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Abstract. We study the determination of some obstacles in a Stokes flow
domain with overdetermined boundary data. We use a method based on the

topological sensitivity technique associated to the reciprocity gap function con-

cept. We develop an asymptotic formula between the flow parameters and the
boundary data. The obtained formula is interesting and serve as a useful

tool to develop an accurate and robust numerical method in geometry inverse
problems.

1. Introduction

Let Ω be a regular domain in R3 occupied by a homogeneous incompressible
fluid flow. We assume that the fluid flow is in laminar regime in such way that the
convection term can be neglected and the Navier-Stokes equations can be approxi-
mated by the Stokes system.

The velocity fluid w and the pressure q describing the fluid flow in Ω satisfy the
following system

−ν∆w +∇q = G in Ω
∇ · w = 0 in Ω
w = wd on Γd,

σ(w, q)n = g on Γn,

(1.1)

where G is a source term (gravitational force), ν is the fluid viscosity, wd is a given
boundary velocity and g is a given boundary force. Hence Γd and Γn are two parts
of the boundary ∂Ω verifying ∂Ω = Γd ∪ Γn and Γd ∩ Γn = ∅.

We suppose that the fluid flow domain Ω contains a finite number of unknowns
obstacles Oi, i = 1, . . . ,m that are well separated and not close to the boundary
∂Ω. In this work we assume that each obstacle Oi is characterized by its center
ξi ∈ Ω, its size ri and its shape Si with ri > 0 and Si ⊂ R3 is a fixed bounded
and smooth domain containing the origin. In other word, each obstacle Oi can be
defined as Oi = ξi + riSi, 1 ≤ i ≤ m.
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The problem that we consider can be formulated as follows:
• Given two boundaries data on the accessible part Γa of the boundary Γn a mea-
sured velocity wm and an imposed force g.
• Find the unknown obstacle O = ∪mi=1Oi such that the velocity field wO and the
pressure qO in the perturbed domain Ω\O satisfy the boundary value problem

−ν∆wO +∇qO = G in Ω\O
∇ · wO = 0 in Ω\O

wO = wm on Γa [accessible boundary]

σ(wO, qO)n = g on Γa [accessible boundary]

σ(wO, qO)n = 0 on Γ1
i (in and out) [inaccessible boundary]

wO = 0 on Γ2
i (the wall) [inaccessible boundary]
wO = 0 on ∂O.

In this formulation, the fluid flow domain Ω\O is unknown since the obstacle
geometry is unknown. It is well known that this kind of problem is ill-posed in the
sense of Hadamard. The majority of investigation focusing on this type of problems
fall into the category of shape optimization and utilize the shape derivation technics.

In this work, we suggest a new formulation of the above inverse problem based on
the reciprocity gap concept [1, 2, 3] and the topological sensitivity analysis method
[4, 5, 6, 7, 8, 10, 11, 13]. More precisely, we will derive an asymptotic formula
connecting the known boundary data and the unknown obstacle properties (its
location ξi, its size ri and its shape δi).

This article is organized as follows. In section 2, we introduce the reciprocity
gap functional. A preliminary estimate describing the variation of the reciprocity
gap functional with respect to the presence of an obstacle O = ξ + rs inside the
fluid flow domain Ω is presented in Proposition 1. To derive the expected formula,
we start our analysis by studying the influence of the presence of the obstacle on
the velocity field. We derive a high order asymptotic expansion of the perturbed
velocity with respect to the obstacle size r in section 3. Finally, section 4 is devoted
to the derivation of a high order topological sensitivity analysis for the reciprocity
gap function.

2. Reciprocity gap functional and Stokeslet sub-space

The reciprocity gap function is a function defined on the boundary ∂Ω. it de-
scribes the fluid response to an imposed force on the boundary. This function
associated to the presence of an obstacle Oξ,r in the flow domain Ω is defined by
Fξ,r : H1(Ω)× L2(Ω)→ R:

Fξ,r(u, p) =
∫
∂Ω

σ(u, p)nwr ds−
∫
∂Ω

σ(wr, qr)nu ds,

where wr, qr is the solution of the Stokes problem in the presence of an obstacle
Oξ,r,

−ν∆wr +∇qr = G in Ω \ Oξ,r
∇ · wr = 0 in Ω \ Oξ,r

wr = wd on Γd,
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σ(wr, qr)n = g on Γn.

