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SHAPE DIFFERENTIATION OF STEADY-STATE
REACTION-DIFFUSION PROBLEMS ARISING IN CHEMICAL

ENGINEERING WITH NON-SMOOTH KINETICS
WITH DEAD CORE

DAVID GÓMEZ-CASTRO

Communicated by Jesús Ildefonso Dı́az

Abstract. In this paper we consider an extension of the results in shape

differentiation of semilinear equations with smooth nonlinearity presented by

Dı́az and Gómez-Castro [8], to the case in which the nonlinearities might be
less smooth. Namely we show that Gateaux shape derivatives exists when the

nonlinearity is only Lipschitz continuous, and we will give a definition of the
derivative when the nonlinearity has a blow up. In this direction, we study

the case of root-type nonlinearities.

1. Introduction

In this article we consider the shape differentiation of a family of diffusion-
reaction problems introduced by Aris in the context of optimization of chemical
reactors depending on the spatial domain (see [1]). It was later shown that the
model can be rigorously deduced as a limit of different nonhomogeneous microscopic
models (see [3, 4]). In particular we are interested in the solutions of the problem

−∆w + β(w) = f, in Ω,
w = 1, on ∂Ω,

(1.1)

and their behaviour as we deform the domain Ω.
It will be sometimes useful to consider the change in variable u = 1−w, g(u) =

β(1) − β(1 − u) and f̂ = β(1) − f , so that we have u = 0 on the boundary. After
this change in variable we have that u is the solution of

−∆u+ g(u) = f̂ , in Ω,
u = 0, on ∂Ω.

(1.2)

These functions will be sometimes denoted uΩ, wΩ when different domains are con-
sidered.
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In [8] (see also [15, 13, 14]) the authors showed that, if β ∈ W 2,∞(R) and
f ∈ L2(Ω), then the maps

W 1,∞(Rn,Rn)→ H1
0 (Ω)

θ 7→ u(I+θ)Ω ◦ (I + θ)

W 1,∞(Rn,Rn)→ L2(Rn)
θ 7→ u(I+θ)Ω,

where the extension by 0 is considered in Rn \ (1 + θ)Ω, are Fréchet differentiable
at 0. Fixing θ ∈ W 1,∞(Rn,Rn) it was shown in [8] that the directional derivative
(the derivative of uτ = u(I+τθ)Ω with respect to τ , duτ

dτ = duτ
dτ |τ=0) is the solution

of the problem

−∆
duτ
dτ

+ g′(uΩ)
duτ
dτ

= 0, in Ω,

duτ
dτ

= −∇uΩ · θ, on ∂Ω.
(1.3)

Notice that, since u = 1−w, we have that duτ
dτ = −dwτdτ . Hence, taking into account

that g′(u) = −β′(w), we have

−∆
dwτ
dτ

+ β′(wΩ)
dwτ
dτ

= 0, in Ω,

dwτ
dτ

= −∇wΩ · θ, on ∂Ω.
(1.4)

The aim of this paper is to extend this results to the case when β /∈ W 2,∞. First,
we will show that, when β ∈W 1,∞, the Gateaux shape derivative exists. However,
if β is not locally Lipschitz continuous, the solution of (1.1) might develop a region
of positive measure

NΩ = {x ∈ Ω : wΩ(x) = 0}. (1.5)
This region, known as dead core, was studied at length in [5, 2]. It is a necessary
condition for the existence of this region that β′(wΩ) = +∞. Hence, equation (1.4)
cannot be understood immediately in a standard way. In this setting, we will show
that there exists a limit of the previous theory.

2. Statement of results

For the rest of the paper Ω ⊂ Rn will be a fixed domain, of class C2, and n ≥ 2.

2.1. Existence and estimates of shape derivatives.

Existence of Gateaux derivative when β ∈ W 1,∞. In [8] the authors prove the
existence of a shape derivative in the Fréchet sense when β ∈ W 2,∞(R). Nonethe-
less, as is it usually the case, the equation for the derivative is well defined in a
straightforward way when β ∈ W 1,∞(R). In fact, the following result shows that,
if β ∈W 1,∞(R) rather than W 2,∞(R), then the shape derivative exists only in the
Gateaux sense, which is weaker than the Fréchet sense.

