
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 19, pp. 1–15.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
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Abstract. We consider the perturbed biharmonic equations

ε4∆2u + V (x)u = f(x, u), x ∈ RN

and
ε4∆2u + V (x)u = Q(x)|u|2

∗∗−2u + f(x, u), x ∈ RN

where ∆2 is the biharmonic operator, N ≥ 5, 2∗∗ = 2N
N−4

is the Sobolev critical

exponent, Q(x) is a bounded positive function. Under some mild conditions

on V and f , we show that the above equations have at least one nontrivial
solution provided that ε ≤ ε0, where the bound ε0 is formulated in terms of

N, V, Q and f .

1. Introduction

We study the perturbed biharmonic equations with subcritical nonlinearity

ε4∆2u+ V (x)u = f(x, u), x ∈ RN ,

u ∈ H2(RN ), u(x)→ 0, as |x| → ∞,
(1.1)

and with critical nonlinearity

ε4∆2u+ V (x)u = Q(x)|u|2
∗∗−2u+ f(x, u), x ∈ RN ,

u ∈ H2(RN ), u(x)→ 0, as |x| → ∞,
(1.2)

where ε > 0 is small, ∆2 is the biharmonic operator, N ≥ 5, 2∗∗ = 2N/(N − 4)
denotes the Sobolev critical exponent; V,Q : RN → R ∈ C(RN ,R). In this paper,
we are interested in the existence of semiclassical solutions for the above equations.

When Ω is a bounded domain of RN , the problem

∆2u+ c∆u = f(x, u) in Ω,
u = ∆u = 0 on ∂Ω,

has been extensively investigated in recent years. This problem arises in the study
of traveling waves in suspension bridges (see [5, 12, 16]) and the study of the static
deflection of an elastic plate in a fluid. For results on multiple nontrivial and sign
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changing solutions of problem (1.2) we refer the readers to [1, 2, 3, 11, 19, 20, 23,
24, 30, 34, 35, 36, 41, 42] and the references therein.

Problems in the whole space RN have been considered in several works; see for
example [4, 7, 15, 17, 18, 21, 22, 27, 31, 32, 33, 37, 38, 39, 40]. To our knowledge,
there are only two papers [18, 21] on the singularly perturbation problem. In [18],
the authors dealt with the autonomous problem

ε4∆2u+ V (x)u = f(u) in RN ,

u ∈ H2(RN ),

where ε > 0, N ≥ 5, and V : RN → R is such that there exists a bounded domain
Ω ⊂ RN and x0 ∈ Ω with 0 < V (x0) = infRN V < inf∂Ω V . A family of solutions
was proved to exist and to be concentrated at a point in the limit. Motivated
by Ding and Lin [8], Wang [21] studied the existence of semiclassical solutions of
non-autonomous problem (1.2) under the following assumptions:

(A1) V ∈ C(RN ), 0 = minV ≤ V (x) and there exists b > 0 such that Vb := {x ∈
RN : V (x) < b} has finite Lebesgue measure;

(A2) Q ∈ C(RN ) and 0 < Q1 := inf Q ≤ supQ := Q2 <∞;
(A3) f ∈ C(RN × R,R) and there exist constants p0 ∈ (2, 2∗∗) > 0 and c > 0

such that

|f(x, t)| ≤ c(1 + |t|p0−1), ∀(x, t) ∈ RN × R;

(A4) f(x, t) = o(|t|), as |t| → 0 uniformly in x.
(A5) There exist c0 > 0 and p > 2 such that F (x, t) ≥ c0|t|p for all (x, t).
(A6) There exists 2 < µ < 2∗∗ such that

µF (x, t) ≤ f(x, t)t for all (x, t), where F (x, t) =
∫ t

0

f(x, s)ds

It is worth pointing out that a crucial technique from [21] is used in the process
of proof: for any (PS)c sequence {un} for Iλ with un ⇀ u, where λ = ε−2 and

Iλ(u) =
1
2

∫
RN

(|∆u|2 + λ|u|2)dx− λ

2∗∗

∫
RN

Q(x)|u|2
∗∗
dx− λ

∫
RN

F (x, u)dx,

the author constructed a new sequence {vn} such that Iλ, I ′λ satisfy BL-splits, i.e.,

Iλ(vn)→ c− Iλ(u), I ′λ(vn)→ 0.

With the aid of this property, the author showed that Iλ satisfies the (PS)-condition
at the levels less than α0λ

1−N4 with some α0 > 0 independent of λ. Based on such
arguments, there are many works devote to semilinear Schröinger equations, to
quasilinear Schröinger equations and elliptic system, we refer readers to [6, 9, 10,
26, 28, 29, 43] and the references therein.

