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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR
SUBLINEAR EQUATIONS ON EXTERIOR DOMAINS
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ABSTRACT. In this article we study radial solutions of Au + K(r)f(u) = 0
on the exterior of the ball of radius R > 0, Bp, centered at the origin in R
with w = 0 on 9BRr where f is odd with f < 0 on (0,3), f > 0 on (3, 0),
f(u) ~uP with 0 < p < 1 for large w and K(r) ~ r—% for large r. We prove
that if N > 2 and K(r) ~ r~% with 2 < a < 2(N — 1) then there are no
solutions with lim,_oc u(r) = 0 for sufficiently large R > 0. On the other
hand, if 2 < N — p(N —2) < a < 2(N — 1) and k,n are nonnegative integers
with 0 < k < n then there exist solutions, ug, with k zeros on (R, c0) and
limy— 00 ug(r) = 0 if R > 0 is sufficiently small.

1. INTRODUCTION

In this article we study radial solutions of

Au+ K(r)f(u) =0 in RV\Bg, (1.1)
u=0 on 0Bg, (1.2)
u—0 as|z|]— o0 (1.3)

where Bp is the ball of radius R > 0 centered at the origin in RY and K(r) > 0.
We assume:

(H1) f is odd and locally Lipschitz, f < 0 on (0,8), f > 0 on (8,00), and

1'(0) < 0.
(H2) There exists p with 0 < p < 1 such that f(u) = |u|P"'u + g(u) where
lim,, o0 21 = 0.

We let F(u) = [ f(s)ds. Since f is odd it follows that F is even and from (H1) it
follows that F' is bounded below by —F < 0, F has a unique positive zero, v, with
0<pB<7v,and

(H3) —Fy < F <0on (0,7), F >0 on (v,00).

When f grows superlinearly at infinity - ie. lim, @ = 00, Q = RV,
and K(r) = 1 then the problem (1.1]), (1.3) has been extensively studied [1]-[3],
10, T2, [14).
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Interest in the topic for this paper comes from recent papers [5, [IT], 13] about
solutions of differential equations on exterior domains. In [7]-[9] we studied (L.1])-
with K(r) ~ r=%, f superlinear, and 2 = R"\Bg with various values for
«a. In those papers we proved existence of an infinite number of solutions - one
with exactly n zeros for each nonnegative integer n such that v — 0 as |z| — oo
for all R > 0. In [6] we studied (L.1)-(L.3) with K(r) ~ r=, f bounded, and
Q) = RM\Bpg. In this paper we consider the case where f grows sublinearly at
infinity - i.e. limy,— oo fl(;f) =co>0with0<p<1.

Since we are interested in radial solutions of (L.I)-(L.3) we assume that u(z) =
u(|z|) = u(r) where x € RN and r = |z|=y/2? 4+ - -- + 2% so that u solves

u’(r) + ?u'(r) + K(r)f(u(r)) =0 on (R,o00) where R > 0, (1.4)

u(R) = 0,u'(R) =beR. (1.5)

We will also assume that
(H4) there exist constants k1 > 0, k2 > 0, and « with 0 < o < 2(N — 1) such
that
kir~® < K(r) <kor™® on [R,c0). (1.6)
(H5) K is differentiable, on [R, 00), lim,_, o TTK/ = —a, and TTK, +2(N-1)>0.
Note that (H5) implies 72 V=D K (r) is increasing. In this article we prove the
following result.

Theorem 1.1. Let N >2, 0<p <1, and2 < N —p(N—-2) <a <2(N-1).

Assuming (H1)—(H5) then given nonnegative integers k,n with 0 < k < n then there

exist solutions, ug, of (L.4)-(1.5) with k zeros on (R, o0) and lim,_, uk(r) =0 if
R > 0 is sufficiently small.

In addition we also prove:

Theorem 1.2. Let N > 2, 0<p<1land?2 < a <2(N —1). Assuming (H1)-
(H5), there are no solutions of (1.4)-(1.5) such that lim, . u(r) =0 if R > 0 is
sufficiently large.

Note that for the superlinear problems studied in [7]-[9] we were able to prove
existence for any R > 0 whereas in the sublinear case and in [6] we only get solutions
if R is sufficiently small.