Theorem 2.1. Let θ ∈ W 1,∞(Rn,Rn), β ∈ W 1,∞(R) be nondecreasing such that
β(0) = 0 and f ∈ H1(Rn). Then, the applications

R→ L2(Ω)

τ 7→ u(I+τθ)Ω ◦ (I + τθ),
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and

R→ L2(Rn)
τ 7→ u(I+τθ)Ω

are differentiable at 0. Furthermore, duτ
dτ |τ=0 is the unique solution of (1.3).

Remark 2.2. In most cases, the process of homogenization mentioned in the in-
troduction gives an homogeneous equation (1.1) in which β is the same as in the
microscopic limit, and thus it is natural that β be singular. However, it sometimes
happens that the limit kinetic is different. In the homogenization of problems with
particles of critical size (see [9]) it turns out that the resulting kinetic in the macro-
scopic homogeneous equation (1.1) satisfies β ∈ W 1,∞, even when the original
kinetic of the microscopic problem was a general maximal monotone graph.

From W 2,∞ to W 1,∞ ∩ C1. Let us show that the shape derivative is continuously
dependent on the nonlinearity, and thus that we can make a smooth transition from
the Fréchet scenario presented in [8] to our current case. For the rest of the paper
we will use the notation:

v =
dwτ
dτ

∣∣∣
τ=0

(2.1)

Lemma 2.3. Let f ∈ L2(Rn), β ∈ W 1,∞(R) be nondecreasing functions such that
β(0) = 0 and let βn ∈ W 2,∞(R) nondecreasing such that βn(0) = 0. Let wn be the
unique solution of

−∆wn + βn(wn) = f in Ω,
wn = 1 on ∂Ω.

(2.2)

Then

‖wn − w‖H1(Ω) ≤ C‖βn − β‖L∞ (2.3)

‖wn − w‖H2(Ω) ≤ C(1 + ‖β′‖L∞)‖βn − β‖L∞ . (2.4)

Furthermore, let β ∈ C1(R) ∩W 1,∞(R) and vn be the unique solution of

−∆vn + β′n(wn)vn = 0 in Ω,
vn +∇wn · θ = 0 on ∂Ω.

(2.5)

Then
vn ⇀ v in H1(Ω). (2.6)

Remark 2.4. In (2.3) the notation

‖βn − β‖L∞ = sup
x∈R
|βn(x)− β(x)|

does not mean that either βn or β are L∞(R) functions themselves, but rather that
their difference is pointwise bounded, and, in fact, this bound is destined to go 0
as n→ +∞. We will use this notation throughout the paper.

Shape derivative with a dead core. We can prove that the shape derivative in the
smooth case has, under some assumptions, a natural limit when β not smooth.

In some cases in the applications (see [5]) we can take β so that β′(wΩ) has a
blow up. It is common, specially in Chemical Engineering, that β′(0) = +∞ and
NΩ exists (see [5]). In this case β′(wΩ) = +∞ in NΩ. Because of this fact, the
natural behaviour of the weak solutions of (1.4) is v = 0 in NΩ. We have the
following result
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Theorem 2.5. Let β be nondecreasing, β(0) = 0, β′(0) = +∞,

β ∈ C(R) ∩ C1(R \ {0}),

and assume that |NΩ| > 0, θ ∈ W 1,∞(Rn,Rn) and 0 ≤ f ≤ β(1). Then, there
exists v a solution of

−∆v + β′(wΩ)v = 0 Ω \NΩ,

v = 0 ∂NΩ,

v = −∇wΩ · θ ∂Ω,
(2.7)

in the sense that v ∈ H1(Ω), v = 0 in NΩ, v = −∇wΩ · θ in L2(∂Ω), β′(wΩ)v2 ∈
L1(Ω) and ∫

Ω\NΩ

∇v∇ϕ+
∫

Ω\NΩ

β′(w)vϕ = 0 (2.8)

for every ϕ ∈W 1,∞
c (Ω \NΩ). Furthermore, for m ∈ N, consider βm defined by

β′m(s) = min{m,β′(s)}, βm(0) = β(0) = 0,

and let wm, vm be the unique solutions of (2.2) and (2.5). Then,

vm ⇀ v, in H1(Ω), (2.9)

where v is a solution of (2.7).

