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Abstract. This article concerns a prey-predator model with linear functional

response. The mathematical model has a system of three nonlinear coupled
ordinary differential equations to describe the interaction among the healthy

prey, infected prey and predator populations. Model is analyzed in terms of
stability. By considering the delay as a bifurcation parameter, the stability of

the interior equilibrium point and occurrence of Hopf-bifurcation is studied.

By using normal form method, Riesz representation theorem and center mani-
fold theorem, direction of Hopf bifurcation and stability of bifurcated periodic

solutions are also obtained. As the real parameters are not available (because

it is not a case study). To validate the theoretical formulation, a numerical
example is also considered and few simulations are also given.

1. Introduction

The study of prey-predator systems has been a burning topic of research for sev-
eral years. The pioneer work of Kermack and Mckendrick on Susceptible-Infective-
Recovered-Susceptible (SIRS) models [9] have been widely accepted among re-
searchers and scientific community. After the work of Kermack and Mckendrick
[9] many mathematical models have been published ([3, 6, 16, 18, 21] etc. and
references therein). M. Haque et al [3] proposed and analyzed a predator prey
model using standard disease incidence. They observed that the disease in the
prey may avoid extinction of predators and its presence can destabilize an oth-
erwise stable configuration of species. In [16], Naji and Mustafa investigated the
dynamical nature of an eco-epidemiological model by applying nonlinear disease
incidence rate among living species of the ecosystem. They proposed and investi-
gated with regards to local and global dynamical nature of Holling type-II model
with Susceptible-Infective type of disease in prey [16]. Jang and Baglama [18] pro-
posed a deterministic continues time ecological model with the effect of parasites,
where it is assumed that intermediate host for the parasites are the prey species
and observed the dynamics of it. They conclude that parasites are in position to
affect the dynamics of the predator prey interaction due to infection. Jang and
Baglama [18] have also proposed a stochastic version of the model and simulated
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the model numerically to verify the theoretical results. They performed asymptotic
dynamics and compared the deterministic and stochastic models [18]. Jana and
Kar [6] proposed and analyzed a three dimensional eco-epidemiological model con-
sisting of susceptible prey, infected prey and predator. They introduced time delay
in the model for considering the time delay as the time taken by a susceptible prey
to become infected. Mathematically, they analyzed the dynamics of the model in
terms of existence of non-negative equilibria, boundedness, local and global stabil-
ity of the interior equilibrium point. They also studied Hopf bifurcation and by
using central manifold reduction they investigated the direction of Hopf bifurcation
and stability of limit cycles. Many mathematical models have been proposed to
understand the evolution of diseases and provided valuable information for control
strategies ([1, 11, 14, 4] and references therein). Hilker and Schmitz [4] proved
that predator infection counteracts the paradox of enrichment. They discussed the
implication for the biological control and resource management on more than one
trophic level.

Ecology and epidemiology are two different major and important research areas.
The basic work of Lotka [13] and Volterra [19] on predator-prey models in the form
of coupled system of non-linear differential equations may be considered as the first
break through in the modern mathematical ecology. Further, overlapping study
of ecology and epidemiology termed as eco-epidemiology. In eco-epidemiology, we
study prey-predator models with disease dynamics. Thus, eco-epidemiology may
be considered as the study of interacting species in which disease spreads. Eco-
epidemiology has very important ecological significance. Population growth models
with disease spreading often provide complex non-linear mathematical dynamics.
In these models the main concern is to study equilibrium points, their stability anal-
ysis, periodic solutions, bifurcations, chaotic nature etc. A large number of math-
ematical and statistical techniques are available to analyze the eco-epidemiological
models.

While formulating a prey-predator model, it is a basic assumption that repro-
duction of predator species after the event of predation will not be instantaneous,
but it will be mediated by some discrete time lag (delay) essential for the gesta-
tion of predator population [5]. To study mathematical models in ecology more
scientifically, peoples coined a new word ‘time delay’. Time delay has been used
in large number of papers e.g. ([15, 20] are few name to). Mukhopadhyaya and
Bhattacharyya [15] studied the effect of delay on a prey predator model with dis-
ease in prey. They have considered Holling type II functional response. Fengyan
Wang et al [20] studied a predator prey model by assuming stages viz. mature
and immature with both discrete and distributed delays. They considered delay as
length of immature stage. For detailed study of delay differential equations we can
refer reader to [22].

Chattopadhyay and Arino [2] proposed the following eco-epidemiological model
with disease in prey

dS

dt
= r(S + I)(1− S + I

K
)− βSI − ηγ1(S)Y,

dI

dt
= βSI − γ(I)Y − CI,

dY

dt
= (εγ(I) + ηεγ1(S)− d)Y,

(1.1)
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where, S is the number of sound prey, I is the number of infected prey population,
Y is the number of predator population, γ(I) and ηγ1(S) are predator functional
response functions. They analyzed the model (1.1) in terms of positivity, unique-
ness, boundedness and the study the existence of the Hopf bifurcation. Model (1.1)
may be re-written in simplified form as

dS

dt
= rS(1− S + I

K
)− βSI,

dI

dt
= −cI + βSI − pIY,

dY

dt
= −dY + pqIY.

(1.2)

Motivated by model (1.1), Samanta[17] proposed a diseased nonautonomous predator-
prey system with time delay, which is given as

dx1(t)
dt

= x1(t)[r(t)− k1(t)(x1(t) + x2(t))− a1(t)x3(t)− β(t)x2(t)],

dx2(t)
dt

= x2(t)[r(t)− k2(t)(x1(t) + x2(t))− a2(t)x3(t) + β(t)x1(t)],

dx3(t)
dt

= −d(t)x3(t)− b(t)x2
3(t) + c1(t)x3(t− τ)x1(t− τ)

+ c2(t)x3(t− τ)x2(t− τ),

(1.3)

where x1(t), x2(t) and x3(t) are susceptible, infected and predator population re-
spectively and the corresponding parameters has the meaning as defined in [17].
Time delay is considered as gestation period and disease can be transmitted by
contact and spreads among prey species only. Author established some sufficient
conditions for the permanence of the system by applying the method of inequality
analytical techniques. By the well known method of Lyapunov functional,global
asymptotic stability of model (1.3) has been derived in [17]. Author concluded that
the time delay has no effect on the permanence of the system but it has an effect
on the global asymptotic stability of model (1.3).

Model (1.2) was modified by Hu and Li (2012)[5] and proposed an autonomous
model similar to (1.3), their model takes the form

dS

dt
= rS(1− S + I

k
)− SIβ − p1SY,

dI

dt
= −cI + SIβ − p2IY,

dY

dt
= −dY + qp1S(t− τ)Y (t− τ) + qp2I(t− τ)Y (t− τ),

(1.4)

where S(t), I(t) and Y (t) are susceptible, infected and predator population respec-
tively and parameters used has the meaning as defined in [5]. They derived stability
results and investigate Hopf-bifurcation analysis. They performed stability analysis
by using Routh-Hurwitz criteria. The effect of delay on model (1.4) is considered as
a bifurcation parameter for the purpose of the stability of the positive equilibrium.
They investigated the Hopf bifurcation. By applying the normal form theory and
the center manifold reduction method, the direction of Hopf bifurcations and the
stability of bifurcated periodic solutions has been determined in [5].
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The main motivation of the present study is to modify the models (1.2) and
(1.4) by introducing suitable ecological and biological assumptions. We study the
role of time delay as bifurcation parameter by using the normal form theory, Riesz
representation theorem and central manifold theorem. The parameters are time
independent as considered in [5, 2]. We have also analyzed the model with and
without delay. Detailed ecological and biological assumptions for model formulation
are listed in the next section.