2. PRELIMINARIES AND PROOF OF THEOREM

From the standard existence-uniqueness theorem for ordinary differential equa-
tions [] it follows there is a unique solution of (1.4))-(1.5) on [R, R + €) for some
e > 0. We then define

1 'U,I2
E7§?+F(u). (2.1)
Using (H5) we see that
2 /
, u rK
= — — < —1). .
E 2TK<2(N 1) + K)*O for 0 < o < 2(N — 1) (2.2)
Thus E is nonincreasing. Hence it follows that
1 'LL/2 2
—— = < = — > .
2K+F(u) E(r) < E(R) 3K forr > R (2.3)
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and so we see from (H2)—(H4) that u and « are uniformly bounded wherever they
are defined from which it follows that the solution of (1.4))-(1.5)) is defined on [R, o).

Lemma 2.1. Let N > 2, 0<p <1, and 0 < a < 2(N — 1). Assume (H1)-(H5)
and suppose u satisfies — with b > 0. If u has a zero, zp, with u > 0 on
(R, zp) orif u> 0 for r > R and lim, o u = 0 then u has a local mazimum, My,
with R < My, v/ >0 on (R, My), M — o0 as b — oo, and u(Mp) — o0 as b — oo.

Proof. Since u(R) = 0 and v/ (R) = b > 0 we see that u gets positive for r > R and
if u has a zero, zp, or if u > 0 and lim,_,o, u(r) = 0 then u has a critical point, Mp,
such that v’ > 0 on (R, M}). Then v (M) = 0 and u” (M) < 0. By uniqueness of
solutions of initial value problems it follows that v’ (M;) < 0 and thus M, is a local
maximum. Next suppose there exists My > R such that M, < My for all b > 0.
Letting vy, (r) = # then from we have v,(R) =0, v;(R) = 1 and

vy (1) + NT_ 1111'7(7“) + K(r)if(bvg(r)) =0 forr>R. (2.4)

It follows from ([2.1))-(2.2) that
(1 vz F(bwy)
2 K b2

/

) <0 forr>R
and thus

Lop | Flw) _ 1

5K ' " 2K(R)
It then follows from (2.5) and (H2)-(H4) that |vj| is uniformly bounded for large
b> 0 on [R,0). So there is a constant Cy > 0 such that

|vy| < C for large b >0 and all r > R. (2.6)

We now fix a compact set [R, Ry]. Then on [R, Rg] we have by (2.6

for r > R. (2.5)

o] = |(r — R) +/RT Wty di] < (1+C1)(Ro — R)

so we see that |vp| is uniformly bounded for large b on [R, Ro].
In addition from (H1)—(H2) it follows there is a constant Cy > 0 such that

|f(u)] < ColulP  for all u (2.7)
and therefore since the v, are uniformly bounded on [R, Ry] and 0 < p < 1 it follows
e fom) | _ Calul?

Vb 2|Up
\ 2 | < A 0 asb— oo. (2.8)

Then from and we see that |vf/| is uniformly bounded on [R, Ry]. So
by the Arzela-Ascoli theorem there is a subsequence of vy, (still denoted v,) such
that v, — vy and v, — v, uniformly on [R, Ry] as b — oco. It then follows from
that v} converges uniformly to v{ on [R, Ro] and vf + ¥=1v) = 0. Since Ry

is arbitrary we see that v + 2=1v) = 0 on [R,00). Thus, r¥~1vj = RN~! and
RN_l[R;__J;7T2_N]. Now since M, < M for all b > 0 then a subsequence of
M,, converges to some M and since vy (M) = 0 it follows that vj (M) = 0. However
this contradicts that v{ = % > 0. Therefore our assumption that the M, are
bounded is false and so we see My — oo as b — oo.

