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SOLUTIONS TO POLYTROPIC FILTRATION EQUATIONS WITH
A CONVECTION TERM

HUASHUI ZHAN

ABSTRACT. We introduce a new type of the weak solution of the polytropic
filtration equations with a convection term,
bt (u™)

ox;
Here, @ C RY is a domain with a C? smooth boundary 89, a(z) € C1(Q),
p>1,m:1+ﬁ,a>0,a(a§)>0When:v€Qanda(z)szhean@Q.
Since the equation is degenerate on the boundary, its weak solutions may lack
the needed regularity to have a trace on the boundary. The main aim of the
paper is to establish the stability of the weak solution without any boundary
value condition.

ug = div(a(e)|u|®|VulP~2Vu) +

1. INTRODUCTION

Consider the polytropic filtration equation with a convection term
bt (u™)
3xi ’

where p > 1, m =1+ %5, a >0, Q2 C RY is with a C? smooth boundary 95,
a(z) € CHQ), a(r) = 0. The equations like (1.1) arise from a variety of diffu-
sion phenomena, such as soil physics, fluid dynamics, combustion theory, reaction
chemistry, one can see [I, [10] and the references therein.

In particular, when « > 0, a(z) = 1, the well-posedness of equation (1.1)) with

the usual initial-boundary value conditions

ult=o = uo(z), = € Q, (1.2)
u(z,t) =0, (z,t) ep =00 x(0,T), (1.3)

up = div(a(z)|u|®*|VuP~2Vu) + (x,t) € Qr =Q x (0,T), (1.1)

has been studied thoroughly, one can refer to [2], 13, 4 [5] [ [7], [8] L [TT], 12} 13, [15] [16].
In this article, we assume that

a(z) >0,z € Q,
a(zx) =0,z € 00.
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Consequently, equation is always degenerate on the boundary. Not only the
degeneracy comes from the physics quantity u itself, but also comes from the dif-
fusion coefficient a(z).

Now, let us introduce some basic definitions and the main results. For every
fixed t € [0,T], the Banach space

Vi(Q) = {u(z,t) s u(z,t) € LH(Q) N Wy (Q), |[Vu(z, t)|P € L' ()},

is with the norm

[ullvii) = llull2,0 + [[Vullpa,
and we denote its dual space as V/(Q2). By W(Qr) we denote the Banach space

W(Qr)={u:[0,T] = V;(Q)|u € Lz(QT)7 |[Vul? € Ll(QT)m =0 on 09},
lullw@ry = IVullpgr + llull2,Qr-

Here W/(Qr) is the dual of W(Qr) (the space of linear functionals over W(Qr),
w e W’(QT) if

w=wo+ Y Diw;, wo € L*(Qr),w; € L¥ (Qr),
i=1

Vo € W(Qr), (w,d) = / /Q (100 + Y wiDy) v

The norm in W/ (Qr) is defined by
[ollw(@r) = sup{{v, ¢) : ¢ € W(Q),[|¢llw(@.) <1}

Definition 1.1. A nonnegative function u(z,t) is said to be a weak solution of
(1.1)) with the initial value (1.2)), if u satisfies

Ou
u€ L¥(Qr), 5 € W(Qr), a(@)ul*|Vul” € L'(Qr), (1.4)
and for any function ¢, € L1(0,T;C3(Q)), p2 € L®(Q7) such that for any given

t€[0,7), pa(z,-) € WEP(Q), we have

// [%(@1802) + a(@)|ul*|VulP"2Vu - V(p1ps)

(1.5)
+ b (u™) (p192)a,] dxdt = 0.
The initial value (|1.2]) is satisfied in the sense that
}irr(l) u(z, t)p(x) de = / uo(x)p(x) dz,Vo(x) € C5° (). (1.6)
—0Jq Q

If u € L0, T; WH7(2)) for some constant v > 1, the boundary value condition
(1.3) is satisfied in the sense of the trace, then we say u is a weak solution of the
initial-boundary problem of equation ([1.1)).