Rest of the paper is organized as follows. Section 2 deals with mathematical
model formation with help of some ecological and biological assumptions. In Sec-
tion 3 we determine the stability of different equilibrium points for mathematical
model without delay. In Section 4 we determine the stability of different equi-
librium points for mathematical model with delay. In Section 5 we investigate
Hopf-bifurcation and direction of the Hopf-bifurcation including stability of bifur-
cated periodic solutions. To verify the theoretical frame work, in Section 6 some
numerical computation has been performed by considering suitable parameters and
initial conditions followed by discussion and future directions in the last Section 7.

2. The model

For mathematical simplicity we impose the following ecological and biological
assumptions:

(A1) We consider linear functional response as described in [19].
(A2) In the absence of disease and predation, prey population follow the logistic

rule with the growth rate r (r > 0) and carrying capacity k (k > 0) [5].
(A3) In the presence of disease, prey population is divided into two parts: sus-

ceptible (S) and infective (I). Hence, total biomass of the prey population
is S(t) + I(t).

(A4) It is considered that by means of contact, disease spreads among the prey
species only.

(A5) Only the susceptible prey is assumed to be reproducing offsprings with
logistic law i.e. only S has growth rate. However, infected prey population
contributes to the carrying capacity.

(A6) Prey population may have possible source of infection (external source)
viz. viruses and other seasonal effects. After infection they converted into
infected prey (I). The disease dynamics has been omitted.

(A7) Prey population (susceptible(S) and infective (I)) and predator population
remains in the same environmental conditions and in the same terrestrial
area and zone i.e in same ecosystem. In other words migration (in and out
both) has been omitted here. Detail classification of an ecosystem has been
ignored.

(A8) It is also assumed that infected prey has high probability of being predated
(eaten) by the predator as compare to susceptible prey population. One of
the reason of this may be that healthy prey population is more active than
infected one.

(A9) It is also assumed that the coefficient of conversing of both the prey to
predator are different. One is S-prey to predator and other one from I-prey
to predator.

(A10) It is assumed that all the three species susceptive prey, infected prey and
predator have their natural death rates.
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(A11) Infected Prey has no growth i.e. they are declining only.
(A12) Motivated by studies in [14, 1, 7, 8, 10], that linear mass-action incidence

is more appropriate than a proportional mixing one in case of direct trans-
mission, we assume that the infection follow the simple law of mass action
of the form βSI where β is the force of infection.

(A13) Initially there may not be infected Prey. It is also assumed that infected
prey neither recover nor immune.

(A14) Time delay (τ) is the gestation period of predator.

In view of above assumptions, model (1.4) takes the form

dS

dt
= rS(1− S + I

k
)− SIβ − p1SY,

dI

dt
= SIβ − p2IY − (d2 + c)I,

dY

dt
= −d3Y + q1p1S(t− τ)Y (t− τ) + q2p2I(t− τ)Y (t− τ).

(2.1)

We summarize the various nomenclature in Table 1.

Table 1. Biological/ecological meaning of the symbols

S(t) Susceptible(healthy) prey population

I(t) Infected prey population

Y (t) Predator population

β Disease contact rate (force of infection)

p1, p2 Predation coefficients of susceptible (S) and infected prey (I)

r Intrinsic growth rate

k Carrying capacity

τ Gestation period(time delay)

c Death rate of infected prey due to disease

d2 Natural death rate of infected prey

d3 Natural death rate of predator

q1 Coefficient of conversing susceptible prey into predator

q2 Coefficient of conversing infected prey into predator

On the basis of ecological and biological assumption that healthy prey are more
active as compare to infected one, the relationship between q1 and q2 is established
as under:

q2 6= q1 and 0 < q1 ≤ 1,
q2 > q1 and 0 < q2 ≤ 1

and the initial conditions for model (2.1) are S(0) = φ1 > 0, I(0) = φ2 ≥ 0,
Y (0) = φ3 > 0, where {

φ ∈ C+ : φ = (φ1, φ2, φ3)
}
,
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where C+ is the Banach space of positive continuous functions φ : [−τ, 0] → R3
+

with norm

sup
[−τ,0]

{|φ1|, |φ2|, |φ3|},

R3
+ =

{
φ ∈ C+ : φi ≥ 0, φ = (φ1, φ2, φ3), i = 1, 2, 3

}
.

Model (1.3) is different with the proposed model (2.1) in the sense that parameters
in (1.3) are time dependent as contrary to those in (2.1).

3. Model without delay

In absence of time delay τ , model (2.1) takes the form

dS

dt
= rS(1− S + I

k
)− SIβ − p1SY,

dI

dt
= SIβ − p2IY − (d2 + c)I,

dY

dt
= −d3Y + q1p1S(t)Y (t) + q2p2I(t)Y (t).

(3.1)

3.1. Equilibria and their feasibility. Model (3.1) has the following equilibrium
points

(1) E1 = (0, 0, 0), which is trivial equilibrium.
(2) E2 = (k, 0, 0), this provides the case where prey is infection free and preda-

tor is absent. This is called boundary equilibrium.
(3) E3 = (Ŝ, 0, Ŷ ), where Ŝ and Ŷ are given by

Ŝ =
d3

q1p1
,

Ŷ =
r

p1
(1− d3

kq1p1
),

(3.2)

this provides the case where prey is infection free.
(4) E4 = (S, I, 0), where S and I are given by:

S =
c+ d2

β
,

I =
r(kβ − c− d2)
β(r + kβ)

(3.3)

this provides the case where predator is absent.
(5) E5 = (S̃, Ĩ, Ỹ ), where S̃, Ĩ, Ỹ are given by

Ĩ =
d3 − q1p1S̃

q2p2
,

Ỹ =
βS̃ − c− d2

p2
,

(3.4)
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and
S̃A+B = 0,

A =
[
− r

K
+ (

r

K
+ β)

q1p1

q2p2
− p1β

p2

]
,

B =
[
r − (

r

K
+ β)

d3

q2p2
+
p1(c+ d2)

p2

]
.

(3.5)

Set E5 provides the coexistence of all the three species. Existence (feasi-
bility) conditions of equilibrium points of model ref3.1 are listed in Table
2.

Table 2. Existence conditions of equilibrium points of model (3.1)

Equilibrium Point Existence Condition

E1 = (0, 0, 0) always

E2 = (k, 0, 0) always

E3 = (Ŝ, 0, Ŷ ) kq1p1 > d3

E4 = (S, I, 0) kβ > (c+ d2)

E5 = (S̃, Ĩ, Ỹ ) (d3 − q1p1S̃) > 0, (βS̃ − c− d2) > 0,

either A < 0 or B < 0 but not both.

Remark 3.1. From Table 2 it is observed that:
(i) The existence of equilibrium points E1, E2 and E4 is independent of pa-

rameters q1 and q2.
(ii) The existence of equilibrium point E3 is dependent on q1.
(iii) The existence of equilibrium point E5 is dependent on q1 and q2 both.