Inspired by [21, 13], we consider problems (1.1) and (1.2). The main ingredients
of our work are two aspects. On the one hand, our aim is to weaken the above
conditions to generalize and improve the result in [21]; on the other hand, we will
develop a more direct and simpler approach. The novel approach not only makes
such an extension possible but also lead to some better results. For example, it
enable us to give an explicit upper bound for the parameter ε.

To state our results, we make the following assumptions which are considerably
weaker than the ones in the previous work:
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(A7) F (x, t) ≥ 0 and limt→∞ |F (x, t)|/|t|2 = ∞ uniformly in x, and there exist
a0 > 0, T0 > 0 and q ∈ (2, 2∗∗) such that

F (x, t) ≥ a0|t|q, ∀(x, t) ∈ RN × [−T0, T0],

t−2h6−N
∫
|x|≤h

F (λ−1/4x, t/h)dx ≥ (4N2 + 2)SN
N(1− 2−N )2

, ∀h ≥ 1, λ ≥ 1, t ≥ hT0,

where and in the sequel, SN = meas(B1(0)) = 2πN/2
NΓ(N/2) ;

(A8) F(x, t) := 1
2 tf(x, t) − F (x, t) ≥ 0 for all (x, t) ∈ RN × R, and there exist

R0 > 0, a1 > 0 and κ > max{1, N4 } such that

tf(x, t) ≤ b

3
|t|2, ∀(x, t) ∈ RN × R, |t| ≤ R0,

|f(x, t)|κ ≤ a1|t|κF(x, t), ∀(x, t) ∈ RN × R, |t| ≥ R0;

(A9) tf(x, t) ≥ 2F (x, t) for all (x, t) ∈ RN × R and there exist a∗ > 0, T1 > 0
and q ∈ (2, 2∗∗) such that

1
2∗∗

Q(x)|t|2
∗∗

+ F (x, t) ≥ a∗|t|q, for (x, t) ∈ RN × [−T1, T1].

In light of (A3)–(A4), there exist R∗ > 0 and a2 > 0 such that

Q(x)|t|2
∗∗

+ tf(x, t) ≤ b

3
|t|2, ∀(x, t) ∈ RN × R, |t| ≤ R∗, (1.3)

tf(x, t) ≤ a2Q(x)|t|2
∗∗
, ∀(x, t) ∈ RN × R, |t| ≥ R∗. (1.4)

Remark 1.1. It is easy to check that the conditions (A7), (A8) and (A9) are
weaker than (A5) and (A6). It is well known that many nonlinearities such as

f(x, t) = t ln(1 + |t|), (1.5)

do not satisfy (A6). A crucial role that (A6) plays is to ensure the boundedness of
Palais-Smale sequences.

Now we only show that f(x, t) satisfies (A7) and (A8). Indeed, by a straightfor-
ward computation,

F (x, t) =
t2 − 1

2
ln(1 + |t|) +

1
4
|t|(2− |t|),

F(x, t) =
1
2
tf(x, t)− F (x, t) =

1
2

ln(1 + |t|) +
1
4
|t|(|t| − 2).

Observe that, letting h ≥ 1, t ≥ hT0 for some T0 ≥ 2, we have

t−2h6−N
∫
|x|≤h

F (λ−1/4x, t/h)dx

= t−2h6−N
∫
|x|≤h

[ ( th )2 − 1
2

ln
(
1 +

t

h

)
+

t
h (2− t

h )
4

]
dx

=
1
N
SNh

N t−2h6−N [ t2 − h2

2h2
ln
(
1 +

t

h

)
+
t(2h− t)

4h2

]
=

1
2N

SNh
4
[(

1− (
h

t
)2
)

ln
(
1 +

t

h

)
+

1
2
(2h
t
− 1
)]

≥ 1
2N

SN
[
(1− T−2

0 ) ln(1 + T0) +
1
T0
− 1

2
]
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≥ 1
2N

SN
[3
4

ln(1 + T0)− 1
2
]
.

This implies that

t−2h6−N
∫
|x|≤h

F (λ−1/4x, t/h)dx ≥ (4N2 + 2)SN
N(1− 2−N )2

, ∀h ≥ 1, t ≥ hT0

for suitable large T0. When t ∈ [−T0, T0], it is easy to see that there exist θ > 0
such that

θ|t| ≤ ln(1 + |t|) ≤ e−1|t|,
then

F (x, t) =
t2 − 1

2
ln(1 + |t|) +

1
4
|t|(2− |t|)

≥ θ

2
|t|3 − 1

2
|t|2 +

(1
2
− e−1

2
)
|t|.