Clearly, if noticing m =1+ %5, by (L.4), then
a(z)|Vu™ P € LY(Qr),
and (1.5]) is equivalent to

ou 1 m|p— m
/] [ + el VPV Vpien) W

+ 0" (") (p1p2)a, ] dx dt = 0.
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In general, since (|1.1)) is always degenerate on the boundary, instead of u(z,t) €
L>(0,T; Wy P(Q)), we only have u(x,t) € L>(0,T; W,-?(Q)). Thus, we can not
define the trace of the weak solution u on the boundary. If u,v are two weak solu-

tions of equation (|1.1)), to prove the stability (or uniqueness) of the weak solutions,
one generally must choose a test function with the form f(z, ¢, uw—v) which involves
the boundary value condition

w(@,t) = v(z,t) =0, (z,t) € Ty =00 x (0,T). (1.8)

However, the weak solution defined in this paper can not guarantee this condition.
This is the main reason that we need to choose the test function ;2 in Definition

L1

Ifa =0, m=1, b =0, the existence of the weak solutions had been proved in
our previous paper [I4]. In this paper, we mainly concern with the stability of the
weak solutions of equation ([1.1)).

Theorem 1.2. Let u,v be two nonnegative solutions of (L.1)) with the same homo-
geneous boundary value condition (1.3) and with the different initial values ug, vo
respectively. Then

/Q |u(z,t) — v(z,t)|de < /Q lup — vo| dz. (1.9)

Theorem 1.3. Let u,v be two nonnegative solutions of equation (L.1|) with the
initial values ug, vy respectively. If 1 < p < 2, and

/ aiﬁ(ac)dx < o0, (1.10)
Q

then the stability of the weak solutions is true in the sense of (1.9)).

Theorem 1.4. Let u,v be two nonnegative solutions of (1.1)) with the initial values
ug, vo respectively. If p > 1 and for small enough A > 0, u(x) and v(zx) satisfy

1 / 2=l 1 / 2=l
— a(z)|Vu™|Pdx <e, = a(x)|Vu™|Pdx <ec, 1.11
3 (S, 2T ) 3 (S, 2T P0) (1.11)

then (1.9) is true. Here Qy ={x € Q:a(x) > A}

Theorem 1.5. Let u,v be two weak solutions of problem (1.1)) with the initial
values ug(x), vo(z) respectively. If p > 1, m >0,

/ @|um|daz <e / @|vm|dm <e (1.12)
Q @ Q @

then (1.9) is true.

At the end, we suggest that not any boundary value condition is required in

Theorems However, from my own perspective, the condition (1.12)) in
Theorem 1.5 makes a substitute of the boundary value condition. Moreover, if

b* =0, i.e. equation (1.1]) has no convection term, Theorem is true without the
condition (|1.12)).
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2. PROOF OF THEOREM

Let u,v are two nonnegative solutions of equation (1.1)) with the same homoge-
neous boundary value and with the different initial values ug, vg respectively. From
the definition of the weak solution, we let ¢ = p € L'(0,T;C}(£2)), p2 = 1. Then

/ G2V gy / a(z) (u®|Vul'*Vu — v | Vo~ Vv) - Vo do
Q ot Q (2.1)