3.2. Stability analysis. The variational matrix is given by

J =

(r − 2rS
k −

rI
k − βI − p1Y ) (− rSk − βS) (−p1S)

(βI) (βS − p2Y − c− d2) (−p2I)
(q1p1Y ) (q2p2Y ) (q1p1S + q2p2I − d3)

 .
It is very easy to prove from the above equality that the equilibrium points E1, E2,
E3 and E4 are unstable.

Now, the jacobian matrix at E5 is

J(E5)

=

(r(1− 2 eS
k )− Ĩ( rk + β)− p1Ỹ ) (−S̃( rk + β)) (−p1S̃)

(βĨ) (βS̃ − c− d2 − p2Ỹ ) (−p2Ĩ)
q1p1Ỹ q2p2Ỹ (q1p1S̃ + q2p2Ĩ − d3)


and the characteristics equation of J(E5) is

λ3 + C1λ
2 + C2λ+ C3 = 0.

By the Routh-Hurwitz criteria, we can conclude that equilibrium E5 is locally stable
provided the following conditions are satisfied

Ci > 0, i = 1, 2, 3
C1C2 − C3 > 0.

(3.6)
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The values of Ci > 0, i = 1, 2, 3 are listed at Appendix 1.

Remark 3.2. Stability of the non zero equilibrium point E5 depends on Ci > 0,
i = 1, 2, 3 (from Eq. (3.6)). Since Ci > 0, i = 1, 2, 3 involves q1 and q2 both (from
Appendix 1). Hence, stability of E5 depends on q1 and q2 both.

4. Model with time delay

Ecologically it is a fact that reproduction of predator after predation is not
instantaneous but it will mediated by some time lag, so it may call as gestation
period. We record this gestation period as time delay (τ) in our proposed model
(2.1). It is also clear that since delay is gestation period of predator, hence delay
term (τ) appears only in last equation of model (2.1). Time delay played a crucial
role in analysis. In this section, we will observe the role of time delay.

4.1. Equilibria and their feasibility. It is remarkable that the two models (2.1)
and (3.1) have the same equilibrium points ecologically. Because of the mathemat-
ical point of view we denote them differently. In R3

+ the system (2.1) has several
possible stationary states (equilibrium points) and they are summarized in Table
3. Table 3 provides a brief ecological meaning of equilibrium points and their
applications to real ecosystems.

Table 3. Possible equilibrium points of model (2.1)

Equilibr. point Name Ecological meaning

E10 = (0, 0, 0) Trivial Species will die out. Ecologically not important

E11 = (k, 0, 0) Boundary Only sound prey survive.

Infection fee. Predator will die out

E12 = (S, I, 0) Boundary Predator will die out. Infection exists

E13 = (S̃, 0, Ỹ ) Boundary No infection. Co-existence of sound prey

and predator

E∗ = (S∗, I∗, Y∗) Non zero Co-existence of all species.

(interior) Ecologically very important

4.2. Stability Analysis. E13 and E∗ play an important role in the controlling of
epidemic. The variational matrix of system (2.1) is written as

J =

(r(1− S+I
k )− rS

k − βI − p1Y ) (− rSk − βS) (−p1S)
(βI) (βS − p2Y − c− d2) (−p2I)

0 0 (−d3)


+

 0 0 0
0 0 0

(q1p1Y ) (q2p2Y ) (q1p1S + q2p2I)

 e−λτ ,
where λ being a complex number. In simplified form the above equation may be
written as

J =

[
(r(1−S+I

k )− rSk −βI−p1Y ) (− rSk −βS) (−p1S)

(βI) (βS−p2Y−c−d2) (−p2I)
(q1p1Y )(e−λτ ) (q2p2Y )(e−λτ ) (−d3)+(q1p1S+q2p2I)(e

−λτ )

]
.
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We will use the following lemma due to Hu and Li [5].

Lemma 4.1. Let A > 0, B > 0. Then
• If A < B, all roots of the equation λ + A − Be−λτ = 0 have positive real

parts for τ < 1√
B2−A2 cos−1(AB ).

• If A > B, all roots of the equation λ + A − Be−λτ = 0 have negative real
parts for any τ .

Now we study the dynamical behavior of system (2.1) about different equilibrium
points with the help of variational matrix.

4.2.1. Trivial equilibrium point (E10). Proceeding as in Sub-section 3.2.1, it is con-
cluded that E10 is unstable.

4.2.2. Boundary equilibrium point (E11). Variational matrix evaluated at E11 takes
the form

J(E11) =

−r −(r + kβ) (−p1k)
0 (βk − c− d2) 0
0 0 (q1p1k)e−λτ − d3

 ,
with corresponding eigenvalues −r, (βk− c− d2) and (q1p1k)e−λτ − d3. Hence, the
stability of E11 depends on (βk − c− d2) and (q1p1k)e−λτ − d3.

Now, if the following condition is satisfied

(q1p1k) < d3, (4.1)

and if delay τ satisfies

τ <
1√

(q1p1k)2 − d2
3

cos−1 d3

(q1p1k)
,

by using Lemma 4.1, it is clear that J(E11) has no eigenvalue λ with Re(λ) ≤ 0.
Hence, E11 is unstable in this case.

Further, if (q1p1k) < d3 and (βk− c−d2) < 0, then two eigenvalues are negative
and third has the negative real part, (E11) is stable in this case. If (βk−c−d2) > 0,
then E11 is unstable always.

4.2.3. Predator free equilibrium (E12). Now as in previous section, we have S =
(c+d2)
β and I = r(kβ−c−d2)

β(r+kβ) . The variational matrix at E12 takes the form

J(E12) =

(r(1− S+I
k )− rS

k − βI) (− rSk − βS) (−p1S)
(βI) (βS − c− d2) (−p2I)

0 0 (q1p1S + q2p2I)e−λτ − d3

 ,
and the characteristics equation corresponding to J(E12) is

[λ+ d3 − ((q1p1S + q2p2I)e−λτ )][λ2 + λ
(
c+ d2 +

r(c+ d2)
kβ

+
β

(c+ d2)
− (c+ d2)

k

)
− (c+ d2)2r

kβ
− β − r(c+ d2)] = 0.

If the following condition is satisfied

d3 > (q1p1S + q2p2I),

then by Lemma 4.1, the root of the functions

λ+ d3 − ((q1p1S + q2p2I)e−λτ )),
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will have negative real part for any value of τ and for the equation

λ2 + λ
(

(c+ d2) +
r(c+ d2)
Kβ

+
β

(c+ d2)
− (c+ d2)

k

)
+
(
− r(c+ d2)2

kβ
− β − r(c+ d2)

)
= 0,

the Routh-Hurwitz criteria, may be used for proving the fact that this equation
will have roots with negative real parts. Hence, if the equilibrium E12 is asymptot-
ically stable, it will mean that predator population will be die-out from system so
considered.