In the absence of the obstacle Oξ,r, the reciprocity gap function is denoted by F0

and is defined on H1(Ω)× L2(Ω) by

F0(u, p) =
∫
∂Ω

σ(u, p)nw0 ds−
∫
∂Ω

σ(w0, q0)nu ds,

where (w0, q0) is the solution of (1.1).
Our goal is to establish a relation between the boundary data and the obstacles

Oξ,r properties ξ, r and S. We begin this study by the following estimation.

2.1. Preliminary estimations. We consider the subspace

V = {(u, p) ∈ H1(Ω)× L2(Ω);−ν∆u+∇p = 0 in Ω and ∇ · u = 0 in Ω}.

The restriction of the reciprocity gap function Fξ,r to the subspace V gives the
following estimation.

Proposition 2.1. For all (u, p) ∈ V, we have

Fξ,r(u, p)−F0(u, p) = −
∫
Oξ,r

ν∇u : ∇w0 dx+
∫
∂Oξ,r

σ(wr−w0, qr−q0)nu ds. (2.1)

Proof. Using Green’s formula and the fact that wr = 0 on ∂Oξ,r, one can obtain∫
∂Ω

σ(u, p)nwr ds =
∫

Ωξ,r

∇u : ∇wr dx,∫
∂Ω

σ(wr, qr)nu ds =
∫

Ωξ,r

∇u : ∇wr dx−
∫
∂Oξ,r

σ(wr, qr)nu ds

which implies

Fξ,r(u, p) = −
∫
∂Oξ,r

σ(wr, qr)nu ds ∀(u, p) ∈ V. (2.2)

In the same way we obtain∫
∂Ω

σ(u, p)nw0 ds =
∫

Ωξ,r

∇u : ∇w0 dx−
∫
∂Oξ,r

σ(u, p)nw0 ds,∫
∂Ω

σ(w0, q0)nu ds =
∫

Ωξ,r

∇w0 : ∇u dx−
∫
∂Oξ,r

σ(w0, q0)nu ds.

It follows that

F0(u, p) = −
∫
∂Oξ,r

σ(u, p)nw0 ds+
∫
∂Oξ,r

σ(w0, q0)nu ds. (2.3)

Using (2.2), (2.3) and the fact that −ν∆u+∇p = in Oξ,r and ∇.u = 0 in Oξ,r we
deduce

Fξ,r(u, p)−F0(u, p) = −
∫

Ωξ,r

∇w0 : ∇u dx+
∫
∂Oξ,r

σ(wr − w0, qr − q0)nu ds.

�
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2.2. Stokeslet sub-space. To make relation (2.1) more explicit we introduce the
so called Stokeslet sub-space [9, 12].

Definition 2.2. We call Stokeslet of size b ∈ R3 and location η ∈ R3 the vectorial
function Sη,b defined on R3 by

Sη,b(x) =
(
U(x− η)b, P (x− η).b

)
∀x ∈ R3,

where x 7→ (U(x− η), P (x− η)) is the fundamental solution of the Stokes operator
with regards to a Dirac mass at point η.

Remark 2.3. For all 1 ≤ i ≤ 3, the function x 7→ (U i(x − η)b, P i(x − η)) is the
solution of

−ν∆xU
i(x− η) +∇xP i(x− η) = δηei in R3

∇x.U i(x− η) = 0 in R3

with U i is the ith column of U and ei is the ith vector of canonical basis of R3.

We introduce know the so-called Stokeslet sub-space VS,Ω. It is a sub-space of
V defined by the functions of Stokeslet type localized outside Ω

VS,Ω = {x 7→ Sη,b|Ω, η ∈ R3\Ω, b ∈ R3}.
We remark that the sub-space VS,Ω is generated by the functions (U i(x−η)b, P i(x−
η)); 1 ≤ i ≤ 3.

For all 1 ≤ i ≤ 3, we denote by F iξ,r the reciprocity gap function associated to
the Stokeslet Sη,ei defined by

F iξ,r =
∫
∂Ω

σ(U i(x, η), P i(x, η))nwr ds−
∫
∂Ω

σ(wr, pr)nU i(x, η) ds ∀η ∈ R3\Ω.

From Proposition 2.1, we deduce the following result.

Corollary 2.4. For all 1 ≤ i ≤ 3, the function F iξ,r satisfies: for all η ∈ R3\Ω,

F iξ,r(η)−F i0(η)

= −
∫
Oξ,r

ν∇w0 : ∇ui(x, η) dx+
∫
∂Oξ,r

σ(wr − w0, qr − q0)nU i(x− η) ds.
(2.4)

3. Main results

We derive an asymptotic formula linking the unknown properties of the obstacle
(its position z, size r and form O) and the boundary data. We begin by studying
the influence of the obstacle on the flow state.

