefficients can be found). In other words, the three relations in (1.1) and
(1.2) mean that the sequence Cm

n (with two independent variables m and n) is the
solution to the following boundary-value problem for partial difference equations

cm,n = cm−1,n + cm−1,n−1, 1 ≤ n < m,

cm,0 = 1, cm,m = 1, m ∈ N.
(1.3)
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This fact along with the existence of a closed form formula for the sequence Cm
n ,

that is, the formula

Cm
n =

m!
n!(m− n)!

, 0 ≤ n ≤ m,

where by definition is regarded that 0! = 1, has suggested us that the values of
the quantities Cm

0 and Cm
m , m ∈ N, that is, the values of cm,0 and cm,m, m ∈

N, essentially do not influence on the solvability of the following boundary-value
problem for partial difference equations

cm,n = cm−1,n + cm−1,n−1, 1 ≤ n < m,

cm,0 = um, cm,m = vm, m ∈ N,
(1.4)

and, moreover, that these quantities need not be only integers or real numbers, but
can be even complex numbers, that is, that given sequences (um)m∈N and (vm)m∈N
can be complex.

It is known that the partial difference equation appearing in (1.3) and (1.4),
which we call the binomial partial difference equation, is “solvable” (see for example
[12] for a method for solving the equation). However, the notion of solvability of
partial difference equations highly depends on the domain in which the equation is
treated (see for example [8]), which is why we have written the word solvable under
the signs of quotations.

The following formula for “general solution” to the binomial partial difference
equation

cm,n =
m∑

j=0

Cm
j c0,n−j ,

can be found in the literature (see for example [12]). However, since the last formula
depends on the values of the quantities c0,l, l ∈ Z, only, which lie on the same line,
the formula can be regarded as a general solution to the equation only on a half
plane.

All above mentioned have motivated us to show the solvability of boundary-value
problems for the binomial partial difference equation on its natural domain, that
is, on the domain

C = {(m, n) : 0 ≤ n ≤ m, m, n ∈ N0} \ {(0, 0)},

which we call, the combinatorial domain. The solvability of the boundary-value
problem for the equation on the domain was shown in our paper [25], where we
devised a method, which we call, the method of half-lines. There are several ideas
behind the method. One of the main ideas is to slice the combinatorial domain on
half-lines and consider a partial difference equation on them, but as one-dimensional
(scalar) difference equations. The other idea is to try to solve the scalar equations,
but if they are not solvable then we will write them in a form that looks like as
solvable ones, then “solve” them and by using posed boundary conditions to get
a solution on the half-lines. Finally, based on such obtained formulas on the half-
lines, it should be concluded the form of the general solution for the boundary-value
problem on the domain.

Studying difference equations of various types is an area of considerable interest,
especially in the last few last decades (see for example [1]-[13], [15]-[30] and the
references therein).
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Some recent investigations of solvable difference equations show that the nonho-
mogeneous linear first order difference equation (with variable coefficients), that is,
the equation

xn = anxn−1 + bn, n ∈ N, (1.5)

where coefficients an and bn, n ∈ N, and initial value x0 are real or complex
numbers, plays a very important role in the solvability of many classes of differences
equations. The method of transformation has been used successfully and developed
recently by several authors in numerous papers on difference equations (see for
example [19, 27, 29]), as well as on papers on systems of difference equations (see
for example [5, 23, 24, 28, 30], see also numerous related references therein; a
considerable interest to concrete symmetric-type difference equations started after
the publication of papers [16]-[18] by Papaschinopoulos and Schinas). The most
important thing connected to equation (1.5) is that it is solvable in closed form.
For some methods for solving the equation see, for example, [1, 7, 15]. For periodic
solutions to the equation, see [2]. For some classical results on solvability see, for
example, [1, 6, 7, 10, 11, 12, 15]. Recall, that the general solution to the difference
equation is

xn = x0

n∏
j=1

aj +
n∑

i=1

bi

n∏
j=i+1

aj , (1.6)

for n ∈ N0.
One of the methods for solving the equation corresponds to the method of inte-