The uniqueness of solutions of (2.7) when β′(wΩ) blows up is by no means trivial.
Problem (2.7) can be written in the following way:

−∆v + V v = f (2.10)

where V = β′(wΩ) may blow up as a power of the distance to a piece of the
boundary. This kind of problems are common in Quantum Physics, although their
mathematical treatment is not always rigorous (cf. [6, 7]).

In the next section we will show estimates on β′(wΩ). Let us state here some
uniqueness results depending on the different blow-up rates.

When the blow-up is subquadratic (i.e. not too rapid), by applying Hardy’s
inequality and the Lax-Migram theorem, we have the following result (see [6, 7]).

Corollary 2.6. Let NΩ have positive measure and β′(w(x)) ≤ Cd(x,NΩ)−2 for
a.e. x ∈ Ω \NΩ. Then the solution v is unique.

The study of solutions of problem (2.10) in Ω when V ∈ L1
loc(Ω) by many authors

(see [11, 10] and the references therein). Existence and uniqueness of this problem
in the case V (x) ≥ Cd(x, ∂Ω)−r with r > 2 was proved in [10]. Applying these
techniques one can show that

Corollary 2.7. Let NΩ have positive measure and β′(w(x)) ≥ Cd(x,NΩ)−r, r > 2
for a.e. x ∈ Ω \NΩ. Then the solution v is unique.

Similar techniques can be applied to the case β′(w(x)) ≥ Cd(x,NΩ)−2. This will
be the subject of a further paper.
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2.2. Estimates of wΩ close to NΩ. Let us study the solution wΩ on the proximity
of the dead core and the blow up behaviour of β′(wΩ). First, we present a known
example

Example 2.8. Explicit radial solutions with dead core are known when β(w) =
|w|q−1w (0 < q < 1), Ω is a ball of large enough radius and f is radially symmetric.
In this case it is known that NΩ exists, has positive measure and

1
C
d(x,NΩ)−2 ≤ β′(wΩ) ≤ Cd(x,NΩ)−2.

For the details see [5].

In fact, we present here a more general result to study the behaviour in the
proximity of the dead core, based on estimates from [5].

Proposition 2.9. Let f = 0, β be continuous, monotone increasing such that
β(0) = 0, w be a solution of (1.1) that develops a dead core NΩ of positive measure
and ∂NΩ ∈ C1. Assume that

G(t) =
√

2
(∫ t

0

β(τ)dτ + αt
)1/2

, where α = max
{

0, min
x∈∂Ω

H(x)
∂w

∂n
(x)
}
, (2.11)

is such that 1
G ∈ L

1(R). Then

wΩ(x) ≤ Ψ−1(d(x,NΩ)), where Ψ(s) =
∫ s

0

dt

G(t)
, (2.12)

in a neighbourhood of NΩ.

Example 2.10 (Root type reactions). Let f = 0, β(s) = λ|s|q−1s with 0 < q < 1
and Ω be convex such that NΩ exists and ∂NΩ ∈ C1. Then

wΩ(x) ≤ Cd(x,NΩ)
2

1−q . (2.13)

Furthermore
β′(wΩ(x)) ≥ Cd(x,NΩ)−2. (2.14)

3. Proof of Theorem 2.1

For the rest of this paper let us denote

uτ = u(I+τθ)Ω. (3.1)

Notice that u0 = uΩ.
Let us define Uτ = u(I+τθ)Ω ◦ (I + τθ) ∈ H1

0 (Ω). Again U0 = u0 = uΩ. We have∫
Ω

Aτ∇Uτ∇ϕ+
∫

Ω

g(Uτ )ϕJτ =
∫

Ω

fτϕJτ , (3.2)

where Jτ is the Jacobian of the transformation. fτ = f ◦ (I + τθ) and Aτ is the
corresponding diffusion matrix (see [8] for the explicit expression). Fortunately,
Jτ ≥ 0 and, for τ small, we have that ξ · Aτξ ≥ A0|ξ|2 for some A0 > 0 constant.
Considering the difference of the weak formulations of Uτ and U0 = uΩ we have∫