4.2.4. Infection free equilibrium (E13). S̃ and Ỹ are given by S̃ = d3
q1p1

, Ỹ = [ rp1 (1−
d3

kq1p1
)]. The variational matrix at E13 takes the form

J(E13) =

(r(1− eS
k )− rS

k − p1Ỹ ) (− reS
k − βS̃) (−p1S̃)

0 (βS̃ − p2Ỹ − c− d2) 0
(q1p1Ỹ e

−λτ ) (q2p2Ỹ e
−λτ ) (q1p1S̃e

−λτ − d3)

 ,
One of the eigenvalue is (βS̃−p2Ỹ −c−d2) and two other eigenvalues are the roots
of the expression[

λ2 − λ
(
r(1− 2S̃

k
)− p1Ỹ − d3 + (q1p1Ỹ e

−λτ )
)

+
(
−rd3(1− 2S̃

k
)− d3p1Ỹ

+ d3 + rq1p1S̃(1− 2S̃
k

)e−λτ
)]
.

If the condition

S̃ >
(c+ d2 + p2Ỹ )

β

is satisfied. Then one eigenvalue (βS̃ − p2Ỹ − c − d2) corresponding to J(E13) is
positive. Hence, in this case E13 is unstable. Let us put, λ = (u+iv) with condition
for u as u ≥ 0 in the expression[

λ2 − λ
(
r(1− 2S̃

k
)− p1Ỹ − d3 + (q1p1Ỹ e

−λτ )
)

+
(
−rd3(1− 2S̃

k
)

− d3p1Ỹ + d3 + rq1p1S̃(1− 2S̃
k

)e−λτ
)]
,

and on separating real and imaginary parts, we obtained

Real part = (u2 − v2)−
(
r(1− 2S̃

k
)− p1Ỹ − d3 + (q1p1S̃e

−λτ cos vτ
)

+
(
rq1p1S̃(1− 2S̃

K
)e−λτ cos vτ

)
,

Imaginary part = 2uv +
(
p1Ỹ + d3 − vr(1−

2S̃
k

)− q1p1S̃e
−λτ cos v

− uq1p1S̃e
−λτ sin vτ − rq1p1S̃(1− 2S̃

k
)e−λτ sin vτ

)
.
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Now, if the following condition is satisfied

S̃ <
(c+ d2 + p2Ỹ )

β
,

and the real part is negative, we can conclude that equilibrium state E13 is stable.

4.2.5. Non zero equilibrium (E∗(S∗, I∗, Y∗)). S∗, I∗, Y∗ are given by

S∗ =
−B
A
, I∗ =

d3 − q1p1S∗
q2p2

, Y∗ =
βS∗ − c− d2

p2
,

A =
[
− r

k
+ (

r

k
+ β)

q1p1

q2p2
− p1β

p2

]
B =

[
(r)− (

r

K
+ β)

d3

q2p2
+
p1(c+ d2)

p2

]
.

The variational matrix at E∗ takes the form

J(E∗) =

[
(r(1−S∗+I∗k )− rS∗k −p1Y∗−βI∗) (− rS∗k −βS∗) (−p1S∗)

βI∗ (βS∗−p2Y∗−c−d2) p2I∗
(q1p1Y∗e

−λτ ) (q2p2Y∗e
−λτ ) (q1p1S∗+q2p2I∗)e

−λτ−d3)

]
,

and the characteristics equation corresponding to J(E∗) is

(λ3 +m2λ
2 +m1λ+m0) + (n2λ

2 + n1λ+ n0)e−λτ = 0, (4.2)

where mi, nj , i = 0, 1, 2; j = 0, 1, 2 are listed in Appendix 2.
Now we put λ = iω (ω > 0) in the above equation and separating real and

imaginary parts, we obtain

Real part = {n2ω
2 + n0} cosωτ + {n1ω sinωτ −m2ω

2 +m0},
Imaginary part = n1ω cosωτ − (−n2ω

2 + n0) sinωτ +m1ω − ω3,

(Real part)2 + (Imaginary part)2 = ω6 + p0ω
4 + q0ω

2 + r0,

(4.3)

where

p0 = (m2
2 − 2m1 − n2

2),

q0 = (m2
1 − 2m2m0 + 2n2n0 − n2

1),

r0 = (m2
0 − n2

0).

We refer the following lemma due to [5, 21]

Lemma 4.2. For the polynomial

h(z) = z3 + p0z
2 + q0z + r0 = 0, (4.4)

(i) If r0 < 0, then this equation has at least one positive root;
(ii) If r0 ≥ 0 and 4 = (p2

0 − 3q0) ≤ 0, then this equation has no positive roots;
(iii) If r0 ≥ 0 and 4 = (p2

0 − 3q0) > 0, then this equation has positive roots if
and only if z∗1 = −p0+

√
4

3 and h(z∗1) ≤ 0.

If we put z = ω2 in ω6 + p0ω
4 + q0ω

2 + r0 = 0, then we have the equation
z3 + p0z

2 + q0z + r0 = 0. If m2
0 ≥ n2

0, then we will have r0 ≥ 0, we have two
situations for ∆:

(i) ∆ = (p2
0 − 3q0) ≤ 0,

(ii) ∆ = (p2
0 − 3q0) > 0.
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In situation (i), we have to say that E∗ is stable thus E∗ is absolutely stable if r0 ≥ 0
and ∆ = (p2

0 − 3q0) ≤ 0 and also if we have and r0 ≥ 0 and ∆ = (p2
0 − 3q0) > 0

then equation has negative roots if and only if h(z∗1) > 0 where z∗1 = −p0+
√
4

3 , thus
we have the following theorem for the stability of E∗

Theorem 4.3. Equilibrium E∗(S∗, I∗, Y∗) is absolutely stable if one of the following
three conditions holds

(i) ∆ = (p2
0 − 3q0) ≤ 0;

(ii) ∆ = (p2
0 − 3q0) > 0 and z∗1 = −p0+

√
4

3 < 0;
(iii) ∆ = (p2

0 − 3q0) > 0, z∗1 = −p0+
√
4

3 > 0 and h(z∗1) > 0 provided r0 ≥ 0.

Next if we consider the case when r0 < 0 or {r0 ≥ 0,∆ = (p2
0 − 3q0) > 0, z∗1 >

0, h(z∗1) < 0}. Then according to lemma 4.2, (4.3) will have one positive root say
ω0 that is the characteristic equation has a pair of purely imaginary roots say ±iω0.
Now assume that iω0, ω0 > 0 is a root of h(z). Solving the eq. (4.3) for τ , we have
(by eliminating sinωτ , we obtain

τ =
1
ω0

cos−1(
n1ω

2
0{ω0 −m1} − {m2ω

2
0 −m0}{n2ω

2
0 − n0}

n2
1ω

2
0 + n2ω2

0 − n0
) +

2kπ
ω0

, (4.5)

for k = 0, 1, 2, . . . . We call it as a ‘critical value’ and is denoted by

τk =
1
ω0

cos−1(
n1ω

2
0{ω0 −m1} − {m2ω

2
0 −m0}{n2ω

2
0 − n0}

n2
1ω

2
0 + n2ω2

0 − n0
) +

2kπ
ω0

, (4.6)

for k = 0, 1, 2, . . . . This corresponds to the characteristic equation that has purely
imaginary roots ±iω0. Which is a result similar to that is discussed in [5]. Transver-
sality condition may also obtained as discussed in [5]. As discussed in [5, Theorem
2.4], the equilibrium point E∗ of the system (2.1) is asymptotically stable when
τ > τ0. τ = τk (k = 0, 1, 2, 3, . . . ) are Hopf-bifurcation values for the system (2.1)
and τk is used as a point for direction of Hopf Bifurcation in next section.