grating factors for solving the linear first-order differential equation. It is interesting
to note that the form of general solution to equation (1.5) given in (1.6) does not
exclude the case when some of an-s are equal to zero, which is important here,
since we will not have any restrictions in dealing with the main partial difference
equation in this paper. Namely, if

an0 = 0 for some n0 ∈ N, (1.7)

then from (1.5) with n = n0, we have xn0 = bn0 , and consequently

xn0+1 = an0+1bn0 + bn0+1,

which, on the first site, looks quite different from formula (1.6) (xn0 , that is, bn0

here looks like a new (shifted) initial value). However, by using formula (1.6), it
follows that

xn0+1 = x0

n0+1∏
j=1

aj +
n0+1∑
i=1

bi

n0+1∏
j=i+1

aj ,

=
n0+1∑
i=n0

bi

n0+1∏
j=i+1

aj

= bn0an0+1 + bn0+1,

since
n0+1∏
j=i+1

aj = 0, for i = 1, n0 − 1,

by assumption (1.7).
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So, whether or not some of an-s are equal to zero, formula (1.6) holds, unlike
the following formula

xn =
n∏

j=1

aj

(
x0 +

n∑
i=1

bi∏i
j=1 aj

)
, n ∈ N0,

which holds only if
an 6= 0, for every n ∈ N0.

Assume that (nl)l∈I ⊆ N, card(I) ≤ ℵ0, is the set of all indices such that anl
= 0,

l ∈ I, and nl < nl+1, for every l ∈ I. Then compact formula (1.6) can be written
as follows

xnl+k = bnl

k∏
j=1

anl+j +
k∑

j=1

bnl+j

k∏
i=j+1

anl+i,

for every l ∈ I, and k = 0, nl+1 − nl − 1.
Our aim here is to show, by using the method of half-lines, that there is a class of

partial difference equations, which includes the binomial partial difference equation,
which is also solvable on the combinatorial domain, extending the main results in
[25]. A problem of this type has been recently treated in [26]. However, the present
paper can be regarded as the first one which applies the method of half-lines in a
full generality, in the sense that is applied the general form of the solution to the
linear difference equation in (1.6), unlike the ones in our previous papers in the topic
([25, 26]), where essentially some sorts of summing by using the telescoping method
is employed. Our results can be regarded also as a continuation of investigation
of the problem of solvability of difference equations, including partial difference
equations ([5], [23]-[30]). For some classical results on the solvability of partial
difference equations see, for example, [8, 10, 12], while some results up to 2003, can
be found in monograph [8] (see also the related references therein, such as [9]). Some
other types of partial difference equations can be found, e.g., in [3, 20, 21]. Some
partial difference equations can be find also in [1, 11, 14, 15, 22, 31], but usually in
passing, and they are presented and treated more as some exotic recurrent relations.

2. Main results

This section proves the main result in this article and gives some interesting con-
sequences. Namely, we show that the boundary-value problem for partial difference
equations

dm,n = dm−1,n + fndm−1,n−1, 1 ≤ n < m, (2.1)

dm,0 = am, dm,m = bm, m ∈ N, (2.2)

where am, bm and fm, m ∈ N, are complex sequences, is solvable.
To do this we present the first several steps of the method of half-lines, for the

benefit of the reader and since it is not so immediately clear how to guess the
formula for the boundary-value problem (2.1)-(2.2), to avoid presenting a relatively
complicated formula on the spot.

If m = n + 1, then equation (2.1) is

dn+1,n = dn,n + fndn,n−1, (2.3)

for n ∈ N.
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If we use the change of variables xn = dn+1,n, then (2.3) can be regarded as an
equation of type (1.5) with

an = fn and bn = dn,n, n ∈ N.

If we solve it by using formula (1.6), we obtain

dn+1,n =
n∑

j=1

dj,j

n∏
i=j+1

fi + d1,0

n∏
i=1

fi, (2.4)

for n ∈ N0.
If m = n + 2, then (2.1) is

dn+2,n = dn+1,n + fndn+1,n−1, (2.5)

for n ∈ N. Using the change of variables xn = dn+2,n, equation (2.5) can be
regarded as an equation of type (1.5) with

an = fn and bn = dn+1,n, n ∈ N.