Ω

Aτ∇(Uτ − u0)∇ϕ+
∫

Ω

(g(Uτ )− g(u0))Jτϕ

=
∫

Ω

(fτJτ − f)ϕ+ +
∫

Ω

(I −Aτ )∇u0∇ϕ+
∫

Ω

(Jτ − 1)g(u0)ϕ.
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Hence, by the monotonicity of g, we have

‖∇
(Uτ − u

τ

)
‖L2

≤ C
(
‖fτ − f

τ
‖L2 + ‖Aτ − I

τ
‖L∞‖∇u0‖L2 + ‖Jτ − 1

τ
‖L∞‖g(u0)‖L2

)
Since fτ , Aτ and Jτ are differentiable at 0, there is weak H1

0 (Ω) limit. Hence, the
limit is strong in L2(Ω). Therefore, the function

uτ = Uτ ◦ (I + τθ)−1 (3.3)

is differentiable with respect to τ ∈ R with images in L2(Ω) at τ = 0. Also

H1
0 (Ω) 3 dUτ

dτ

∣∣∣
τ=0

=
duτ
dτ

∣∣∣
τ=0

+∇u0 · θ. (3.4)

To characterize the derivative, we differentiate on the variational formulation∫
Rn
fϕ =

∫
Rn

(−uτ∆ϕ+ g(uτ )ϕ) ∀ϕ ∈ C∞c (Ω).

Considering the difference of the equations for uτ and u0 and diving by τ ,

0 =
∫

Rn

(
− uτ − u0

τ
∆ϕ+

g(uτ )− g(u0)
τ

ϕ
)

(3.5)

=
∫

Rn

uτ − u0

τ

(
−∆ϕ+

g(uτ )− g(u0)
uτ − u0

ϕ
)
. (3.6)

Notice that ∣∣g(uτ )− g(u0)
uτ − u0

∣∣ ≤ ‖g′‖L∞ .
Therefore, up to a subsequence, g(uτ )−g(u0)

uτ−u0
converges weakly in L2(Ω). On the

other hand since uτ → u0 pointwise, again up to a subsequence, so
g(uτ )− g(u0)
uτ − u0

→ g′(u0) a.e. in Ω. (3.7)

Via a Césaro mean argument we have that the weak L2 limit and pointwise limit
coincide. Hence, passing to the limit in L2(Ω)

0 =
∫

Ω

duτ
dτ

∣∣∣
τ=0

(−∆ϕ+ g′(u0)ϕ) , ϕ ∈ C∞c (Ω). (3.8)

Therefore duτ
dτ is the unique solution of (1.3).

4. Proof of Lemma 2.3

By considering the difference of the weak formulations we have∫
Ω

∇(wm − w)∇ϕ+
∫

Ω

(βm(wm)− βm(w))ϕ =
∫

Ω

(β(w)− βm(w))ϕ.

Taking ϕ = wm − w, and using the monotonicity of βm we have

‖∇(wm − w)‖2L2 ≤ ‖βm − β‖L∞‖wm − w‖L1(Ω).

Using Poincaré inequality and the embedding L1 ↪→ L2 we have

‖wm − w‖L2 ≤ C‖βm − β‖L∞ .
By considering the equation

‖∆(wm − w)‖L2 = ‖β(w)− βm(wm)‖L2
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≤ ‖β(w)− β(wm)‖L2 + ‖β(wm)− βm(wm)‖L2

≤ ‖β′‖L∞‖wm − w‖L2 + ‖βm − β‖L∞ .

Hence, to deduce (2.4) we apply that

‖wm − w‖H2 ≤ C(‖∆(wm − w)‖L2 + ‖wm − w‖L2).

Considering the difference of the weak formulations of the problems for vm and v
we have∫

Ω

∇(vm − v)∇ϕ =
∫

Ω

(β′(w)v − β′m(wm)vm)ϕ

=
∫

Ω

(β′(w)− β′m(wm))vmϕ+
∫

Ω

β′(w)(v − vm)ϕ

=
∫

Ω

(β′(w)− β′(wm))vmϕ+
∫

Ω

(β′(wm)− β′m(wm))vmϕ

+
∫

Ω

β′(w)(v − vm)ϕ

(4.1)

for all ϕ ∈ H1
0 (Ω). Considering the test function ϕ = vm−v+∇(wm−w)·θ ∈ H1

0 (Ω)
we have, applying (2.4),∫

Ω

|∇(vm − v)|2 ≤ C(1 + ‖wm − w‖H2)
(

(1 + ‖β′(w)‖L∞)‖wm − w‖H2

+ ‖vm‖L2(‖β′m + β′‖L∞ + ‖β′(wm)− β′(w)‖L∞)
)
.