Remark 4.4. From (4.5) and (4.6), it is observed that the delay term τ (here
bifurcation parameter) depends on the values of mi, nj , i = 0, 1, 2; j = 0, 1, 2.
Since mi, nj , i = 0, 1, 2; j = 0, 1, 2 depends on q1 and q2 (see Appendix 2), hence
bifurcation parameter (τ) depends on q1 and q2 both. A little variation in the values
of q1 and q2 may change the bifurcation parameter (τ). Hence, a little variation in
the values of q1 and q2 may change the dynamics of the delayed model (2.1).

5. Direction and stability of the Hopf Bifurcation

With the symbols used in [5] and the procedure explained in [12]. System (2.1),
can be translated to the following functional differential equation (FDE) system

u̇(t) = Lµ(µt) + F (µ, ut), (5.1)

where ut = u(t) ∈ R3 and Lµ : R× C→ R3 and F : R× C→ R3 are given by,

Lµφ = (τk + µ)(M1φ(0) +M2φ(−1)),

F (µ, θ) =

− r
kφ

2
1(0)− ( rk + β)φ1(0)φ2(0)− p1φ1(0)φ3(0)

βφ1(0)φ2(0)− p2φ2(0)φ3(0)
q1p1φ1(−1)φ3(−1) + q2p2φ1(−1)φ2(−1)

 ,
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where

M1 =

(r − 2rS∗
k − ( rk + β)I∗ − p1Y∗) −( rk + β)S∗ (−p1S∗)

βI∗ (βS∗ − p2Y∗ − c− d2) −p2I∗
0 0 −d3)

 ,
M2 =

 0 0 0
0 0 0

q1p1Y∗ q2p2Y∗ q1p1S∗ + q2p2I∗

 ,
φ(0) = (φ1(0), φ2(0), φ3(0))T ∈ C,

φ(−1) = (φ1(−1), φ2(−1), φ3(−1))T ∈ C.

We have considered, τ = (τk +µ), µ = 0 which gives the Hopf bifurcation value for
the mathematical model with delay as promised in previous section. Normalizing
delay τ by the time scaling t → t

τ then the model is written in the Banach Space
C ≡ C([−1, 0],R3).

By the Riesz representation theorem, we found that there exists a matrix function
whose components are bounded variation function η(θ, µ) in θ ∈ [−1, 0], such that
Lµφ =

∫
Ω
dη(θ, µ)φ(θ), φ ∈ C, Ω ∈ [−1, 0). We can choose

η(θ, µ) = (τk + µ)M1δ(θ)− (τk + µ)M2δ(θ + 1),

where δ(θ) denotes the dirac delta function viz.

δ(θ) =

{
0, θ 6= 0,
1, θ = 0.

For φ ∈ C1([−1, 0],R3), we define

A(µ)φ(θ) =

{
dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(θ, µ)φ(θ), θ = 0,

=

{
dφ(θ)
dθ , −1 ≤ θ < 0,∫ 0

−1
dη(θ, µ)φ(θ), θ = 0.

and

R(µ)φ(θ) =

{
0, θ ∈ [−1, 0),
F (µ, φ), θ = 0,

=

{
0, −1 ≤ θ < 0,
F (µ, φ), θ = 0,

with these symbols, FDE system (5.1) may be written in the form

u̇(t) = A(µ)(µt) + R(µ)µt,

which is an abstract differential equation where ut(θ) = u(t+ θ),−1 ≤ θ < 0. Now
we come to operator theory, for ψ ∈ C1

(
[0, 1], (R3)∗

)
we define A∗, the adjoint

operator of A, by

A∗ψ(S) =

{
−dψ(S)

dS , S ∈ (0, 1],∫ 0

−1
dηT (S, µ)ψ(−S), S = 0,
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and a bilinear product

〈ψ(S), φ(θ)〉 = ψ(0)φ(0)−
∫ 0

1

∫ θ

ξ=0

ψ
T

(ξ − θ)dη(θ)φ(ξ)dξ, (5.2)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. From previous
section, it is noted that ±iω0τk are eigenvalues of A(0). Hence they are also the
eigenvalues of A∗.

To determine the poincare normal form of the operator A, we first need to evalu-
ate the eigenvectors of A(0) and A∗ corresponding to iω0τk and −iω0τk respectively.
Suppose that q(θ) = (1, α1, α2)T exp(iω0τkθ) is the eigenvector of A(0) correspond-
ing to iω0τk, then we have A(0)q(θ) = iω0q(θ) from the definition of A(0), we
have [

M1 +M2 exp(iω0τk)
] 1

α1

α2

 = iω0

 1
α1

α2

 ,
or

M1

 1
α1

α2

+M2

 exp(−iω0τk)
α1 exp(−iω0τk)
α2 exp(−iω0τk)

 = iω0

 1
α1

α2

 .
By simple calculation, we obtain

α1 =
−p2I∗(iω0 − (r − 2rS∗

K − ( rk + β)I∗ − p1Y∗))− p1βS∗I∗

p2( rk + β)S∗I∗ − p1S∗(iω0 − βS∗ + c+ d2 + p2Y∗)
,

α2 =
q1p1Y∗ exp(−iω0τk + q2p2Y∗ exp(−iω0τk

iω0 + d3 − q1p1S∗ + q2p2I∗
.

Next, suppose that q∗(s) = B(1, α∗1, α
∗
2) exp(iω0τks) is the eigenvector of A∗

corresponding to −iω0τk. Analogously, we have

α∗1 =
−p1( rk + β)S∗ − p2(iω0 − (r − 2rS∗

k − ( rk + β)I∗ − p1Y∗))
p2βI∗ − p1(iω0 + βS∗ − c− d2 − p2Y∗)

,

α∗2 =
−p1S∗ − p2I∗α

∗
1

−iω0 + d3 − (q1p1S∗ + q2p2I∗) exp(−iω0τk
),

where B has to be calculated. We have the two conditions:

〈q∗, q(θ)〉 = 1, 〈q∗, q(θ)〉 = 0,

which may be verified. By equation (5.2), we have

〈q∗, q(θ)〉

= q∗(0)q(0)−
∫ 0

−1

∫ ∞
ξ=0

q∗
T (ξ − θ)dη(θ)q(ξ)dξ

= B(1, α1
∗, α2

∗)(1, α1, α2)T −
∫ 0

−1

∫ ∞
ξ=0

B(1, α1
∗, α2

∗) exp(−iω0τk(ξ − θ))dη(θ)

× (1, α1, α2)T exp(iω0τkξ)dξ

= B{1 + α1α1
∗ + α2α2

∗ −
∫ 0

−1

(1, α1
∗, α2

∗) exp(iω0τk)dη(θ)(1, α1, α2)T }

= B{1 + α1α1
∗ + α2α2

∗ + τk[q2p2α2
∗Y∗ + q2p2α1α2

∗Y∗ + (q1p1S∗ + q2p2I∗)α2α2
∗]

× exp(−iω0τk)},
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and

1 = B{1 + α1α1
∗ + α2α2

∗ + τk
[
q2p2α2

∗Y∗ + q2p2α1α2
∗Y∗

+ (q1p1S∗ + q2p2I∗)α2α2
∗] exp(−iω0τk)},

which gives

B =
(

1 + α1α1
∗ + α2α2

∗ + τk[q2p2α2
∗Y∗ + q2p2α1α2

∗Y∗

+ (q1p1S∗ + q2p2I∗)α2α2
∗] exp(−iω0τk)

)−1

.