Thus, there exist a0 > 0 and q ∈ (2, 2∗∗) such that

F (x, t) ≥ a0|t|q, t ∈ [−T0, T0].

From the above fact, we deduce that (1.5) satisfies (A7). On the other hand, we
note that

F(x, t) =
1
2
tf(x, t)− F (x, t) =

1
2

ln(1 + |t|) +
1
4
|t|(|t| − 2)

≥ 1
2
|t| − 1

4
|t|2 +

1
4
|t|2 − 1

2
|t| = 0.

By a straightforward computation, there exist R0 > 0, a1 > 0 and κ > max{1, N4 }
such that

tf(x, t) = t2 ln(1 + |t|) ≤ b

3
|t|2, |t| ≤ R0,

and

|f(x, t)
t
|κ =

(
ln(1 + |t|)

)κ ≤ a1

(1
2

ln(1 + |t|) +
1
4
|t|(|t| − 2)

)
= a1F(x, t), |t| ≥ R0.

This shows that (1.5) satisfies (A8).
The main results of this article are the following theorems.

Theorem 1.2. Assume that (A1), (A3), (A4), (A7), (A8) are satisfied. Then there
exists ε0 > 0, such that for 0 < ε ≤ ε0, equation (1.1) has a solution uε satisfying

0 < Φε−4(uε) ≤
b(4κ−4)/4

3κa1 (γ2∗∗γ0)N/2
εN−4,∫

RN
F(x, uε)dx ≤

b(4κ−4)/4

3κa1

(
γ2∗∗γ0

)N/2 εN .
Theorem 1.3. Assume that (A1)–(A4), (A9) are satisfied. Then there exists ε∗ >
0, such that for 0 < ε ≤ ε∗, equation (1.2) has a solution uε satisfying

0 < Φε−4(uε) ≤
Q2

[3(1 + a2)Q2]N/4N(γ2∗∗γ0)N/2
εN−4,∫

RN
F(x, uε)dx+

2
N

∫
RN

Q(x)|uε|2
∗∗

dx ≤ Q2

[3(1 + a2)Q2]N/4N(γ2∗∗γ0)N/2
εN .
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Next, instead of handling (1.1) and (1.2) directly, but handle the equivalent prob-
lems. Let λ = ε−4, then equations (1.1) and (1.2) are equivalent to the following
equations respectively

∆2u+ λV (x)u = λf(x, u), x ∈ RN ,

u ∈ H2(RN ), u(x)→ 0, as |x| → ∞,
(1.6)

and
∆2u+ λV (x)u = λQ(x)|u|2

∗∗−2u+ λf(x, u), x ∈ RN ,

u ∈ H2(RN ), u(x)→ 0, as |x| → ∞,
(1.7)

Therefore, Theorems 1.2 and 1.3 are equivalent to the following theorems.

Theorem 1.4. Assume that (A1), (A3), (A4), (A7), (A8) are satisfied. Then there
exists λ0 > 1, such that for λ ≥ λ0, equation (1.6) has a solution uλ satisfying

0 < Φλ(uλ) ≤ b(4κ−4)/4

3κa1 (γ2∗∗γ0)N/2
λ1−N/4,∫

RN
F(x, uλ)dx ≤ b(4κ−4)/4

3κa1 (γ2∗∗γ0)N/2
λ−N/4.

Theorem 1.5. Assume that (A1)–(A4), (A9) are satisfied. Then there exists λ∗ >
1, such that for λ ≥ λ∗, equation (1.7) has a solution uλ satisfying

0 < Φλ(uλ) ≤ Q2

[3(1 + a2)Q2]N/4N(γ2∗∗γ0)N/2
λ1−N/4,∫

RN
F(x, uλ)dx+

2
N

∫
RN

Q(x)|uλ|2
∗∗

dx ≤ Q2

[3(1 + a2)Q2]N/4N(γ2∗∗γ0)N/2
λ−N/4.

In the next section, we provide some preliminaries and then prove these theorems.

2. Proof of the main results

To prove our results, first, we introduce the working space

E =
{
u ∈ H2(RN ) :

∫
RN

V (x)|u|2dx < +∞
}

and the associated norm

‖u‖ =
(∫

RN
[|∆u|2 + λV (x)|u|2]dx

)1/2

, u ∈ E.

