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Abstract. Starting from the classical differential cryptography, we describe

how to construct particular parameters for elliptic curves with application to

the domain of information security. These results conclude to a key used on
symmetrical encryption. The article will review a solution in which the parties

are authenticated based on a secret knowledge and a random parameter.

1. Introduction

Communication secrecy mainly depends on the generation and distribution of the
master key. The keys generation stage relies on the computation of some differential
parameters over a particular elliptic curve.

This system is useful when a symmetrical encryption key is used for the mes-
sages, and an agreement on a ciphering key (the session key), based on public keys
encryption, is made. The initial idea which led to the development of the identity
based system belongs to Shamir [5, 8], whose aim was to create a method that
ensures confidentiality. Let Alice and Bob be the two parties who want to com-
municate. Both have an e-mail address. When Alice wants to send a message to
Bob, she will be accessing a server which stores Bob’s public key, and she will use
this key to encrypt information. The server will store for both parties the private
and public keys. A key request will take place when the server receives a message
which contains the e-mail address of the one who’s public key is asked for. Shamir
simplified the system by introducing a function, denoted by χ, which generates a
public key based on a random string (e-mail address). In this way, Alice will not
be requesting the key from the server anymore, instead she will use the key which
was generated by the χ function. The usefulness of the system resides in the fact
that one can encrypt and send messages to somebody on the network even if the
password server is unavailable. It also eliminates the need to gain access to the
password server for the dialog’s counterpart. A series of algorithms and protocols
which are based on this system have been developed [4, 6, 7, 9, 19]. Not all of
them can be used in real life due to the burden that some of these algorithms and
protocols impose on modern computing systems.
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2. Proposed Scheme

The description of identity is based on the confidentiality of the system.
In [2, 3, 14, 20], there have been elaborated some series of identity based systems.
Those solutions are composed of the following parts:

(1) The system’s setup.
To each dialoguing party the Password server assigns a control key, called
ID. This key is used by the Password server to communicate with its users.
The Password server will be called PKG (Public Key Generator) from now
on.

(2) Encryption.
A participant, called A, who wants to communicate with another (called
B), will encrypt the message, which will be sent out with a public key,
called pk, obtained from the morphing, through function χ, of a string s
which contains B’s identifier (which can also be B’s address).

(3) Decryption.
A system user who will receive such messages will access the PKG and,
based on his ID, will obtain the private key with which he can decrypt the
message.

In the eventuality in which the line is listen to, the eavesdropper will gain access
only to the encrypted message.

2.1. Elliptic curve based system. We consider the function

f(x) =
∫

dx√
4x3 − ax− b

(2.1)

where a and b are constants. The inverse of this function is called an elliptic curve.
Let γ1 and γ2 be two constants, and a double periodic function over R. Then the
Weierstrass function is of the form

(α′)2 = 4α3 − γ1α− γ2. (2.2)

The pair (α, α′) defines in space a point on the elliptic curve

y2 = 4x3 − γ1x− γ2. (2.3)

We refer to [3] for more results.

Definition 2.1 ([5]). Let p > 3 be a prime integer. The elliptic curve y2 =
x3 + γ1x + γ2, defined over Zp, is being defined as the solution set of the form
(x, y) ∈ Zp × Zp with respect to the congruence relation

y2 ≡ x3 + γ1x+ γ2 mod p (2.4)

where the coefficients γ1, γ2 ∈ Zp are constants which respect the relation

4γ3
1 + 27γ2

2 ≡6 0 mod p (2.5)

together with a special point, called point at infinity

Lemma 2.2 ([13]). Let E be an elliptic curve defined as

Y2 + γ1XY + +γ3Y = X3 + γ2X
2 + γ4X + γ6 (2.6)

and A1 = (x1, y1), A2 = (x2, y2) two points on the curve. Then

−A1 = (x1,−y1 − γ1x1 − γ3) (2.7)
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and

λ =
y2 − y1
x2 − x1

, γ =
y1x2 − y2x1

x2 − x1
(2.8)

where x1, x2 satisfy the condition x1 6= x2 and from here results

λ =
3x2

1 + 2α2x1 + α4 − α1y1
2y1 + α1x1 + α3

, γ =
−x3

1 + α4x1 + 2α6 − α3y1
2y1 + α1x1 + α3

. (2.9)