We cannot guaranty that ‖β′(wm) − β′(w)‖∞ goes to zero. However it is, indeed,
bounded by 2‖β′‖L∞ . On the other hand, taking into account the boundary con-
dition

‖vm − v‖L2(∂Ω) ≤ C‖∇(wm − w)‖L2(∂Ω)

≤ C‖wm − w‖H2(Ω) ≤ C‖βm − β‖L2 → 0.
(4.2)

Hence, there is a weak limit v̂ ∈ H1(Ω),

vm − v ⇀ v̂ in H1(Ω). (4.3)

By (4.2) we have that v̂ ∈ H1
0 (Ω). Taking into account (4.1) and the fact that

β′(wm)→ β′(w) a.e. in Ω, have∫
Ω

∇v̂∇ϕ+
∫

Ω

β′(w)v̂ϕ = 0 ∀ϕ ∈ H1
0 (Ω). (4.4)

Taking ϕ = v̂ ∈ H1
0 (Ω) as a test function we deduce that v̂ = 0.

5. Proof of Theorem 2.5

We start by pointing out that, from condition on f we have 0 ≤ wm ≤ 1. Since
βm ↗ β in [0, 1] we have wm is pointwise decreasing (see [12]). Hence, there exists
a pointwise limit w such that wm ↘ w a.e. in Ω. In particular 0 ≤ w ≤ 1. By the
Dominated Convergence Theorem we have

wm → w in Lp(Ω) ∀1 ≤ p < +∞. (5.1)

Let U ⊂ Ω be an open neighbourhood of ∂Ω such that U ∩NΩ = ∅ and ∂U ∈ C2.
Then

wU = inf
U
w > 0. (5.2)
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We have that wm ≥ w ≥ wU . We have that β ∈ C1([wU , 1]) and, hence, βm → β in
C1([wU , 1]). Therefore

βm(wm)→ β(w) in Lp(Ω \ U) ∀1 ≤ p < +∞, (5.3)

Since ‖wm‖H1 ≤ C(1 + ‖βm(wm)‖L2 + ‖f‖L2), we have wm ⇀ w in H1(Ω), and
thus w is the unique solution of (1.1). Applying this,

∆wm = βm(wm)− f → β(w)− f = ∆w in Lp(Ω \ U). (5.4)

Thus

‖wm − w‖H2(Ω\U) ≤ C(‖∆(wm − w)‖L2(Ω\U) + ‖wm − w‖L2(Ω\U))→ 0. (5.5)

Hence wm → w in H2(Ω \ U). In particular

∇wm → ∇w in H1/2(∂Ω)n.

Since β′m ∈ L∞(R) we take the “shape derivative” vm solution of (2.5), which is
well defined. Let us find their limit.

Let us show that
β′m(wm)→ β′(w) a.e. in Ω. (5.6)

First, let x /∈ NΩ. Then β is C1 in w(x). Therefore β′(wm(x)) → β′(w(x)).
Hence, the sequence β′(wm(x)) is bounded, so β′(wm(x)) ≤ m0 for some m0 large.
Thus β′m(wm(x)) = β′(wm(x)) for m ≥ m0. Hence the convergence is proved for
x /∈ NΩ. Let x ∈ NΩ. Then β′(w(x)) = +∞. Since wm(x)→ w(x), it follows then
β′(wm(x))→ +∞. In this case, we have

β′m(wm(x)) = β(wm(x)) ∧m→ +∞ = β(w(x)).

This completes the proof of (5.6).
Let us show that sequence (vm) is bounded in H1(Ω). There exist two open

sets U0, U1 ⊂ Ω such that ∂Ω ⊂ U1, NΩ ⊂ U0, U0 ∩ U1 = ∅. There also exists a
smooth transition function Ψ such that Ψ = 0 in U0 and Ψ = 1 in U1. Let us define
gm = Ψ∇wm · θ ∈ H1(Ω). Then ϕ = vm + gm ∈ H1

0 (Ω) and it can be used as a test
function in the weak formulation. Hence∫

Ω

∇vm∇(vm + gm) +
∫

Ω

β′m(wm)vm(vm + gm) = 0.