5.1. Stability of bifurcated periodic solutions. Firstly, we will investigate the
coordinates of the center manifold C0 at µ = 0. Let ut be the solution of (5.1)
and define, z(t) = 〈q∗, ut〉, q∗ being the eigenvalue of A∗ and W (t, θ) = ut(θ) −
2Re{z(t)q(θ)} on the Center Manifold C0, we have

W (t, θ) = W (z(t), z(t), θ),

where

W (z, z, θ) = W20(θ)
z2

2
+W02(θ)

z2

2
+W11(θ)zz +W30

z3

b3
+ . . . . (5.3)

In fact, z and z are local coordinates for the center manifold C0 in the direction of
q∗ and q∗ respectively. The existence of C0 will provide an opportunity to reduce
the system u̇(t) = Lµ(ut) +F (µ, µt) into an ordinary differential equation ODE( in
a single complex variable z) on C0 which is very interesting. ut is the solution of
system under consideration. ut ∈ C0, we have

ż(t) = 〈q∗, u̇t〉
= 〈q∗, A(ut) +R(ut)〉
= 〈q∗, A(ut) > + < q∗, R(ut)〉
= 〈A∗q∗, (ut) > + < q∗, R(ut)〉
= iω0τz + q∗ · F (0,W (t, 0) + 2Re[z(t)q(θ)]).

We rewrite it as
ż(t) = iω0τz + g(z, z).

where

g(z, z) = g20(θ)
z2

2
+ g02(θ)

z2

2
+ g11(θ)zz + g21

zz2

b3
+ . . . .

The computation of coefficients of g(z, z) is done at Appendix 3.
The coefficients g20, g02, g11 and g21 are used in calculating C0 etc. Since g21

(from Appendix 3) contains W20(θ) and W11(θ), we need to calculate them. Now
u̇t = A(µ)ut + R(µ)ut and z(t) = 〈q∗, ut >, W (t, θ) = ut(θ)− 2Re{z(t)q(θ)} gives
us

Ẇ = u̇t − zq − żq =

{
AW − 2Req∗(0)F0q(θ), −1 ≤ θ < 0,
AW − 2Req∗(0)F0q(θ) + F0, θ = 0.

Rewriting the above equation, we obtain

Ẇ = AW +H(z, z, θ), (5.4)
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where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+H21(θ)

z2z

2
+ . . . . (5.5)

Near the origin on C0, we have

Ẇ = Wz ż +Wzz,

by (5.4) and (5.5), we have

(A− 2iω0τk)W20(θ) = −H20(θ),

AW11(θ) = −H11(θ),

hence for −1 ≤ θ < 0 we have

H(z, z, θ) = −2Re(q∗(0)F0q(θ)) = −g(z, z)q(θ)− g(z, z)q(θ).

By comparing the coefficients of z in H(z, z, θ), we have

H20(θ) = −g20q(θ)− g02q(θ),

H11(θ) = −g11q(θ)− g11q(θ).

Now, we have

Ẇ20(θ) = 2iω0τkW20(θ) + g20q(θ) + g02q(θ),

Ẇ11(θ) = g11q(θ) + g11q(θ).

On integrating, we have

W20(θ) =
ig20

ω0τk
q(0) exp(iω0τkθ) +

ig20q(0)
3ω0τk

exp(−iω0τkθ) + E1 exp(2iω0τkθ),

W11(θ) =
g21

iω0τk
q(0) exp(iω0τkθ) +

ig11q(0)
ω0τk

exp(−iω0τkθ) + E2,

where E1 and E2 are to be determined. From definitions of A, the equation (A −
2iω0τk)W20(θ) = −H20(θ) gives us∫ 0

−1

dη(θ)W20(θ) = 2iω0τkW20(0)−H20(0),

which gives us

H20(0) = −g20q(0)− g02q(0) + 2τk

 − r
k − ( rk + β)α1 − p1α2

βα1 − p2α1α2

(q1p1α2 + q2p2α1) exp(−2iω0τk)

 .
Now, (

iω0τkI −
∫ 0

−1

exp(iω0τkθ)dη(θ)
)
q(0) = 0,(

− iω0τkI −
∫ 0

−1

exp(−iω0τkθ)dη(θ)
)
q(0) = 0.

We also have(
2iω0τkI −

∫ 0

−1

exp(iω0τkθ)dη(θ)
)
E1 = 2τk

 − r
k − ( rk + β)α1 − p1α2

βα1 − p2α1α2

(q1p1α2 + q2p2α1) exp(−2iω0τk)

 ,



EJDE-2017/209 DYNAMICS OF A PREY-PREDATOR SYSTEM 17

which leads to a11 S∗( rk + β) p1S∗
−βI∗ a22 p2I∗

−q1p1Y∗ exp(−2iω0τk) −q2p2Y∗ exp(−2iω0τk) a33

E1

= 2

 − r
k − ( rk + β)α1 − p1α2

βα1 − p2α1α2

(q1p1α2 + q2p2α1) exp(−2iω0τk)

 ,
where

a11 = 2iω0 − (r − 2rS∗
k
− (

r

k
+ β)I∗ − p1Y∗), a22 = 2iω0 − βS∗ + c+ d2 + p2Y∗,

a33 = 2iω0 + d3 − (q1p1S∗ + q2p2I∗) exp(−2iω0τk),

therefore,

E1 = 2

 − r
k − ( rk + β)α1 − p1α2

βα1 − p2α1α2

(q1p1α2 + q2p2α1) exp(−2iω0τk)


×

 a11 S∗( rk + β) p1S∗
−βI∗ a22 p2I∗

−q1p1Y∗ exp(−2iω0τk) −q2p2Y∗ exp(−2iω0τk) a33

−1

.

(5.6)

provided  a11 S∗( rk + β) p1S∗
−βI∗ a22 p2I∗

−q1p1Y∗ exp(−2iω0τk) −q2p2Y∗ exp(−2iω0τk) a33


is invertible.

Now,
∫ 0

−1
dη(θ)W11(θ) = −H11(0) and

H11(0) = −g11q(0)− g11q(0) + 2τk

− r
k − ( rk + β)Re(α1)− p1Re(α2)
βRe(α1)− p2Re(α1α2)

(q1p1Re(α2) + q2p2Re(α1)

 ,
and hence this leads to the equation b11 S∗( rk + β) p1S∗

−βI∗ b22 p2I∗
−q1p1Y∗ −q2p2Y∗ b33

E2 = 2

− r
k − ( rk + β)Re(α1)− p1Re(α2)
βRe(α1)− p2Re(α1α2)

(q1p1Re(α2) + q2p2Re(α1)

 ,
where

b11 = (r − 2rS∗
k
− (

r

k
+ β)I∗ − p1Y∗), b22 = −βS∗ + c+ d2 + p2Y∗,

b33 = d3 − (q1p1S∗ + q2p2I∗).