In the case x1 equals x2, the points A1 a̧nd A2 being unequal, the addition of the
two points will be done as

x3 = λ2 + α1λ− α2 − x1 − x2, y3 = −(λ+ α1)x3 − γ − α3 (2.10)

With respect to this lemma, we distinguish the following two cases:
(1) x2 = x1 and y2 = y1. In this case, A1 +A2 = O.
(2) In all other cases we have A1 +A2 = B = B(x3, y3), where

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1 (2.11)

and

λ =

{
(y2 − y1)(x2 − x1)−1, A1 6= A2;
(3x2

1 + a)(2y1)−1, A1 = A2.
(2.12)

Optimization of Elliptic Curves Parameters. In practice there are used ellip-
tic curves defined over a finite field Fq, which means that the study will be made
on an Abelian group.

Let s be the number of points on an elliptic curve E, defined over Fq. Then
s = #E(Fq) = q+ 1− t, where #E(Fq) is named trace of Frobenius at q. Thus we
can define Frobenius endomorphism as being

ϕ =


E(F q)→ E(F q)
(x, y)→ (xq, yq)
O→ O

(2.13)

An approximation of the number of points on an elliptic curve is given by the Hass
theorem. In this way, t must fulfil the condition

|t| ≤ 2
√
q (2.14)

To compute the addition of two points on a elliptic curve in finite fields one of
the solutions will be Weil pairing implementation. Let K be a finite field and an
elliptic curve defined over field E(K) with E(m) its group of m-torsion points if
char(K) = p and gcd(m, p) = 1 then there are m2 such points.

Lemma 2.3 ([14]). Let E be an elliptic curve over Fq and m be a prime which
divides #E(Fq) but which does not divide q − 1 and m 6= char(Fq). Then E(Fqk)
contains the m2 points of order m if m divides qk − 1

According to [10, 15, 23] we will define Weil pairing as being E(m)×E(m)→ γm

where γm is the group of mth roots of unity in K. Thus, let be B1, B2 ∈ E[m] and
we choose a function g in E whose divisor satisfies

div(g) =
∑

D∈E[m]

(B′1 +D)− (D) (2.15)
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with B′ ∈ E(K) such that [m]B′ = B. In this case, we define em as:

em =

{
E[m]× E[m]→ γm

(B1, B2)→ g(X+B1)
g(X)

(2.16)

In the case of the implementation in computing systems of a subfield curve, of
type Fqn , n must be greater than 1 and the coefficients from Fq. We will define
[12, 13] as a new addition method (and subsequently multiplication method by an
integer) of two points on the elliptic curve using Frobenius Expansion. In equation
(16) ϕ must satisfy equation

ϕ2 − [t]ϕ+ [q] = [0] (2.17)

In this way we will define an addition and multiplication method which will speed
up the finding of the result. For the particular case where there is a subfield
Fqn provided that the multiplication factor, let it be K, to satisfy the property
|K| ≤ bq/2c.

Model implementation. Regarding the implementation of an hierarchical infor-
mation’s access, a function which would generate a public key based on the conju-
gated information, from the corresponding hierarchy level and the communication
channel’s user’s custom string, must be defined. Let be a function of the form

ϕ(level, string) = public key (2.18)

where level represents the access level of an user and string represents a character
string which characterizes the communication’s participant.

Figure 1. Users grouped in a hierarchical order

In Figure 1 is being shown the way in which users are being grouped in a hier-
archical order. The basic principle of the hierarchy is to respect the information’s
access rights by the users from the same level. Every member of the network will
define a point Aj

i ∈ E, where j represents the hierarchical level of each user. For
every session, in order to obtain the private key from the key server, it will be used
the GN1 algorithm, and resulting from the creation of a session key, the private
key will also be generated. One must take into account the security facts described
in [1, 16, 17, 18].
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GN1 Group Protocol. Now we present the way to achieve the agreed key, for
each (Ai, Aj) participants pair and from it will be created a common key group,
in the assumption of security level which are presented and proved in a previous
work, detailed in [11, 21, 22]. To describe those cases let as consider the following:

• πKAi
- the secret key of Ai

• πPAi
- the public key of Ai

• ηd
Ai

(πKAi
,m) - the encryption of message m with Ai’s secret key

• ηe
Ai

(πPAi
,m) - the encryption of message m with Ai’s public key

• enc(sK ,m) - the symmetric key encryption of message m with key sK

• infAi
- the pseudorandom generated value by Ai for every session

• E(Zp) - the elliptic curve defined over Zp

• M - the messages space
• hf(·) - the SHA− 1 hash function
• m1|m2 - the concatenation of the m1,m2 messages, when m1, m2 ∈M