Therefore, through standard arguments,∫
Ω

|∇vm|2 +
∫

Ω

β′m(wm)v2
m

= −
∫

Ω

∇vm∇gm −
∫

Ω

β′m(wm)vmgm

≤
(∫

Ω

|∇vm|2
)1/2(∫

Ω

|∇gm|2
)1/2

+
(∫

Ω

β′m(wm)v2
m

)1/2(∫
Ω

β′m(wm)g2
m

)1/2

≤ 1
2

(∫
Ω

|∇vm|2 +
∫

Ω

β′m(wm)v2
m

)
+ C

(∫
Ω

|∇gm|2 +
∫

Ω

β′m(wm)g2
m

)
.

Since β′m(wm) is uniformly bounded in L∞(Ω \ U0) we have that the sequence is
bounded:(∫

Ω

|∇vm|2 +
∫

Ω

β′m(wm)v2
m

)
≤ C

(∫
Ω

|∇gm|2 +
∫

Ω

β′m(wm)g2
m

)
≤ C.



EJDE-2017/221 SHAPE DIFFERENTIATION IN THE NON SMOOTH CASE 9

In particular, there exists v ∈ H1(Ω) such that, up to a subsequence, vm ⇀ v in
H1(Ω). Also, by Fatou’s lemma, ∫

Ω

β′(w)v2 ≤ C. (5.7)

Since β′(w) = +∞ in NΩ we have that v = 0 a.e. in NΩ. For ϕ ∈ W 1,∞
c (Ω \NΩ)

we have ∫
Ω\NΩ

∇vm∇ϕ+
∫

Ω\NΩ

β′m(wm)vmϕ = 0. (5.8)

Let us consider the compact subset K = suppϕ ⊂ Ω \NΩ.
Let us show that β′(wm)→ β′(w) in L2(K). We have 0 < wK ≤ w ≤ wm in K.

By the Dominated Convergence Theorem we have that β′m(wm)→ β′(w) strongly
in Lp(K) for 1 ≤ p < +∞. Hence, by passing to the limit we deduce that∫

Ω\NΩ

∇v∇ϕ+
∫

Ω\NΩ

β′(w)vϕ = 0. (5.9)

This completes the proof.

6. Proof of Proposition 2.9

Let us consider x0 ∈ ∂NΩ and

W (t) = wΩ(x0 + tn(x0)) (6.1)

where n(x0) represents the normal vector to ∂NΩ at x0. By [5, Theorem 1.24], we
have

1
2
|∇wΩ(x)|2 ≤

∫ wΩ(x)

0

β(s)ds+ αwΩ(x) (6.2)

for all x ∈ Ω. Hence
dW

dt
≤ |dW

dt
| = |∇wΩ(x0 + tn(x0)) · n(x0)|

≤ |∇wΩ(x0 + tn(x0))| ≤ G(wΩ(x0 + tn(x0)))

= G(W (t)).

Thus, W is a solution of the ordinary differential inequality

dW

dt
(t) ≤ G(W (t)),

W (0) = 0.
(6.3)

Let us consider Wε, the solution of

dWε

dt
(t) = G(Wε(t)),

vε(0) = ε.
(6.4)

This problem has a unique smooth solution, since G ∈ C1(R\{0})∩C(R) is strictly
increasing and G(0) = 0. In fact, solving this simply separable O.D.E., we obtain

Wε(t) = Ψ−1(t+ Ψ(ε)). (6.5)

By the monotonicity of G we have

W (t) ≤Wε(t) ∀t ≥ 0. (6.6)
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Passing to the limit as ε→ 0 in (6.5) we have

W (t) ≤ Ψ−1(t). (6.7)

Hence, since we can parametrize a neighbourhood of ∂NΩ by (x, t) ∈ ∂NΩ ×
(−λ0, λ0) 7→ x+ tn(x), we deduce that

w(x) ≤ Ψ−1(d(x,NΩ)) (6.8)

at least in a neighbournood of ∂NΩ. This proves the proposition.
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