3.1. Estimate of the perturbed fluid flow. We give an estimate of the solution
(wr, qr) describing the flow in presence of the obstacle Oξ,r.

Proposition 3.1. In presence of the obstacle Oξ,r inside the fluid flow domain Ω,
the Stokes solution (wr, qr) admits the following estimate: ∀x ∈ Ω\Oξ,r

wr(x) =
N∑
k=0

rk
[
Wk(x) + Zk

(x− z
r

)]
+O(rN+1),

qr(x) =
N∑
k=0

rk
[
Qk(x) + Sk

(x− z
r

)]
+O(rN+1),
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where (Wk, Qk)0≤k≤N are regular functions defined in Ω and solutions of a sequence
of Stokes problems; (Zk, Sk)0≤k≤N are regular functions, solutions of a sequence of
Stokes problems in the exterior domain R3\Ω.

3.2. Preliminary calculus. We give an estimate of each term in variation (2.4).

Lemma 3.2. The first integral term in (2.4), admits the estimate∫
O
ν∇wo(x) : U i(x− η) dx =

N−3∑
j=0

rj+3Ii,jη,O(z) + o(rN ), η ∈ R3\Ω,

where the functions z 7→ Ii,jη,O(z), 0 ≤ j ≤ N − 3 are defined by

Ii,jη,O(z) = −
j∑
q=0

1
j!(j − q)!

∫
O
ν(∇(q+1)w0(z)yq) · (∇(j−q+1)U i(z − η)y(j−q)) dy

with yq = (y, . . . , y) ∈ (R3)q and ∇(p)ϕ(z) is the pth derivative of ϕ at the point z.

Lemma 3.3. The second integral term in (2.4) satisfies the estimate
N∑
j=1

rj
∫
∂Oξ,r

σ(Wj , Qj)nU i(x− η) ds =
N−3∑
j=0

rj+3Ki,jη,O(z) + o(rN ) ∀η ∈ R3\Ω,

where the functions z 7→ Ki,jη,O(z) are defined by

Ki,jη,O(z) =
j∑

k=0

k∑
l=0

1
l!(k − l)!

∫
∂O

[A(l)
j−k+1(z)(y)n(y)][∇(k−l)U i(z − η)(y)(k−l)] ds(y)

with A(l)
j−k+1(z)(y) is the matrix defined by(
A(l)
j−k+1(z)(y)

)
p,q

= ∇(l)(σ(Wj , Qj))p,q(z)(yl) ∀1 ≤ p, q ≤ 3.

Lemma 3.4. The third integral term in (2.4) admits the estimate
N∑
j=0

rj
∫
∂Oξ,r

σ(Zj , Sj)
(x− z

r

)
n(x)U i(x− η) ds(x) =

N−1∑
j=0

rj+1Li,jη,O(z) + o(rN )

for all η ∈ R3\Ω, where the functions z 7→ Li,jη,O(z) are defined by

Li,jη,O(z) =
j∑
q=0

1
q!

∫
∂O

[σ(Zj−q, Sj−q)(y)n(y)] · [∇(q)U i(z − η)(y(q))] ds(y) + o(rN )

for all η ∈ R3\Ω.

3.3. Asymptotic formula for the reciprocity gap function. In this section,
we derive an asymptotic formula describing the variation of the reciprocity gap
function with respect to the presence of the obstacle Oξ,r in the flow domain Ω.

From corollary 2.4 and proposition 3.1, we have

F iξ,r(η)−F i0(η)

= −
∫
Oξ,r

ν∇w0 : ∇ui(x− η) dx+
N∑
j=1

rj
∫
∂Oξ,r

σ(Wj , Qj)nU i(x− η) ds
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+
N∑
j=0

rj
∫
∂Oξ,r

σ(Zj , Sj)(
x− z
r

)n(x)U i(x− z) ds+ o(rN ).

Using Lemmas 3.2, 3.3 and 3.4, we obtain the following theorem.

Theorem 3.5. Let Oξ,r = z + rO an obstacle immersed in the fluid flow domain
Ω. For each 1 ≤ i ≤ 3 the reciprocity gap function F iη,O satisfies the following
asymptotic formula

F iη,O(η)−F i0(η) =
N∑
j=1

rjΨi,j
η,O(z) + o(rN ) ∀η ∈ R3\Ω. (3.1)

where Ψi,j
η,O(z), 1 ≤ i ≤ 3, 1 ≤ j ≤ N are defined by

Ψi,j
η,O(z) =

{
Li,j−1
η,O (z) if 1 ≤ j ≤ 2,
Li,j−1
η,O (z) +Ki,j−3

η,O (z) + Ii,j−3
η,O (z) if 3 ≤ j ≤ N.