By using (A1) and the Sobolev inequality, we can demonstrate that there exists a
constant γ0 > 0 independent of λ such that

‖u‖H2(RN ) ≤ γ0‖u‖, ∀u ∈ E, λ ≥ 1. (2.1)

This shows that (E, ‖ ·‖) is a Banach space for λ ≥ 1. Furthermore, by the Sobolev
embedding theorem, we have

‖u‖s ≤ γs‖u‖H2(RN ) ≤ γsγ0‖u‖, ∀u ∈ E, λ ≥ 1, 2 ≤ s ≤ 2∗∗, (2.2)

where and in the sequel, by ‖ · ‖s we denote the usual norm in space Ls(RN ).
Let

Φλ(u) =
1
2

∫
RN

(
|∆u|2 + λV (x)|u|2

)
dx− λ

∫
RN

F (x, u)dx (2.3)
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and

Ψλ(u) =
1
2

∫
RN

(
|∆u|2 + λV (x)|u|2

)
dx− λ

2∗∗

∫
RN

Q(x)|u|2
∗∗

dx

− λ
∫

RN
F (x, u)dx.

(2.4)

It is well known that Φλ and Ψλ are of C1(E,R), and

〈Φ′λ(u), v〉 =
∫

RN
(∆u∆v + λV (x)uv) dx− λ

∫
RN

f(x, u)vdx, ∀u, v ∈ E (2.5)

and

〈Ψ′λ(u), v〉 =
∫

RN
(∆u∆v + λV (x)uv) dx

− λ
∫

RN

[
Q(x)|u|2

∗∗−2u+ f(x, u)
]
vdx, ∀u, v ∈ E.

(2.6)

Observe that, since (q − 2)N − 4q < 0, we can let h0 ≥ 1 and h∗ ≥ 1 be such that

(q − 2)SN
2Nq(qa0)2/(q−2)

{ 4N3 + 2
(N + 4)(1− 2−N )2

}q/(q−2)

h
[(q−2)N−4q]/(q−2)
0

=
b(4κ−N)/4

3κa1 (γ2∗∗γ0)N/2

(2.7)

and
(q − 2)SN

2qN(qa∗)2/(q−2)

{ 4N3 + 2(N + 4)
(N + 4)(1− 2−N )2

}q/(q−2)

h
[(q−2)N−4q]/(q−2)
∗

=
Q2

[3(1 + a2)Q2]N/4N(γ2∗∗γ0)N/2
.

(2.8)

Let x0 ∈ RN be such that V (x0) = 0. From now on, we assume without loss of
generality that x0 = 0, that is V (0) = 0, then we can choose λ0 > 1 and λ∗ > 1
such that

sup
λ1/4|x|≤2h0

|V (x)| ≤ h−4
0 , ∀λ ≥ λ0, (2.9)

sup
λ1/4|x|≤2h∗

|V (x)| ≤ h−4
∗ , ∀λ ≥ λ∗. (2.10)

Next, we give the proofs of Theorems 1.2–1.5. Subsection 2.1 considers the
subcritical cases Theorems 1.2 and 1.4, while Subsection 2.2 considers the critical
cases Theorems 1.3 and 1.5.

2.1. Subcritical case. In view of the definition of the norm ‖ · ‖, we can re-write
Φλ in the form

Φλ(u) =
1
2
‖u‖2 − λ

∫
RN

F (x, u)dx, ∀u ∈ E. (2.11)

Let

ϑ(x) :=


1
h0
, |x| ≤ h0,

hN−1
0

1−2−N
[|x|−N − (2h0)−N ], h0 < |x| ≤ 2h0,

0, |x| > 2h0.

(2.12)
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Then ϑ ∈ H2(RN ), moreover,

‖∆ϑ‖22 =
∫

RN
|∆ϑ(x)|2dx ≤ 4N2SNh

N−6
0

(N + 4)(1− 2−N )2
, (2.13)

‖ϑ‖22 =
∫

RN
|ϑ(x)|2dx ≤ 2SNhN−2

0

(1− 2−N )2N
. (2.14)

Let eλ(x) = ϑ(λ1/4x). Then we can prove the following lemma which is very
important.