Next we see that since M, — oo then M, > 2R if b is sufficiently large and

since w is increasing on [R, Mj] then % > @ = vp(2R) — vo(2R) > 0 for

Vo =
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sufficiently large b. Thus u(M}) > @b for sufficiently large b and so we see that
u(Mp) — 00 as b — oo. This completes the proof. O

Lemma 2.2. Let N >2,0<p<1,2<a<2(N-1), and assume (H1)—-(H5). If
u(zp) = 0 with uw > 0 on (R, z) or u >0 on (R, 00) with lim,_,o u =0 then

1p . g1 ko 1 Fy
[U(Mb)} =M, B %_1 p+1+,}/p+l'

(2.9)

Proof. We first show that if u(zp) = 0 with « > 0 on (My, z;) then «’ < 0 on (My, zp)
and if u > 0 on (M}, 00) with lim, o u(r) = 0 then u’ < 0 on (Mp, 00). In the first
case, if u has a positive local minimum, my,, with M, < my < 2z then u'(m;) = 0,
u’(my) <0, so f(u(my)) > 0 which implies 0 < u(myp) < 3. On the other hand,
since E is nonincreasing 0 > F(u(my)) = E(my) > E(zp) = %f((zz:)) > 0 which
is impossible. Secondly, suppose v > 0 on (R,c0) and lim,_ ., u(r) = 0. Since

E is nonincreasing it follows that lim,_, ., E(r) exists and since %% > 0 and
F(u(r)) — 0 as r — oo we see that lim, .o, E(r) > 0. Thus E(r) > 0 for all r > R.
On the other hand, if u has a positive local minimum, my, then 0 < u(mp) < 8 and
E(myp) = F(u(my)) < 0 again yielding a contradiction.

Next, it follows from (2.1)-(2.2) that E(t) < E(M,) for t > M,. Rewriting this

inequality we obtain
|u'(2)]
V2y/F(u(My)) — F(u(t))

If u(zp) = 0 then integrating (2.10) on (M, 2;) and using that ' < 0 on (My, zp)
gives

< VK for t > M. (2.10)

/“(Mb) dt _ 2p —u’(t) 0
0 VE(My) = F(t)  Ju, V2¢/F(u(My)) — F(u(t))

2p
< [ VKdt
Azb (2.11)
2 1-4 1-<
= 9—1(Mb Pz ?)
2
< P M®
|
2

Similarly if w(r) > 0 and lim, ..o v = 0 then integrating (2.10) on (M}, 00) and
using that ' < 0 on (Mp, 00) we again obtain

u(My) o
/ dt < akg Mblij-
0 VF@(M,)) - F(t) — 5 -1

Next from (H2), (H3) and (2.7) it follows that —Fy < F(u) < %liﬂ for all w.
Therefore estimating the left-hand side of (2.11)) gives

/u(Mb) dt - u(My) B [U(Mb)]l%’
F M, — F - Colu(My)|p+1 - Cy _ Fy
0 \/ (U( b)) (t) \/2[;%)] + Fy \/p—‘fl + [u(Mb%]PH

Also from (2.1))-(2.2)) if u(zp) = 0 then we have F(u(M;)) = E(My) > E(z) =
12
%% > 0 and so u(Mp) > . On the other hand, if v > 0 and lim, .o u = 0

. (212)
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then as we saw earlier E(r) > 0 for all r > R. Thus F(u(M,)) = E(M,) > 0 and
again we see u(Mp) > . Now using (2.12)) in (2.11)) and rewriting gives

%Mb%—lg ko \/C2 n Fo

S—1\p+1 [u(My)r+!
(2.13)
k F
<P Co n 21.
s—1yp+1l 7
This completes the proof. ([

Proof of Theorem[I.3. If u has a zero, z,, with u > 0 on (R, z) or u > on (R, o)
with lim,_,oc u(r) = 0 then by Lemmas and we know that u has a local
maximum, M, with R < My and «' > 0 on (R, M;). In addition, from the proof
of Lemma [2.2] we have u(M,) > . Combining this with and the fact that
o >2and 0 < p <1 we obtain

1-p Ja_q 1—p F-1 kz 1 Fo
’YQRQ S[U(Mb)]sz S%_l p_|_1+,yp+1'

Thus we see that if R is sufficiently large then (2.14) is violated and so we obtain
a contradiction. This completes the proof of Theorem [I.2} O

(2.14)

3. PROOF OF THEOREM [L1]

We now turn to the proof of existence for N > 2, 0<p< 1,2 < N—p(N—-2) <
a < 2(N —1) and R > 0 sufficiently small. First we make the change of variables:
u(r) = up (r*=).
Using we see that up satisfies
!l + h(t) fuy) = 0 (3.1)
where it follows from (H4)—(H5) that:

2(N—1) 1
2

_t N K(t7F) ,
pRN -1
u(RN)y=0 and uj(R*N)=— N3 < 0. (3.3)

In addition, from (H4) we have

k1 k2 AN —1) -
- S W) £ 55 forallt h A CA Y
(N—Q)th - ()_ (N—Q)th or a >0, where g N —92

Note: Since 2 < a < 2(N —1), N > 2, and ¢ = % it follows that
0<g<2.
Now instead of considering (3.1) with (3.3]) we consider (3.1) with
Ul(O) = O7 u’l (0) =b; > 0. (35)
Integrating (3.1)) twice on (0,t) and using (3.5)) we see that a solution of (3.1]), (3.5)

is equivalent to a solution of:

up = byt _/0 /0 h(z) f(uy) dzds. (3.6)

. (3.4)
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Letting u; = tv; we see that a solution of ([3.6) is equivalent to a solution of

v = by — f/ / h(z)f(zvy) dxds. (3.7)

Tv, = b — 7/ / f(zv1) dx ds. (3.8)

Let 0 < e < 1. Denoting |lw|| = supyg ¢ |w(z)| we let
B={veCl0,d|[v-bl <1}

Now we define

where C[0, €] is the set of continuous functions on [0, €]. It follows from (H1)-(H2)
that there exists L > 0 such that

|f(w)| < Llu| for all u. (3.9)
Then by (3.4), (3.8)-(3.9), and since g < 2 as well as |v1| <1+ by:

Tvy — by € ———F— z 92|v|dx ds
N 2)

< .

T 2-9B-g(N-2)
Thus for sufficiently small € > 0 we have T': B — B. Next we see by the mean
value theorem, ([3.4)), and ) that we have

|Tvy — Tve| = |7/ / flzvy) — f(zve)] dx ds|

?//xh(x)h}l—vg\dxds

0 Jo

Lk 1t
(N_22|v1112t/0/0xzquds

< Lk}QG |
T 2-9B- q)(N 2)?
Thus for small enough € > 0 we see that T is a contraction for any b; > 0 and so
by the contraction mapping principle there is a solution of (3.7]) and hence of (3.1)),

on [0, €] for some € > O
Next from and ( we have

I /\

|vg — va|.

t s
|%|:\v1|§b1+—/ / ch(z)|or ()] da ds (3.10)
§b1+ Qt// 1=y, (2)| dx ds
§b1+k27/ 10}, (2)] da. (3.11)
(N=2)2Jy

Now let wy = fot s'7%vy(s)|ds. Then
wi =t oy (t)] =t~ Y us (t)] (3.12)
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and from (3.10))-(3.12) we obtain
koL _ _
wll — mtl qU)1 S bltl q. (313)

_ koLt?~9
Multiplying (3.13) by u(t) = e -o@-22 < 1, integrating on [0,¢], and rewriting
gives

wy < o /t s u(s)ds < b 752: (3.14)
) Jo T @-gu® |
Then from (3.12)-(3.14) we obtain
koL bltS_q 3_
< = B a Nl
ul_<(2—q)(N—2)2) o) + byt = by (t+ B(t)t°79) (3.15)

where
ko L 1
50 = (G=piv—a) 70

Note that u(t) is decreasing and continuous hence B(t) is increasing and continuous.
Next it follows from (3.6 that

t
uy = by —/ h(x) f(uy) dz (3.17)
0
and thus from (3.4), (3.15), (3.17)), and since B(t) is increasing;:

(3.16)

koL ¢
luj| < by + ﬁ/@ x (1‘ + B(I)$37q) dz
(3.18)
< by + bl (2027 + B(t)t' %)

2N =2)*(2-q)
Thus from (3.15)) and (3.18]) we see that u; and u} are bounded on [0, ¢] and so it

follows that the solution of (3.1), (3.5]) exists on [0,¢]. Since t is arbitrary it follows
that the solution of (3.1), (3.5) exists on [0, c0).