n /Q B (™) — B (™) gy, diz = 0,

or equivalently

8(11,71)) 1 m|p—2 m m|p—2 m
/anTda:—Fmp_l/ﬂa(x)ﬂVu [P=2Vu™ — |V P2 Vo™) - Ve dx

(2.2)
+ / [b"(u™) — b (v™)] e, dx = 0.
Q
For small n > 0, let
’ 2. sl
Sn(s) = ; hy(T)dr,  hy(s) = = (1 ?L : (2.3)
Obviously h,(s) € C(R), and
hy(s) 20, [shy(s)| <1, [Sy(s)] < 1,
lim S, (s) =sgns, lim sS)(s) = 0. (2.9)
n—0 n—0
We can choose ¢ = 5,(u™ —v™) as the test function, then
a(u — U) 1 m|p—2 m m|p—2 m
/ S st [ (9u v (90
o"™) Sy (u™ —v™)dx
— / (b (w™) = b’ (v™)](u™ — 0™)a, Sy (U™ — 0™ )d.
Q
(2.5)
Clearly,
%ii% A Sy (u™ — vm)% dx = /ngn(um - vm)a(ua; v) dx
= /Q sgn(u — U)w dx (2.6)
d
= S llu = vl

and
/ a(z)|(|[Vu™|P~2Vu — |Vo™[P2V0™) - V(u™ — v"™) S, (u™ —v™)dz > 0. (2.7)
Q

At the same time,

/ ar-1 (x)dx < o0,
Q
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using Lebesgue dominated convergence theorem, by (2.4)), we have

lim ‘ / [ (u™) — b (™)) (u™ — )zS;I( vm)d;v|

n—0
p—1
hm / b (™) — b (0™)]S! (™ — v )a—%|ﬁdz) ’ (2.8)
1/p
y (/ a(:r)(\Vum|p+|va\p)dx) ~0.
Q
Let n — 0 in . Then

d
Zllu=vllzse) <0. (2.9)

This implies

/|u(a:,t)—v(x,t)|dx</ luo — vo| dz, Vit € [0,T).
Q Q

3. ProoOFs oF THEOREM [L.3] AND [ 4]

Proof of Theorem[I.3 By Definition for any function o1 e LY(0,T;CL(Q)),
@2 € L°(Qr) such that for any given t € [0,T), pa(x, ) € W,-P(Q), we have

loc

a(u — U) 1 alx u™ p—2 u™
J[ B o + o (Van o)
~ [T RT) - Vrgea) + (B (™) — ™) (1) )t = 0

For a small positive constant A > 0, let

O ={zeQ:alz)> A},

1, if x € Qy,

o) = {;a(x), if 2 €Q\ Q. (3:2)

Now, we choose p1 = () X[r,s]; P2 = Sy(u™ —v™), and then integrate it over
Q, to have

/ /gzﬁ,\ —vm)%dmdt—kmi_l /S/qub\(x)a(x)

|Vu P2VU™ — [V PV - V(U™ —0™)S (u™ — o™) da dt

mp 1/ / V(| Vu™ P2 Vu™ — Vo™ |P2Ve™) (3.3)
-Vor(z)S, ™) dx dt

/ /bz ™) = B [or (@) S " — 0w o,

V™) bz, ()] da dt = 0.

Clearly,
(|Vu™ P2 Vu™ — Vo™ |>Vo™
/ Sa(@)ala) (V"2 Vu™ — [Vo" FT0) ",
m_ nL)SI( ’Um)dl‘>0
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| / a(@) ([T P2V — (Vo™ PV™) - Ta (2)S, (™ — ™) da
Q

< / a(z)|(|Vu™P2Vu™ — Vo™ [2Vo™) - Vs (2)S, (u™ — v™)|da
. (3.5)

< [ @19 P — [V PRV s )l
O\

<5[/ a(x)|Vum|p_1|Va|dx+// a(z)|Vo™ P~ |Va|dz].
Al ova, r Jova,

Since 1 < p < 2, |Va| < ¢ and
/ |ValPdr < e < eAP7
Q\Qx

it follows that
c

1/p c 1/p
— a(z)|ValPdz < - )\/ Val|Pdz <ec. 3.6
A(/Q\m<>| pae) < S (0 [ Ivalras) (3.6)
By (3.5 -—-, using the Holder inequality,

| / Y(IVu™ P2 V™ — [V PVo™) - V() S, (u™ — v™) da|

gf[/ a(x)|Vum|p_1|Va|dx+// a(a) Vo™ P [Valde ]
A Q\ Q2 T JO\QA

1

c 1/p =
< = alValPdx / a(z)|Vu"™Pdx
S, avara) ([ a@ivan i) (37)

1

c 1/p =
+ = / a(x)|ValPdx / a(x)|Vo™|Pdx
5 (S, 2@IVaPdz) T [ a@)venpz)

< c(/ﬁ\m (1(:U)|Vum|”dan)ple +C(/Q\m a(m)|V1}’”|pdx) !