Lemma 2.1. Suppose that (A1), (A3), (A4), (A7) are satisfied. Then

sup{Φλ(seλ) : s ≥ 0} ≤ b(4κ−N)/4

3κa1(γ2∗∗γ0)N/2
λ1−N/4, ∀λ ≥ λ0. (2.15)

Proof. From (A7), (2.3), (2.7), (2.9), (2.12), (2.13) and (2.14), we obtain
Φλ(seλ)

=
s2

2

∫
RN

(
|∆eλ|2 + λV (x)|eλ|2

)
dx− λ

∫
RN

F (x, seλ)dx

= λ1−N/4
[s2

2

∫
RN

(
|∆ϑ|2 + V (λ−1/4x)|ϑ|2

)
dx−

∫
RN

F (λ−1/4x, sϑ)dx
]

≤ λ1−N/4
[s2

2

(
‖∆ϑ‖22 + ‖ϑ‖22 sup

|x|≤2h0

|V (λ−1/4x)|
)

−
∫
|x|≤h0

F (λ−1/4x, s/h0)dx
]

≤ λ1−N/4
[s2

2
(
‖∆ϑ‖22 + h−4

0 ‖ϑ‖22
)
−
∫
|x|≤h0

F (λ−1/4x, s/h0)dx
]
,

(2.16)

for all s ≥ 0 and λ ≥ λ0,

s2

2
(
‖∆ϑ‖22 + h−4

0 ‖ϑ‖22
)
−
∫
|x|≤h0

F (λ−1/4x, s/h0)dx

≤ s2

2

[
‖∆ϑ‖22 + h−4

0 ‖ϑ‖22 −
(4N2 + 2)SN
N (1− 2−N )2h

N−6
0

]
≤ 0,

(2.17)

for all s ≥ h0T0 and λ ≥ λ0, and

s2

2
(
‖∆ϑ‖22 + h−4

0 ‖ϑ‖22
)
−
∫
|x|≤h0

F (λ−1/4x, s/h0)dx

≤ s2

2
(
‖∆ϑ‖22 + h−4

0 ‖ϑ‖22
)
− a0SN

N
sqhN−q0

≤
(q − 2)

(
‖∆ϑ‖22 + h−4

0 ‖ϑ‖22
)q/(q−2)

2q
(
qa0SN
N hN−q0

)2/(q−2)

≤ (q − 2)SN
2Nq(qa0)2/(q−2)

{ 4N3 + 2
(N + 4)(1− 2−N )2

}q/(q−2)

h
[(q−2)N−4q]/(q−2)
0

=
b(4κ−N)/4

3κa1 (γ2∗∗γ0)N/2
, ∀0 ≤ s ≤ h0T0, λ ≥ λ0.

(2.18)

Now the conclusion of Lemma 2.1 follows from (2.16), (2.17) and (2.18). �
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Applying the mountain-pass lemma without the (PS) condition, by standard
arguments, we can prove the following lemma.

Lemma 2.2. Suppose that (A1), (A3), (A4), (A7) are satisfied. Then there exist
a constant cλ ∈ (0, sups≥0 Φλ(seλ)] and a sequence {un} ⊂ E satisfying

Φλ(un)→ cλ, ‖Φ′λ(un)‖E∗(1 + ‖un‖)→ 0. (2.19)

Lemma 2.3. Suppose that (A1), (A3), (A4), (A7), (A8) are satisfied. Then any
sequence {un} ⊂ E satisfying (2.19) is bounded in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖. Then ‖vn‖ = 1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|vn|2dx = 0,

then by Lions’ concentration compactness principle [14] or [25, Lemma 1.21], vn → 0
in Ls(RN ) for 2 < s < 2∗∗. Hence, from (A1), (A8) and the Hölder inequality it
follows that

λ

∫
|un|≤R0

|f(x, un)vn|dx

≤ λb

3

∫
|un|≤R0

|un||vn|dx

≤ λb

3

∫
RN\Vb

|un||vn|dx+
λb

3

∫
Vb
|un||vn|dx

≤ λb

3

(∫
RN\Vb

|un|2dx
)1/2(∫

RN\Vb
|vn|2dx

)1/2

+
λb[meas(Vb)]1/(N+1)

3

(∫
Vb
|un|2(N+1)/Ndx

)N/2(N+1)

×
(∫
Vb
|vn|2(N+1)/Ndx

)N/2(N+1)

≤ 1
3
‖un‖+

λb[meas(Vb)]1/(N+1)

3
‖un‖2(N+1)/N‖vn‖2(N+1)/N

= [
1
3

+ o(1)]‖un‖.

(2.20)

From (2.3), (2.5) and (2.19), it holds

cλ + o(1) = λ

∫
RN
F(x, un)dx. (2.21)
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Let κ′ = κ/(κ− 1), then 2 < 2κ′ < 2∗∗. By (A8), (2.21) and the Hölder inequality,
one obtain

λ

∫
|un|≥R0

|f(x, un)vn|
‖un‖

dx

= λ

∫
|un|≥R0

|f(x, un)|
|un|

|vn|2dx

≤ λ
(∫
|un|≥R0

( |f(x, un)|
|un|

)κ
dx
)1/κ(∫

|un|≥R0

|vn|2κ
′
dx
)1/κ′

≤ λ
(
a1

∫
|un|≥R0

F(x, un)dx
)1/κ(∫

|un|≥R0

|vn|2κ
′
dx
)1/κ′

≤ λ1−1/κ[a1cλ + o(1)]1/κ‖vn‖22κ′ = o(1).