By using formula (1.6), we obtain

dn+2,n =
n∑

j=1

dj+1,j

n∏
i=j+1

fi + d2,0

n∏
i=1

fi, (2.6)

for n ∈ N0. Using (2.4) with n = j in (2.6), we obtain

dn+2,n =
n∑

j=1

( j∑
l=1

dl,l

j∏
s=l+1

fs + d1,0

j∏
i=1

fi

) n∏
i=j+1

fi + d2,0

n∏
i=1

fi, (2.7)

for n ∈ N0. We have
n∑

j=1

j∏
i=1

fi

n∏
i=j+1

fi =
n∑

j=1

n∏
i=1

fi = n

n∏
i=1

fi, (2.8)

and
n∑

j=1

n∏
i=j+1

fi

j∑
l=1

dl,l

j∏
s=l+1

fs =
n∑

l=1

dl,l

n∑
j=l

j∏
s=l+1

fs

n∏
i=j+1

fi

=
n∑

l=1

dl,l

n∑
j=l

n∏
s=l+1

fs

=
n∑

l=1

dl,l(n− l + 1)
n∏

s=l+1

fs,

(2.9)

for n ∈ N0. Employing (2.8) and (2.9) in (2.7), we obtain

dn+2,n =
n∑

l=1

dl,l(n− l + 1)
n∏

s=l+1

fs + d1,0n

n∏
i=1

fi + d2,0

n∏
i=1

fi, (2.10)

for n ∈ N0.
If m = n + 3, then (2.1) is

dn+3,n = dn+2,n + fndn+2,n−1, (2.11)
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for n ∈ N. Using the change of variables xn = dn+3,n, equation (2.11) can be
regarded as an equation of type (1.5) with

an = fn and bn = dn+2,n, n ∈ N.

By using formula (1.6), we obtain

dn+3,n =
n∑

j=1

dj+2,j

n∏
i=j+1

fi + d3,0

n∏
i=1

fi, (2.12)

for n ∈ N0. Using (2.10) with n = j in (2.12), we obtain

dn+3,n =
n∑

j=1

( j∑
l=1

dl,l(j − l + 1)
j∏

s=l+1

fs + d1,0j

j∏
i=1

fi + d2,0

j∏
i=1

fi

)
×

n∏
i=j+1

fi + d3,0

n∏
i=1

fi,

(2.13)

for n ∈ N0. We have
n∑

j=1

j

j∏
i=1

fi

n∏
i=j+1

fi =
n∑

j=1

j

n∏
i=1

fi =
n(n + 1)

2

n∏
i=1

fi, (2.14)

and
n∑

j=1

n∏
i=j+1

fi

j∑
l=1

dl,l(j − l + 1)
j∏

s=l+1

fs

=
n∑

l=1

dl,l

n∑
j=l

(j − l + 1)
n∏

i=j+1

fi

j∏
s=l+1

fs

=
n∑

l=1

dl,l

n∏
s=l+1

fs

n∑
j=l

(j − l + 1)

=
n∑

l=1

dl,l

n∏
s=l+1

fs

n−l+1∑
s=1

s

=
n∑

l=1

dl,l

n∏
s=l+1

fs
(n− l + 1)(n− l + 2)

2
,

(2.15)

for n ∈ N0. By using (2.8), (2.14) and (2.15) in (2.13), we obtain

dn+3,n =
n∑

l=1

dl,lC
n−l+2
2

n∏
s=l+1

fs +
(
d1,0C

n+1
2 + d2,0C

n
1 + d3,0

) n∏
i=1

fi, (2.16)

for n ∈ N0.
Based on the formulas (2.4), (2.10) and (2.16), we may assume that

dn+k,n =
n∑

j=1

Cn−j+k−1
k−1 dj,j

n∏
s=j+1

fs

+
(
Cn+k−2

k−1 d1,0 + Cn+k−3
k−2 d2,0 + · · ·+ Cn−1

0 dk,0

) n∏
i=1

fi,

(2.17)
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for every k, n ∈ N. Formulas given in (2.4), (2.10) and (2.16) show that the equality
in (2.17) holds for k = 1, 3.