Then E2 can be obtained as

E2 = 2

− r
k − ( rk + β)Re(α1)− p1Re(α2)
βRe(α1)− p2Re(α1α2)

(q1p1Re(α2) + q2p2Re(α1)

 b11 S∗( rk + β) p1S∗
−βI∗ b22 p2I∗
−q1p1Y∗ −q2p2Y∗ b33

−1

.

provided  b11 S∗( rk + β) p1S∗
−βI∗ b22 p2I∗
−q1p1Y∗ −q2p2Y∗ b33


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is invertible.
By putting values of E1 and E2 we can obtain W20(θ) and W11(θ) and hence g21

is completely determined. Hence as stated in [12, 5], we can obtain the following
values:

c1(0) =
i

2ω0τk
(g11g20 − 2 | g11 |2 −

| g02 |2

3
) +

g21

2
,

µ2 = − Re(c1(0))
Re(λ′(τk))

,

β2 = 2Re(c1(0)),

T2 = − 1
ω0τk

[Im(c1(0)) + µ2 Im(λ
′
(τk))],

(5.7)

which determines the direction and stability of the model with delay at the critical
value τk. Now, we state the following main theorem of this section due to [5, 12, 6]

Theorem 5.1. (i) The sign of µ2 determined the direction of Hopf bifurcation.
If µ2 > 0(µ2 < 0) , then the Hopf bifurcation is supercritical (sub critical).

(ii) The stability of bifurcated periodic solutions is determined by β2. The peri-
odic solutions are stable if β2 < 0 and unstable if β2 > 0.

(iii) The period of bifurcated periodic solutions is determined by T2. The period
increases if T2 > 0 and decreases if T2 < 0.

6. Numerical example

In this section, we consider a numerical example and generate some numerical
simulations to verify our theoretical calculations. As an example, we choose the set
of parameters in Table 4. The initial values are taken as S(0) = 0.9, I(0) = 0.9,
Y (0) = 0.2.

Table 4. Parameter values

Parameter Numerical Value Source

r 1/2 Hu and Li [5]

k 1 Hu and Li [5]

β 1 Hu and Li [5]

p1 1/8 Hu and Li [5]

p2 6 Hu and Li [5]

d2 1/4 assumed

d3 1/2 assumed

c 1/4 Hu and Li [5]

q1 1/2 assumed

q2 3/4 assumed

It is observed that the system has the equilibrium points (0, 0, 0) = E10, (1, 0, 0) =
E11, ( 1

2 ,
1
6 , 0) = E12 and E5 = ( 31

48 ,
353
1728 ,

7
6 ) = E∗ and all are locally stable. The

equilibrium point ( 4
3 , 0,

−4
3 ) = E13 does not exist. By calculation, it is observed

that ω0 = 0.3694 and τ0 = 1.5326. Thus positive equilibrium E∗ is asymptotically
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stable when 0 < τ < τ0 = 1.5326. The system undergoes a Hopf bifurcation when
system crosses through τ0. Few numerical simulations are represented by using
MATLAB.

It is observed from numerical simulations that the phase diagram of the system
changes with slight changes in the initial values. First two figures (1 and 2) are
drawn for the value of τ = τ0 = 1.5326 and τ = 3.6249 > τ0 = 1.5326 respectively.
From theoretical foundation it is observed that system is stable up to the critical
value of time delay τ . Critical value is calculated in (4.6). Beyond the critical value
of τ , Hopf bifurcation occurs. It is also observed in simulations. It is easy to see
that system undergoes Hopf bifurcation (See Figures 1 and 2). The simulations are
taken for the time interval [0, 1000] . For the simulation interval [0, 1000]. From
Figure 1, it is found that all the three populations are unstable with respect to time.
Similar explanation is concluded from Figure 3. Figure 3 shows the stable nature
of positive equilibrium which is drawn for τ = 1.1026 < 1.5326 = τ0, which is again
consistent with the theoretical formulation. Therefore, numerical simulations are
consistent with the theoretical formulation. If we choose the different set of values
of the parameters q1 and q2 with the same other parameters and initial values, we
may have different figures (see Remark 3.2, 4.4).

7. Discussion and future directions

In the present study, we have considered an eco-epidemiological model with
disease in the prey population only. We have considered both cases with delay
and without delay for analysis purpose. Local stability of all equilibrium points
has been discussed. We have found the time delay as a game changer. This has
been observed that time delay τ may change the stability and even bifurcation may
occur. Hopf-bifurcation analysis is presented, by the application of famous normal
form theory, Riesz representation theorem and central limit theorem, stability and
direction of bifurcated periodic solutions have been investigated. Our analytical
results has been compared with those in [5], when d2 = 0 and q1 = q2 = q.

Stability of the non zero (positive) equilibrium E5 indicates the existence and
survival of all the three species in the ecosystem. Ecologically this equilibrium is
very important, because it provides actual interaction among all the three living
components of the ecosystem. Actual balance is maintained under this situation.
Ecologists are interested to observe the stability of non zero equilibrium point. It is
also remarkable that we classify our analysis in two parts (i) without delay (ii) with
delay. Ecologically, corresponding equilibrium points listed for our models (2.1) and
(3.1) are same. For example, ecologically, E5 and E∗ are same but mathematically
both are different.

Theoretically, we can consider few examples of different ecosystems. If we con-
sider Desert, Tundra, Savana geographical areas and consider an ecosystem from
this area. Then positive equilibrium is more important, because in these areas many
predators are going to decline or decay because their prey are also facing natural
problems like climate changes, lake of water, low quality of oxygen etc. and they
also decaying, therefore in such geographical areas the predator population is not
in position to catch their prey as they are limited and therefore they remain hungry
for most of the times, finally predator population starts decaying. For the ecological
imbalance in such ecosystems, the main reason is the change in climate. Besides
cutting of trees and global warming are also important environmental issues. Thus
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Figure 1. Phase portrait of model with parameter values in Table
4 with initial values S(0) = 0.9, I(0) = 0.9, Y (0) = 0.2

positive equilibrium can never exists, however if it exists, then not stable. If we con-
sider hilly areas and consider an ecosystem from this area, then the cutting of trees
and farming are two issues which are responsible for disturbance of climate in this
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Figure 2. Phase portrait of model with parameter values in Table
4 with initial values S(0) = 0.9, I(0) = 0.9, Y (0) = 0.2

area. In near past, one natural disaster in Uttarakhand (India) occurred, possibly
because of cutting of trees and other developmental projects. This changed the cli-
mate in hilly areas as well. This occurs the ecological imbalance in these areas and
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Figure 3. Phase portrait of model with parameter values in Table
4 with initial values S(0) = 0.9, I(0) = 0.9, Y (0) = 0.2

disturbs the natural ecosystems. Prey and predator both decays simultaneously
due to unexpected mortality in the system. Thus if the positive equilibrium exists
and is stable then the stability losses due to disaster. Similarly, if we choose the
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aquatic ecosystem of any river in India, then the water pollution is a major factor
in this ecosystem. Pollution disturbs the stability of the ecosystem and disturbs the
ecological balance. Positive equilibrium may loose stability in such ecosystems as
well. If we consider an ecosystem from green forest where pollution, weather con-
ditions etc. are favorable for living species then actual prey-predation interaction
will be occurred. In this situation, if the positive equilibrium exists and is stable
this will provide the coexistence of all the three species. Thus equilibrium points
E5 and E∗, if exists, are stable for an ecosystem from a forest area.