A system user, denoted as Ai, has the next public parameters:

• (πPAi
, E(Zp), P,Q, n), where P,Q ∈ E(Zp)

Also, the function ηd
Ai

(πKAi
,m), ηe

Ai
(πPAi

,m) and hf(·) are public. For the user
Ai, the following are private:

• πKAi
and infAi

From those, the steps are defined in the next manner:
The Protocol

• Ai

(1) generates a pseudo-random number infAi ∈ [1, n− 1]
(2) calculates A1

i = infAi
(P−1 + Q) = (xAi

1 , yAi
1 ). Let x = xAi

1 mod n. If
x = 0 then goto step 1

(3) calculates A2
i = hf(PAi

|A1
i )

(4) calculates A3
i = ηd

Ai
(πKAi

, A2
i )

(5) The first communication step (from Ai to Aj)
Ai sends to Aj (A1

i |A2
i )

• Aj

(1) calculates A1
j = hf(PAi

|A1
i )

(2) calculates A2
j = ηe

Ai
(πPAi

, A2
i ). If A1

j 6= A2
j terminates the protocol

run with failure.
(3) Generates pseudo random number infAj

∈ [1, n− 1]
(4) calculates A1

j = infB(P−1 + Q) = (xAj

1 , y
Aj

1 ). If xAj

1 = 0 go to step 3
of Aj ’s steps

(5) calculates A2
j = hf(PAj |A1

j )
(6) calculates A3

j = ηd
Aj

(πKAj
, A2

j )

(7) KAj = infAj A
1
i = (xAj

2 , y
Aj

2 )
(8) x = x

Aj

2 mod n. If x = 0 then go to step 3 of Aj ’s steps
(9) The second communication step (from Aj to Ai)

Aj sends to Ai (A1
j |A3

j )
• Ai



6 A. I. GOLUMBEANU EJDE-2017/20

6 calculates
sAi
1 = hf(PAj , A

1
j )

sAi
2 = ηe

Aj
(πPAi

, A3
j )

7 if sAi
1 6= sAi

2 terminates the protocol run with failure
8 KAi

= infAi
A1

j

Three step protocol. Starting from the exposed protocol, as follows the three-
steps protocol which assures the confirmation of the key by Ai. This protocol is
analogous with the previous one, adding a supplementary step.

Therefore, Ai will compute hf((infAi
(P−1 +Q))| enc(KAi

, infAj
(P−1 +Q))) and

send it to Aj . At this point, Aj will check the equality:

hf((inf
Ai

(P−1 +Q))| enc(KAi , inf
Aj

(P−1 +Q)))

= hf((inf
Ai

(P−1 +Q))| enc(KAj , inf
Aj

(P−1 +Q))).

If the equality returns successfully, the key is confirmed.
In the implementation, we used a confirmation step, in order to increase the sped,

because in case of fail the protocol will restart from the beginning. Statistically, the
necessary time to do this step is less than the spent time for restart the protocol.

Therefore we define

h′int(h(K)) (2.19)

with h′int : M → N , where h′ will generate an integer: h′int(h(K)) = t, t ∈ N , and
t must accomplish t ≤

√
2n

Let Lt;0≤t≤m be the hierarchy levels. The key for each user At
i will be made in

two steps. First, the authentication step, which is done in the first protocol, and
second, by authenticated key, made by the supplementary step from the second
protocol. The assumption of this scheme is that the key will be established from
M i

t (the master key from the server, where t is the level and i is the user) and the
user Ai knowledge.

2.2. Conclusions. In this article it is described a way in which the communication
channel of the user access to information can be grouped in a leveled hierarchy. The
problems known to this type of system are related to the length of the messages
exchanged by the participants, based on the same string structure. In fact, in prac-
tice a time-stamp is used, but this is not always the case because when wide-band
consumers are involved the most important thing is about thing is the computing
time and the way to produce the time-stamp for each group. The proposed model
limits the number of valid messages that can be transmitted, with the same per-
sonalization string of an user, by a amplification factor which takes into account
the frequency of the communication between the Key Generator and the control
points of each level.
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