If m = n + k + 1, then we have

dn+k+1,n = dn+k,n + fndn+k,n−1, (2.18)

for n ∈ N. Using the change of variables xn = dn+k+1,n, equation (2.18) can be
regarded as an equation of type (1.5) with

an = fn and bn = dn+k,n, n ∈ N.

By using formula (1.6), we obtain

dn+k+1,n =
n∑

j=1

dj+k,j

n∏
s=j+1

fs + dk+1,0

n∏
s=1

fs, (2.19)

for n ∈ N0. Employing (2.17) with n = j in (2.19), and by some simple calculations,
it follows that

dn+k+1,n =
n∑

j=1

n∏
s=j+1

fs

j∑
i=1

Cj−i+k−1
k−1 di,i

j∏
s=i+1

fs

+
n∑

j=1

(
Cj+k−2

k−1 d1,0 + Cj+k−3
k−2 d2,0 + · · ·

+ Cj−1
0 dk,0

) n∏
s=1

fs + dk+1,0

n∏
s=1

fs

=
n∑

i=1

di,i

n∑
j=i

Cj−i+k−1
k−1

n∏
s=i+1

fs

+
( k+1∑

r=2

dr−1,0

n∑
j=1

Cj+k−r
k−r+1 + dk+1,0

) n∏
s=1

fs, (2.20)

for n ∈ N0. By using the relation (1.2), we have
n∑

j=1

Cj+k−r
k−r+1 =

n∑
j=1

(
Cj+k−r+1

k−r+2 − Cj+k−r
k−r+2

)
= Cn+k−r+1

k−r+2 − Ck−r+1
k−r+2 = Cn+k−r+1

k−r+2 ,

(2.21)

for every 2 ≤ r ≤ k + 1, and
n∑

j=i

Cj−i+k−1
k−1 =

n∑
j=i

(
Cj−i+k

k − Cj−i+k−1
k

)
= Cn−i+k

k − Ck−1
k = Cn−i+k

k , (2.22)

for every 1 ≤ i ≤ n. Using (2.21) and (2.22) into (2.20), it follows that

dn+k+1,n =
n∑

j=1

Cn−j+k
k dj,j

n∏
s=j+1

fs

+
(
Cn+k−1

k d1,0 + Cn+k−2
k−1 d2,0 + · · ·+ Cn−1

0 dk+1,0

) n∏
s=1

fs,

(2.23)

from which along with the method of induction it follows that formula (2.17) holds
for every k, n ∈ N.
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The above described process leads us into a position to formulate and prove the
main result in this note.

Theorem 2.1. If (ak)k∈N, (bk)k∈N, are given sequences of complex numbers. Then
the solution to partial difference equation (2.1) on domain C, with the boundary
conditions

dk,0 = ak, dk,k = bk, k ∈ N, (2.24)
is given by

dm,n =
n∑

j=1

Cm−j−1
m−n−1bj

n∏
s=j+1

fs +
m−n∑
j=1

Cm−1−j
m−n−jaj

n∏
s=1

fs. (2.25)

Proof. If we put m = n + k in (2.17) and use the conditions in (2.24), we obtain
formula (2.25). �

Remark 2.2. Note that the hypothesis for the solution to boundary-value problem
(2.1)-(2.2) has become clearer after three steps, that is, after finding the “solutions”
to the corresponding first-order linear difference equations on the half-lines m =
n + j, j = 1, 3, n ∈ N0. Hence, to get a correct hypothesis for the general form
of the solution to a boundary-value problem for a partial difference equation we
have to solve first several first-order linear difference equations. First three or four
equations seems will be always enough for doing this.

In the following two corollaries we have that fn = n for n ∈ N, which is one of
the cases that is naturally appeared in several subareas of mathematics.

Corollary 2.3. The boundary-value problem
dm,n = dm−1,n + ndm−1,n−1, 1 ≤ n < m,

dm,0 = 1, dm,m = m!, m ∈ N (2.26)

has solution

dm,n =
n∏

j=1

(m− n + j), (2.27)

for every (m, n) ∈ C.