Lemma 3.1. Let N >2,0<p<1, and2 < a < 2(N —1). Assuming (H1)—(H5)
and that uy solves (3.1), (3.5) then there exists tp, > 0 such that uy(tp,) = B and
0<u; < B on(0,ty,). In addition, u}(t) >0 on [0,t,].

Proof. Since u}(0) = by > 0 we see that u; is initially increasing, positive, and less
than 3. On this set f(u;) < 0 and so by we have v > 0. Thus by we
have uf > b; > 0 when 0 < u; < @ and so on this set we have u; > bit. Since
b1t exceeds [ for sufficiently large t we see then that there exists ¢5, > 0 such that
u1(tp,) =B and 0 < uy < B on (0,%p,). This completes the proof. O

Lemma 3.2. Let N >2,0<p<1, and2 < a <2(N —1). Assuming (H1)-(H5)
and that uy solves (3.1), (3.5) then ty, — oo as by — 0.
Proof. Evaluating (3.15) at ¢t = t;, gives:

B =ui(te,) < bi(ty, + Blte,)t;, ). (3.19)
Since 2 < a < 2(N — 1) it then follows from the note after (3.4) that 0 < ¢ < 2.
Now if ¢, is bounded as b; — 0" then the right-hand side of (3.19) goes to 0 as

by — 07 which violates (3.19). Thus we obtain a contradiction and so we see that
tp, — oo as by — 0. This completes the proof. O
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Lemma 3.3. Let N >2,0<p<1, and N—p(N—2) <a<2(N—-1). Assuming
(H1)-(H5) and that uy solves (3.1), (3.5) then uy has a local mazimum, My, , on
(0,00).

Proof. From Lemma it follows that there exists ¢,, > 0 such that u,(t,,) = 5
and uj > 0 on [0,%,]. Now if u; does not have a local maximum then u} > 0 for
t > tp, and so uy > uy(ty, +96) > 8> 0 for t > tp, + 9 and some ¢ > 0. Then from
(H2) we see that there is a C3 > 0 such that f(uy) > C5 on [t, + J,00). Thus

—uf = h(t)f(ur) > C3h(t) for t > tp, + 6. (3.20)
We now divide the rest of the proof into 3 cases.

Case 1: N < o < 2(N — 1) In this case we see from (3.4 that 0 < ¢ < 1 so
integrating (3.20)) on (¢p, + 0,¢) and using (3.4) gives

k1C3 1— -
— = (= (¢ 0) 1 - t .
(1—q)(N—2)2( (ty, +6)'79) — —00 ast— oo
Thus u} gets negative which contradicts that uj > 0 for ¢t > 0 and so u; must have
a local maximum.

Case 2: a = N In this case we have ¢ = 1 by (3.4]) and so again integrating (3.20))
on (tp, + 6,t) we obtain

k1Cs
(N —2)

which again contradicts that v} > 0 for ¢ > 0. Thus u; must have a local maximum.

uy < ul(ty, +6) — (In(t) —In(tp, +0)) — —o0 as t — oo

Case 3: N —p(N —2) < a < N We denote

1 uf?
Ey=- F 21
YA + F(u1) (3.21)
and observe from ((3.1)-(3.2) that
1 u/2 / ul2h/
El=(z74+F =—-1_>0. 22
L (2 no + (”1)) on2 =V (3:22)

In addition we see from that F41(0) = 0 and so Ey(t) > 0 for t > 0.

We suppose now that u; is increasing for ¢ > ¢;,. We first show that there exists
tp, > tp, such that u(tp,) = 7. So we suppose by the way of contradiction that
0<wu; <+vyanduj >0fort>t,.

Then from (3.1)-(3.2) and (H3) we have
1 /
(§U’12 + h(t)F(ul)) = W(#)F(uy) >0 when 0<u; <. (3.23)

F(u1)

Now we recall from (H1) that lim,, .o — 5~ = fléo). Also since u1(0) = 0 and

1y (0) = by then lim,_,o+ %+ = by. Therefore for small positive ¢ and (3.4]) we have
[Fu)|ui _ |f'(0)] ko b7 £271
ud 2 7 (N —2)2

as t — 0T since ¢ < 2. Therefore, integrating (3.23) on (0,¢) and using (3.24]) we
obtain

0 < h(t)|F(u1)| = t2h(t) -0 (3.24)

1 1
§u'12 + h(t)F(uy) > ib% when 0 < uq <. (3.25)
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In addition, since 0 < uy < 7 it follows that h(t)F(u1) < 0 and thus from (3.25),
uy >b; when 0 < wuy <7. (3.26)
Integrating on (0,t) we obtain
uy > bt > o00ast— o

- a contradiction since we assumed u; < <. Thus there exists ¢y, > 5, such that
u(tp,) =y and uj > by > 0 on [0, t,] by (3.26).