Then, we have

lim |/ Y(IVu™ P2V u™ — Vo™ [PT2V0™) (3.8)

-Vor(z)S,(u™ —v™)dx| = 0.

At the same time, by that fQ a1 (x)dx < ¢, using (2.4) and the Lebesgue domi-
nated convergence theorem, we also have

liny /Q AlB (™) — B (™S (W™ — o)™ — o™ pdz =0, (3.9)
and
lim | / S [0 (0™) = b ()] (™ )
< lim = 3 |Valdx (3.10)

AﬂO Q\Qx

c 1/p 1 -
lim / a(z)|ValPdx / a 1 (z)dr =0,
/\_>0)\( O\ (@)[Val ) ( Q\Qa (@) )
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by (3.6) and [, a” pl z)dz < c. At last,
lim lim/ / O (x)Sy(u™ — vm)w dx dt

n—0A—0
:lim/ /5 my =0 e ay
n—0 ot
O(u —v)
A1
/ /sgn ™) — 5 dx dt (3.11)

//sgnu—v 5 )d;cdt

= ||u—v||L1(Q)dt

Now, after letting A — 0, let n — 0 in (3.2]). Then by (3.4)), (3.8)-(3.11])),

/ lu(z, t) — v(z, t)|de < / |uo — volda.
) Q

Proof of Theorem[I.]] As in the proof of Theorem we have (3.3))- (3.5)). Since
u(z) and v(x) satisfy (1.11) by (3.6)-(3.7), using the Holder inequality, we have

| / J([Vu™ [P2Vu™ — [Vu™ PVo™) - Vo (2) Sy (u™ — v™) da|

O

P

5L ) ([ e
—&—i(/mg a(a:)Vapdx)l/p</Q\Q a(a:)|va|’”dx)pz’%1
A A
< c(/Q\Q a|Va”dx)l/p—I—c(/ﬁ\Q a(x)|Va\pdx)l/p7
A A

which approaches zero as A — 0 since that a(x) € C1(Q), we have . At last,

since [, a” = (x)dx < oo, similar as the proof of Theorem |l . we have -
So, as the proof of Theorem [I.3] we know that the stability (L.9) is true

(3.12)

4. PROOF THEOREM

It is not difficult to show that the following definition is equivalent to Definition
mi!

Definition 4.1. A function u(z,t) is said to be a weak solution of (1.1]) with initial
value (L.2), if
we L=(Qr), w € L*(Qr), a(@)|Vul’ e L'(Qr), (4.1)
and for any function g(s) € C1(R), g(0) =0, ¢1 € C3(Q), p2 € L>=(0,T; Wli’f(Q)),
// [ueg(pr2) + a(@)| VulP 72 Vu - Vg(pi1p2) + u(bis, (2)g(p192) (4.2)
T .
+0i(2) g, (P1902)) — ez, t)ug(prp2) + f(2,1)g(p12)] dw dt = 0.
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The initial value is satisfied in the sense that
hm/ u(z, t)p(x) de = / uo(z)p(x) de,Vo(x) € C3°(Q). (4.3)

Proof of Theorem- Let u, v be two solutions of equation (1.1]) with the initial
values ug(z),vo(x). We can choose S, (a”(u™ — v™)) as the test function. Then

O(u —v) 1 B+1 mp—2y, m
/ S ™)) 5 dx + " /Qa (m)(|Vu [P=*Vu
— |Vo™ PV - V(™ = 0™)S) (o (u = 0™)) da