(2.22)

Combining (2.20) with (2.21) and using (2.11) and (2.19), we have

1 + o(1) ≤ ‖un‖
2 − 〈Φ′λ(un), un〉
‖un‖2

= λ

∫
RN

|f(x, un)vn|
‖un‖

dx

= λ

∫
|un|<R0

|f(x, un)vn|
‖un‖

dx+ λ

∫
|un|≥R0

|f(x, un)vn|
‖un‖

dx

≤ 1
3

+ o(1).

(2.23)

This contradiction shows that δ > 0.
Going to a subsequence, if necessary, we may assume the existence of kn ∈ ZN

such that
∫
B1+

√
N (kn)

|vn|2dx > δ
2 . Let wn(x) = vn(x+ kn). Then∫
B1+

√
N (0)

|wn|2dx >
δ

2
. (2.24)

Now we define ũn(x) = un(x + kn), then ũn/‖un‖ = wn and ‖wn‖22 = ‖vn‖22.
Passing to a subsequence, we have wn ⇀ w in H2(RN ), wn → w in Lsloc(RN ),
2 ≤ s < 2∗∗ and wn → w a.e. on RN . Obviously, (2.24) implies that w 6= 0. For
a.e. x ∈ {z ∈ RN : w(z) 6= 0}, we have limn→∞ |ũn(x)| = ∞. Hence, it follows
from (2.11), (2.19), (A7) and Fatou’s lemma that

0 = lim
n→∞

cλ + o(1)
‖un‖2

= lim
n→∞

Φλ(un)
‖un‖2

= lim
n→∞

[1
2
‖vn‖2 − λ

∫
RN

F (x+ kn, ũn)
|ũn|2

|wn|2dx
]

≤ 1
2
− λ

∫
RN

lim inf
n→∞

F (x+ kn, ũn)
|ũn|2

|wn|2dx = −∞.

This contradiction shows that {‖un‖} is bounded. �

Proof of Theorem 1.4. Applying Lemmas 2.1, 2.2 and 2.3, we deduce that there
exists a bounded sequence {un} ⊂ E satisfying (2.20) with

cλ ≤
b(4κ−N)/4

3κa1 (γ2∗∗γ0)N/2
λ1−N/4, ∀λ ≥ λ0. (2.25)

Going if necessary to a subsequence, we can assume that un ⇀ uλ in (E, ‖ · ‖) and
Φ′λ(un)→ 0. Next, we prove that uλ 6= 0.



10 Y. HE, X. TANG, W. ZHANG EJDE-2017/19

Arguing by contradiction, suppose that uλ = 0, i.e. un ⇀ 0 in E, and so un → 0
in Lsloc(RN ), 2 ≤ s < 2∗∗ and un → 0 a.e. on RN . Since Vb is a set of finite measure
and un ⇀ 0 in E, it holds

‖un‖22 =
∫

RN\Vb
|un|2dx+

∫
Vb
|un|2dx ≤ 1

λb
‖un‖2 + o(1). (2.26)

For s ∈ (2, 2∗∗), from (2.2), (2.26) and the Hölder inequality it follows that

‖un‖ss ≤ ‖un‖
2(2∗∗−s)/(2∗∗−2)
2 ‖un‖2

∗∗(s−2)/(2∗∗−2)
2∗∗

≤ (γ2∗∗γ0)2∗∗(s−2)/(2∗∗−2)(λb)−(2∗∗−s)/(2∗∗−2)‖un‖s + o(1).
(2.27)

According to (F4) and (2.26), one can obtain

λ

∫
|un|≤R0

f(x, un)undx ≤ λb

3

∫
|un|≤R0

|un|2dx ≤ 1
3
‖un‖2 + o(1). (2.28)

By (2.3), (2.5) and (2.19), we have

Φλ(un)− 1
2
〈Φ′λ(un), un〉 = λ

∫
RN
F(x, un)dx = cλ + o(1). (2.29)

Using (A8), (2.25), (2.27) with s = 2κ/(κ− 1) and (2.29), we obtain

λ

∫
|un|≥R0

f(x, un)undx

≤ λ
(∫
|un|≥R0

( |f(x, un)|
|un|

)κ
dx
)1/κ

‖un‖2s

≤ a1/κ
1 (γ2∗∗γ0)2·2∗∗(s−2)/s(2∗∗−2)λ1−1/κ(λb)−2(2∗∗−s)/s(2∗∗−2)c

1/κ
λ ‖un‖

2 + o(1)