The parameters considered for numerical computation are purely imaginary and
are suitably selected and are quite similar to result discussed in [5]. An attempt
may be done to estimate real parameters and these parameters may fit with the
present mathematical model. This task may be achieved by real data collection
from field. Further, to study the model more scientifically, control strategies may
also be investigated. This study may have applications with real ecosystems and
biomass available in the real world.

8. Appendix

Appendix 1: Ci, i = 1, 2, 3 of (3.6).

C1 = −
(

(r − d2 − d3 − c) + S̃[−2r
k

+ β + q1p1] + Ĩ[− r
k

+ q2p2 − β]− Ỹ (p1 + p2)
)
,

C2 = S̃2[βq1p1 −
2rq1p1

k
− 2rβ

k
] + Ỹ 2[p1p2] + Ĩ2[(

r

k
+ β)q2p2]

+ S̃Ĩ[βq2p2 −
2rq2p2

k
− (

r

k
+ β)q1p1] + S̃Ỹ [−q1p1p2 − q1p

2
1 +

2rp2

k
− p1β]

+ Ĩ Ỹ [−q2p1p2 + (
r

k
+ β)p2] + S̃

[
− βd3 − (c+ d2)q1p1 + rq1p1 +

2rd3

k

+ rβ +
2r(c+ d2)

k

]
+ Ĩ
[
− (c+ d2)q2p2 + rq2p2 + (

r

k
+ β)d3 + (

r

k
+ β)(c+ d2)

]
+ Ỹ

[
d3p1 − rp2 + p1(c+ d2)

]
+
[
d3(c+ d2)− rd3 − r(c+ d2)

]
,

C3 = −
(
S̃3[−2rq1p1β

k
] + S̃2Ỹ [

2rq1p1p2

k
] + S̃2Ĩ[

2rq1p1p2

k
] + Ĩ2Ỹ [(

r

k
+ β)q2p

2
2]

+ Ỹ 2Ĩ[q2p
2
2p1] + S̃ĨỸ

[
− 2rq2p

2
2β

k
+ 2(

r

k
+ β)q1p1p2 − 2βq2p1p2

]
+ S̃2

[
βrq1p1 +

2rd3β

k
+

2rq1p1(c+ d2)
k

]
+ Ĩ2[(

r

k
+ β)q2p2(c+ d2)] + Ỹ 2[d3p1p2]

+ S̃Ĩ
[
βrq2p2 +

2rq2p2(c+ d2)
k

+ (
r

k
+ β)(c+ d2)q1p1

]
+ S̃Ỹ [−rq1p1p2 +

2rp2d3

k
+ d3βp1]

+ Ĩ Ỹ
[
− rq2p

2
2 + (

r

k
+ β)d3p2 + (c+ d2)q2p1p2

]
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+ S̃
[
− d3rβ − r(c+ d2)q1p1 −

2r(c+ d2)d3

k

]
+ Ĩ
[
− r(c+ d2)q2p2 − (

r

k
+ β)(c+ d2)d3

]
+ Ỹ

[
− d3p2r − (c+ d2)d3p1

]
+ r(c+ d2)d3

)
.

Appendix 2: mi, nj, i = 0, 1, 2; j = 0, 1, 2 of (4.2).

m2 =
(2r
k

+
p1β

p2
− q1p1β

q2p2
S∗

)
+
( rd3

q2p2k
+ d3 −

p1(c+ d2)
p2

− r
)
,

m1 =
(
{d3(c+ d2)− r(c+ d2)}+ S∗{−d3β +

2r
k
d3 + rβ +

2r
k

(c+ d2)}

+ I∗{(
r

k
+ β)(d3 + c+ d2)}+ Y∗{d3p2 + d3p1 + (c+ d2)p1 + (r)p2}

+ S2
∗(−

2rβ
k

) + Y 2
∗ (p1p2) + S∗Y∗(−βp1 +

2r
K
p2) + I∗Y∗(

r

k
+ β)p2

)
,

m0 =
(
{−r(c+ d2)d3 + S∗{d3βr +

2r
k
d3}(c+ d2)}+ I∗{d3(c+ d2)(

r

k
+ β)}

+ Y∗{d3(c+ d2)p1 − rd3p2}+ S2
∗(−

2r
k
d3β) + Y 2

∗ (d3p2p1)

+ S∗Y∗{−d3βp1 −
2r
k
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r

k
+ β)p2d3}

)
,
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(
S2
∗{q1p1β −

−2r
k
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∗{−(
r

k
+ β)q2p2}

+ S∗Y∗{−q1p2p1}+ S∗I∗{q2p2β +
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,
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2
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Appendix 3. We have

g(z, z) = g20(θ)
z2

2
+ g02(θ)

z2

2
+ g11(θ)zz + g21

zz2

b3
+ . . . ,

g(z, z) = (q∗)TF (z, z)

= τkB(1, α∗1, α
∗
2)

 − r
ku

2
1(t)− ( rk + β)u1(t)u2(t)− p1u1(t)u3(t)

βu1(t)u2(t)− p2u2(t)u3(t)
p1q1u1(t− 1)(t)u3(t− 1) + p2q2u1(t− 1)u2(t− 1),


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further, it is noticed that

u(t+ θ) = W (t, θ) + z(t)q(θ) + z(t)q(θ),

u1(t) = z + z +W (1)(t, 0),

u2(t) = α1z + α1z +W (2)(t, 0),

u3(t) = α2z + α2z +W (3)(t, 0),

u1(t− 1) = z exp(−iω0τk) + z exp(iω0τk) +W (1)(t,−1),

u2(t− 1) = α1z exp(−iω0τk) + α1z exp(iω0τk) +W (2)(t,−1),

u3(t− 1) = α2z exp(−iω0τk) + α2z exp(iω0τk) +W (3)(t,−1),

hence

g(z, z) = τkB[− r
k
u2

1(t)− (
r

k
+ β)u1(t)u2(t)− p1u1(t)u3(t)

+ α1
∗{βu1(t)u2(t)− p2u2(t)u3(t)}

+ α2
∗{p1q1u1(t− 1)(t)u3(t− 1) + p2q2u1(t− 1)u2(t− 1)}],

putting the values of u1, u2, u3, u1(t − 1), u2(t − 1), u3(t − 1) etc. in g(z, z), we
obtain

g(z, z) = τkB
(
− r

k
[z + z +W (1)(t, 0)]2 − (

r

k
+ β)[z + z +W (1)(t, 0)][α1z

+ α1z +W (2)(t, 0)]− p1[z + z +W (1)(t, 0)][α2z + α2z +W (3)(t, 0)]

+ α1
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∗(p1q1[z exp(−iω0τk) + z exp(iω0τk) +W (1)(t,−1)]

× [α2z exp(−iω0τk) + α2z exp(iω0τk) +W (3)(t,−1)]

+ p2q2[z exp(−iω0τk) + z exp(iω0τk) +W (1)(t,−1)]

× [α1z exp(−iω0τk) + α1z exp(iω0τk) +W (2)(t,−1)])
)
,

from this equation we can find the values of the coefficients g20(θ), g02(θ), g11(θ),
g21(θ) etc. by comparing the same powers of z, we have

g20 = 2τkB{−
r
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+
1
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W
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20 (0)
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