Proof. Using formula (2.25) we have

dm,n =
n∑

j=1

Cm−j−1
m−n−1j!

n∏
s=j+1

s +
m−n∑
j=1

Cm−1−j
m−n−j

n∏
s=1

s

= n!
( n∑

j=1

Cm−j−1
m−n−1 +

m−n∑
j=1

Cm−1−j
m−n−j

)
,

(2.28)

for every (m, n) ∈ C. We have
n∑

j=1

Cm−j−1
m−n−1 =

n∑
j=1

(
Cm−j

m−n − Cm−j−1
m−n ) = Cm−1

m−n − Cm−n−1
m−n = Cm−1

m−n, (2.29)

and
m−n∑
j=1

Cm−1−j
m−n−j =

m−n∑
j=1

Cm−1−j
n−1 =

m−n∑
j=1

(
Cm−j

n − Cm−1−j
n

)
= Cm−1

m−n−1. (2.30)
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From (2.28)-(2.30) we obtain

dm,n = n!
(
Cm−1

m−n + Cm−1
m−n−1

)
= n!Cm

m−n = n!Cm
n = m(m− 1) · · · (m− n + 1),

which is nothing but formula (2.27). �

Corollary 2.4. The boundary-value problem
dm,n = dm−1,n + ndm−1,n−1, 1 ≤ n < m,

dm,0 = 0, dm,m = m!, m ∈ N.
(2.31)

has solution

dm,n = n

n−1∏
j=1

(m− n + j). (2.32)

Proof. Using formula (2.25), then (2.29), and finally the symmetry of the binomial
coefficients, we have

dm,n =
n∑

j=1

Cm−j−1
m−n−1j!

n∏
s=j+1

s +
m−n∑
j=1

Cm−1−j
m−n−j · 0 ·

n∏
s=1

s

= n!
n∑

j=1

Cm−j−1
m−n−1

= n!Cm−1
m−n = n!Cm−1

n−1 .

(2.33)

From (2.33), formula (2.32) easily follows. �

Remark 2.5. By choosing the sequences (am)m∈N, (bm)m∈N and (fn)n∈N at will,
it can be obtained various other interesting formulas for solutions to the boundary-
value problem (2.1)-(2.2). As we have already mentioned, sequence fn can be chosen
to have (arbitrary many) zeros. We leave it to the imagination of the reader.
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[5] L. Berg, S. Stević; On some systems of difference equations, Appl. Math. Comput., 218

(2011), 1713-1718.
[6] L. Brand; A sequence defined by a difference equation, Amer. Math. Monthly, 62 (7) (1955),

489-492.

[7] L. Brand; Differential and Difference Equations, John Wiley & Sons, Inc. New York, 1966.
[8] S. S. Cheng; Partial Difference Equations, Taylor & Francis, London and New York, 2003.

[9] S. S. Cheng, Y. F. Lu; General solutions of a three-level partial difference equation, Comput.

Math. Appl., 38 (7-8) (1999), 65-79.
[10] C. Jordan; Calculus of Finite Differences, Chelsea Publishing Company, New York, 1956.

[11] V. A. Krechmar; A Problem Book in Algebra, Mir Publishers, Moscow, 1974.
[12] H. Levy, F. Lessman; Finite Difference Equations, Dover Publications, Inc., New York, 1992.
[13] M. Malin; Multiple solutions for a class of oscillatory discrete problems, Adv. Nonlinear Anal.,

4 (3) (2015), 221-233.
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Beograd, 1984 (in Serbian).

[16] G. Papaschinopoulos, C. J. Schinas; On a system of two nonlinear difference equations, J.
Math. Anal. Appl., 219 (2) (1998), 415-426.

[17] G. Papaschinopoulos, C. J. Schinas; On the behavior of the solutions of a system of two

nonlinear difference equations, Comm. Appl. Nonlinear Anal., 5 (2) (1998), 47-59.
[18] G. Papaschinopoulos, C. J. Schinas; Invariants for systems of two nonlinear difference equa-

tions, Differential Equations Dynam. Systems 7 (2), (1999), 181-196.

[19] G. Papaschinopoulos, G. Stefanidou; Asymptotic behavior of the solutions of a class of ratio-
nal difference equations, Inter. J. Difference Equations, 5 (2) (2010), 233-249.
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