≤ a1/κ
1 (γ2∗∗γ0)N/2κλ1−1/κc

1/κ
λ (λb)−(4κ−N)/4κ‖un‖2 + o(1) (2.30)

=
a

1/κ
1 (γ2∗∗γ0)N/2κ

b(4κ−N)/4κ
[λ(N−4)/4cλ]1/κ‖un‖2 + o(1)

≤ 1
3
‖un‖2 + o(1),

which, together with (2.5), (2.19) and (2.28), yields

o(1) = 〈Φ′λ(un), un〉 = ‖un‖2 − λ
∫

RN
f(x, un)undx ≥ 1

3
‖un‖2 + o(1); (2.31)

this results in the fact that ‖un‖ → 0. Consequently, from (A3), (2.11) and (2.19)
it follows that

0 < cλ = lim
n→∞

Φλ(un) = Φλ(0) = 0.

This contradiction shows uλ 6= 0. By a standard argument, we easily certify that
Φ′λ(uλ) = 0 and Φλ(uλ) ≤ cλ. Then uλ is a nontrivial solution of (1.7), moreover

cλ ≥ Φλ(uλ) = Φλ(uλ)− 1
2
〈Φ′λ(uλ), uλ〉 = λ

∫
RN
F(x, uλ)dx. (2.32)

�

Note that Theorem 1.2 is a direct consequence of Theorem 1.4.
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2.2. Critical case. In view of the definition of the norm ‖ · ‖, we can re-write Ψλ

in the form

Ψλ(u) =
1
2
‖u‖2 − λ

2∗∗

∫
RN

Q(x)|u|2
∗∗

dx− λ
∫

RN
F (x, u)dx, ∀u ∈ E. (2.33)

Let e∗λ(x) = ϑ∗(λ1/4x), where

ϑ∗(x) :=


1
h∗
, |x| ≤ h∗,

hN−1
∗

1−2−N

[
|x|−N − (2h∗)−N

]
, h∗ < |x| ≤ 2h∗,

0, |x| > 2h∗.

(2.34)

Then we can prove the following lemma in the same way as the proof of Lemma
2.1.

Lemma 2.4. Suppose that (A1), (A3), (A4), (A9) are satisfied. Then

sup {Ψλ(se∗λ) : s ≥ 0} ≤ Q2

[3(1 + a2)Q2]N/4N(γ2∗∗γ0)
N
2
λ1−N/4, ∀λ ≥ λ∗. (2.35)

Applying the mountain-pass lemma without the (PS) condition, by standard
arguments, we can also prove the following lemma.

Lemma 2.5. Suppose that (A1), (A3), (A4), (A9) are satisfied. Then there exist
a constant cλ ∈ (0, sups≥0 Ψλ(se∗λ)] and a sequence {un} ⊂ E satisfying

Ψλ(un)→ cλ, ‖Ψ′λ(un)‖E∗(1 + ‖un‖)→ 0. (2.36)

Lemma 2.6. Suppose that (A1), (A3), (A4), (A9)t are satisfied. Then any sequence
{un} ⊂ E satisfying (2.36) is bounded in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖. Then ‖vn‖ = 1. In view of (A2) and (A4), we can
choose Rλ ∈ (0, 1) such that

|Q(x)|t|2
∗∗−2t+ f(x, t)| ≤ 1

3λ(γ2∗∗γ0)2
|t|, ∀x ∈ RN , |t| ≤ Rλ. (2.37)

Hence, by (2.2), (2.37) and the Hölder inequality, it holds

λ

‖un‖

∫
|un|≤Rλ

|[Q(x)|un|2
∗∗−2 + f(x, un)]vn|dx

≤ 1
3(γ2∗∗γ0)2‖un‖

∫
|un|≤Rλ

|un||vn|dx

≤ 1
3(γ2∗∗γ0)2‖un‖

‖un‖2‖vn‖2 ≤
1
3
.