We show now that uy(t) — oo as t — oo. If not then w; is bounded from above
and so there exists Q > « such that lim;_ . u1(t) = Q. Returning to (3.1)) we see
that this implies:

u//
lim - = — <0. 3.27
Am oy~ @ (3.27)

In particular, v} < 0 for large ¢ and so u} is decreasing for large ¢. Since uj > 0
for large t it follows that lim;_, ., u} exists. This limit must be zero otherwise
this would imply u; — oo as t — oo contradicting the assumption that wu; is
bounded. Thus limy_. u} = 0. Next denoting H(t) = [,” h(s) ds we see that since
N—-p(N—-2)<a< Nand qg= % this implies:

l<g<l+p<2 (3.28)
Therefore by (3.4]) we see that h(t) is integrable at infinity so H(t) is defined. Then
by (3.27) and L’Hopital’s rule we see that

! "
u

u
lim — = lim ——t = 0. 3.29
R TR 7y Q) > (3.29)
Then from (3.4) and (3.28)-(3.29) we see
ki f(Q) -
RS f<Q)Ht > 1 tl q
R S PRI
Now integrating (3.30) on (to,t) where ¢y and ¢ are sufficiently large gives

k1f(Q) 271
2(¢=1) 2-g)(N =2)
- a contradiction since we assumed u; was bounded. Thus if uj > 0 for ¢ > 0 then
it must be that u; — oo as ¢ — oo.

Next recalling (3.23)) we have

for large t. (3.30)

uy > ui(to) +

— 00 ast— oo since g < 2

1 /
(51/12 + h(t)F(ul)) = W()F(uy) <0 when u > 1. (3.31)
Integrating this on (¢,,t) gives
1 1
iu? +h(t)F(uy) < Eu’f(tbz) for t > tp,. (3.32)
On (tp,,t) we have h(t)F(u1) > 0 and thus from (3.32)):
|uf | < |u)(tp,)] for t > tp,. (3.33)
We claim now that )
lim £hit) flur) = 0. (3.34)
t—o0 U1

Integrating (3.33) on (¢p,,t) gives
uy < v+ (t—ty,) |t (ty,)| < Cyt  for some Cy > 0 for large t. (3.35)
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Next from (H2) we have

f(uzl) > 1 — € for large u;.
1
Thus by (3.35),
-l (1— 1-
f(w) > (L= uy = ( 1_6) > (1_ ) for large t. (3.36)
uy uy uy POy

Therefore by (3.4]), , and ([3.36)):
t2h(t) f(u1) S ki(l—e) 279  ki(1—¢)
Uy - Ci_p(N —2)2tt-p C’i_p(N —2)2
since 1 + p > ¢. This establishes (3.34).
Next we rewrite (3.1)) as

2h(t) f(u1) ur
" _— =
uf + ” e 0. (3.37)

Now it follows from ([3.34) that we may choose ty sufficiently large so that
t2h(t) f(u1)

Uy

1
>A> 1 o [to, 00).
Next let y; be the solution of
Y1

with yq (to) = u1(to) = v and ¥ (to) = v/ (to) > 0. It follows then for some constants

di # 0 and ds that
/ 1
y1:d1\/2<sin(ln(t A—1)+d2))

and so clearly y; has an infinite number of local extrema on [tg, 00). Consider now
the interval [tg, M| such that y; > 0, ¢ > 0 on [to, M] and ¢} (M) = 0. We claim
now that uj must get negative on [tg, M]. So suppose not. Then uj > 0 on [to, M].