—|—/ a(x)(|Vu™P2Vu™ — Vo™ [P~2Voe™)
Q

(4.4)
- Va’ (u™ — vm)S,;(aB(um —v™)) dx
+ [ = b, e = o)
(ai (u™ —o™) + d®(u™ — v™),,dzx = 0.
Thus
m omnOu—v) o d
rl,lg%) o S (a (u v ))de = dtHu v, (4.5)
/ a5+1(x)(|vum‘p—2vum _ |vv7n‘p—2vvm)
Q (4.6)
V(™ —0™)S] (0’ (u™ = v™)) dz > 0
From |Va(z)| < ¢ in Q, we have
| / a(x)(u™ — vm)S;(aﬁ(um — ™) (|Vu™ P2 V™ — Vo™ |PT2Ve™)
Q
-Va* d:v|
(4.7)
<c\/ m)8y(a (" = o™)
x (|Vu™P2Vu™ — |[Vo™|P~2Vo™) dx|,
| / )5 (P (™ — ™))
x (|[Vu™P2Vu™ — [Vo™ [P72Vo™) da|
= | a_p%laﬁ(um —o™)S,
Q:allum™—v™m|<n
(4.8)

(@™ —v™)a" T (VU PRV — Vo™ P2 V™) da|

P 1/
< (/ la™ "% o (u™ — ™) 8! (0P (u™ — vm))|pd:c> :
Q:allu—v|<n
p—1

< (/ a(a)([Vu™ P+ (Vo)) T
Q:af lu—v|<n

If {x € Q:u™ —v™ = 0} has 0 measure, since [, a?~!(x)dz < co, we have

| / |a7p771a5(um —v™)S) (0P (u™ — v™)) [P da]
{Q:af|lu™—vm|<n}
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and

p—1
lim (/ a(:v)(|Vum\p+|va|p)dx> ’
n—0 {Q:aB|um—v™|<B}

(4.9)

- (/ a(a) (Va4 (Vo)) T =0,

{Q:|um—v™|=0}
If {x € Q:u™ —v™ = 0} has a positive measure, obviously
P— 1/17
tim / a7 P (™ —o™) (0 (™ — ™) P
n— B |um —ym

{Q:af| |<n} (4.10)

p—1 1/
= (/ la= 7 aP (u™ — vm)S;](aﬁ(um - vm))|pd3:) "o
{Q:|lum—v™|=0}

By (2.2) and (2.4]), using the Lebesgue controlled convergence theorem, in both

cases, we have

lim | / P (™ — )8 (0P (™ — v™))([Vum PV — [Vo™ P2 V0™ dz] = 0.
n— Q

In addition,

| /Q[bi(um) b (0™)al, (™ — v™)S! (@ (u™ — ™)) dz

vl (4.11)
a
< C/ (Ju™| + \Um|)7aﬁ(um - vm)S,’v(aﬁ(um —v"))dx — 0,
Q
as n — 0 by ,
| / b (u™) — by (v™)]a” (u™ — vm)ziS;(aﬂ(um — vm))dx’
Q
=1 [ @ Hb) B a — oa  — o)dal
@ - (4.12)
< c<|a_5a3(um - vm)S;(aﬁ(um - vm))|z7pj> !
1/p
< ([ a@wamp+ wemy) o
Q
as 11— 0 by (2.4).
Now, let  — 0 in (4.4)). Then
/ |u(z,t) — v(z,t)|dr < / lug — voldx, Vte0,T). (4.13)
Q Q
Theorem [L.5] is proved. d

Corollary 4.2. Let u,v be two weak solutions of equation (L.1) with the initial
values up(x),vo(x) respectively. If b; = 0, then (4.13)) is true without any boundary
value condition.

Proof. We notice that, in the proof of Theo condition (|1.12)) is only used

to deal with the convection term to obtain (4.11) and (4.12]). Consequently, when
b; = 0, the stability is (4.13]) is true. O
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