(2.38)

From (A2), (A9), (2.6), (2.33) and (2.36), one has

cλ + o(1) = λ

∫
RN

[ 2
N
Q(x)|un|2

∗∗
+ F(x, un)

]
dx

≥ 2λQ1

N

∫
|un|≥Rλ

|un|2
∗∗

dx.
(2.39)
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Sing (A3), (A2), (2.39) and the Hölder inequality, we obtain

λ

‖un‖

∫
|un|≥Rλ

|
[
Q(x)|un|2

∗∗−2un + f(x, un)
]
vn|dx

≤ λCλQ2

‖un‖

∫
|un|≥Rλ

|un|2
∗∗−1|vn|dx

≤ λCλQ2

‖un‖
‖vn‖2∗∗

(∫
|un|≥Rλ

|un|2
∗∗

dx
)(2∗∗−1)/2∗∗

= o(1),

(2.40)

where Cλ is a constant depend on λ. Combining (2.38) with (2.40) and using (2.6)
and (2.36), we have

1 + o(1) =
‖un‖2 − 〈Ψ′λ(un), un〉

‖un‖2

=
λ

‖un‖

∫
RN

[
Q(x)|un|2

∗∗−2un + f(x, un)
]
vndx

≤ λ

‖un‖

∫
|un|<Rλ

|
[
Q(x)|un|2

∗∗−2un + f(x, un)
]
vn|dx

+
λ

‖un‖

∫
|un|≥Rλ

|
[
Q(x)|un|2

∗∗−2un + f(x, un)
]
vn|dx

≤ 1
3

+ o(1),

which is a contradiction. Thus the sequence {un} is bounded in E. �

Proof of Theorem 1.5. Applying Lemmas 2.4, 2.5 and 2.6, we deduce that there
exists a bounded sequence {un} ⊂ E satisfying (2.36) with

cλ ≤
Q2

[3(1 + a2)Q2]N/4N(γ2∗∗γ0)N/2
λ1−N/4, ∀λ ≥ λ∗. (2.41)

Going to a subsequence,if necessary, we can assume that un ⇀ uλ in (E, ‖ · ‖) and
Ψ′λ(un)→ 0. Next, we prove that uλ 6= 0.

Arguing by contradiction, suppose that uλ = 0, i.e. un ⇀ 0 in E, and so un → 0
in Lsloc(RN ), 2 ≤ s < 2∗∗ and un → 0 a.e. on RN . Since Vb is a set of finite measure
and un ⇀ 0 in E,

‖un‖22 =
∫

RN\Vb
|un|2dx+

∫
Vb
|un|2dx ≤ 1

λb
‖un‖2 + o(1), (2.42)

which, together with (1.3), yields

λ

∫
|un|≤R∗

[
Q(x)|un|2

∗∗
+ f(x, un)un

]
dx

≤ λb

3

∫
|un|≤R∗

|un|2dx ≤ 1
3
‖un‖2 + o(1).

(2.43)

By (2.6), (2.33) and (2.36), we have

Ψλ(un)− 1
2
〈Ψ′λ(un), un〉 = λ

∫
RN

[
2
N
Q(x)|un|2

∗∗
+ F(x, un)

]
dx

= cλ + o(1).
(2.44)
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Using (2.2), (1.4), (2.41), (2.44) and the Hölder inequality, we obtain

λ

∫
|un|>R∗

[
Q(x)|un|2

∗∗
+ f(x, un)un

]
dx

≤ (1 + a2)λ
∫
|un|>R∗

Q(x)|un|2
∗∗

dx

≤ (1 + a2)λ(Q2)2/2∗∗
(∫
|un|>R∗

Q(x)|un|2
∗∗

dx
)4/N(∫

|un|>R∗
|un|2

∗∗
dx
)2/2∗∗

= (1 + a2)(λQ2)2/2∗∗
(∫
|un|>R∗

Q(x)|un|2
∗∗

dx
)4/N

‖un‖22∗∗ (2.45)

= (1 + a2)Q2(γ2∗∗γ0)2
( N
Q2

)4/N (λ
N−4

4 cλ)4/N‖un‖2 + o(1)

≤ 1
3
‖un‖2 + o(1),

which, together with (2.6) and (2.43), yields

o(1) = 〈Ψ′λ(un), un〉

= ‖un‖2 − λ
∫

RN

[
Q(x)|un|2

∗∗
+ f(x, un)un

]
dx

≥ 1
3
‖un‖2 + o(1);

(2.46)

this results in the fact that ‖un‖ → 0. The rest proof is the same as one of Theorem
1.4. �

Note that Theorem 1.3 is a direct consequence of Theorem 1.5.
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[2] C. O. Alves, A. B. Nóbrega; Existence of multi-bump solutions for a class of elliptic problems

involving the biharmonic operator, arXiv: 1602.03112v1.

[3] V. Alexiades, A. R. Elcrat, P. W. Schaefer; Existence theorems for some nonlinear fourth-
order elliptic boundary value problems, Nonlinear Anal., 4 (1980), 805-813.
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