Then multiplying (3.37) by y1, multiplying (3.38]) by u1, and subtracting we obtain

t2h(t) f(u u
(yruy — yhur)" + (7( ilf( D A) —y; L—o.
Integrating this on [tg, M] gives
M 2
t2h(t
yr (M)u, (M) + / (M - A) y;“ dt = 0. (3.39)
to uy

The integral term in (3.39) is positive by (3.34) and also y1 (M )u) (M) > 0 yielding
a contradiction. Therefore we see that w; must have a maximum, M;, > 0, and
u} > 0 on [0, M}, ). This completes the proof. O

Lemma 3.4. Let N >2,0<p <1, and N—p(N —2) < a < 2(N —1). Assuming
(H1)—(H5) and that uy solves (3.1), (3.5)) then there exists tp, > My, such that
w1 (tpy) = LJQF'V and u} <0 on (M, ,tp,].
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Proof. If uy > %ﬂ for all t > My, then f(uy) > 0 for ¢t > M. Then from (3.1)) it
follows that u} < 0 and thus u}(t) < wj(tg) < 0 for ¢t > tg > My, . Integrating this
inequality on (to,t) gives

ur(t) < up(te) +uj(to)(t —tg) — —0o0 ast— oo

which gives a contradiction since we assumed u; > %ﬂ for all ¢ > My, . Thus there

exists tp, > My, such that uq(tp,) = Bgﬂ, ug > %ﬂ, and uf < 0on (Mp,,ts,]. O

Lemma 3.5. Let N >2,0<p <1, and N—p(N —2) < a < 2(N —1). Assuming
(H1)—-(H5) and that uy solves (3.1)), (3.5) then there exists z14, > My, such that
u1(z1,6,) = 0. In fact, uy has an infinite number of zeros on (0, 00).

Proof. Suppose now by the way of contradiction that 0 < u; < 7 and thus F(uq) <

0 for t > tp,. Then from (3.21)-(3.22)) we have

1 12
5 1?&) + F(u1) > Fluy(Mp,)) > 0 for t > My,. (3.40)
Therefore by (3.4]) and (3.40) we have
leF(Ul(Mb ))
u? > 2h(t)F(ui(My,)) > (N——Q)thl
for ¢t > tp,. Thus:
2k F M,
— ) > COst™7?  where C5 = 1N(1il; b)) > 0 for t > tp,. (3.41)
Integrating (3.41) on (¢p,,t) gives
q 1—
ttT2 —1
U1§¥—05(17qb3) — —00 ast — oo since ¢ < 2.
)

Thus u; gets negative contradicting that u; > 0 on (0,00). Hence there exists
z1,p, > My, such that ui(z15,) =0 and uf <0 on (My,, z14,]-

In a similar way to Lemmal[3.3|we can show that u; has a negative local minimum,
mp, > 21,p,, and similar to Lemma we can show that u; has a second zero
Zgp, > mp,. It then in fact follows that w; has an infinite number of zeros z, 4, .
This completes the proof. O

Proof of Theorem[I.1. By continuous dependence on initial conditions it follows
that z1 4, is a continuous function of b;. In addition, by Lemma it follows that
tp, — 00 as by — 07 and since 21, > tp, it follows that z1 5, — oo as by — 07.

So now let k,n be nonnegative integers with 0 < & < n. Choose R > 0 suffi-
ciently small so that z1p, < -+ < zpp, < R?>~N. Then by the intermediate value
theorem there exists a smallest value of b; > 0, say by j, such that 2y = RN,
Then wy(t, by ) is a solution of and such that uq(¢,b1,) has k zeros on
(0, R?2=N).

Finally defining

1

Up(r) = (fl)kul(rsz,bLk)

we see that Uy, solves (1.4), Uy, has k zeros on (R, 00), and lim,_,o U (r) = 0. This
completes the proof. [
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Note: A crucial step in proving Theorem [I.I] is Lemma [3.3] which says that if
N —p(N —2) < a < 2(N — 1) then every solution of (3.1), (3.5) must have a
local maximum. We conjecture that a similar lemma does not hold for 2 < a <

a—2
N — p(N — 2) because for an appropriate constant ¢ > 0 the function ¢t ™=20-»
is a monotonically increasing solution of the model equation

1
u' 4+ —uP =0
ta
Withq:% and 0 < p < 1.
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