4. Conclusion

The asymptotic formula derived in Theorem 3.5 can be used as the basis of a nu-
merical algorithm serving to reconstruct an unknown obstacle Oξ,r from boundary
measured data. In fact

• The force σ(wr, qr)n is imposed on Γn and measured on Γd.
• The velocity field wr is imposed on Γd and measured on Γn.

Then the variation

Li(η) = F iη,O(η)−F i0(η)

=
∫
∂Ω

σ(U i, P i)n(wr − ws) ds−
∫
∂Ω

σ(wr − w0, qr − q0)nU i(x− η) ds

can be used as a measured datum on ∂Ω for all η ∈ R3\Ω.
By neglecting the terms o(rN ), Theorem 3.5 gives us a non linear system verified

by the unknown parameters: the location z, the size r and the form O:
N∑
j=1

rjΨi,j
η,O(z) = Li(η) ∀1 ≤ i ≤ 3, ∀η ∈ R3\Ω.

This system is difficult to solve but firstly, we can establish a numerical algorithm
to identify the location z and the size r, then we can use this system to have an
approximation of the form O. This numerical work will be subject of a forthcoming
paper.

5. Proofs of main results

Proof of Lemma 3.2. By the change of variable x = z + ry,∫
Oξ,r

ν∇w0(x) : ∇U i(x− η) dx = r3

∫
O
ν∇xw0(z + ry).∇xU i(z − η + ry) dy.

The functions w0 and U i are sufficiently regular in Oξ,r. Using the Taylor-Young
formula, we obtain

∇w0(z + ry) = ∇w0(z) +
N−1∑
j=1

rj

j!
∇(j+1)w0(z)(yj) +O(rN )
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∇U i(z − η + ry) = ∇U i(z − η) +
N−1∑
j=1

rj

j!
∇(j+1)U i(z − η)(yj) +O(rN ).

Using the Cauchy formula for the product of two polynomials, we deduce∫
Oξ,r

ν∇w0(x) : ∇U i(x− η) dx

= r3

∫
O

[
ν

N−1∑
j=0

rj

j!
∇(j+1)w0(z)(yj)

][N−1∑
j=0

rj

j!
∇(j+1)U i(z)(yj)

]
+O(rN+1)

=
N−3∑
j=0

rj+3
[ j∑
q=0

1
q!(j − q)!

∫
O
ν
(
∇(q+1)w0(z)(y(q))

)
·
(
∇(j−q+1)U i(z − η)(y(j−q))

)
dy
]

+O(rN+1).

�

Proof of Lemma 3.3. We have∫
∂Oξ,r

σx(Wj , Qj)nU i(x− η) ds(x)

= r2

∫
∂O

σx(Wj , Qj)(z + ry)n(z + ry).U i(z − η + ry) ds(y)

Since the solution (Wj , Qj) is regular, for all 1 ≤ p, q ≤ 3 the function

y 7→ [σx(Wj , Qj)]p,q(z + ry) =
1
2

(∂(Wj)p
∂xq

+
∂(Wj)q
∂xp

)
+Qjδp,q

is regular in the neighborhood of z, and

[σ(Wj , Qj)]p,q(z + ry) =
N∑
k=0

rk

k!
∇(k)[σ(Wj , Qj)]p,q(z)(yk) +O(rN ).

In the same way,

U i(z − η + ry) =
N∑
k=0

rk

k!
∇(k)U i(z − η)(yk) +O(rN ).

We deduce∫
∂Oξ,r

σ(Wj , Qj)nU i(x− η) ds(x)

=
N−2∑
k=0

rk+2
k∑
l=0

1
l!(k − l)!

∫
∂O
A(l)
j (z)(y)n(y) · ∇(k−l)U i(z − η)y(k−l) ds(y),

where A(l)
j (z)(y) is the matrix [A(l)

j (z)(y)]p,q = ∇(l)[σ(Wj , Qj)]p,q(z)(yl) for 1 ≤
p, q ≤ 3. Then we obtain

N∑
j=1

rj
∫
∂Oξ,r

σ(Wj , Qj)(x)n(x).U i(x− η) ds(x)

=
N∑
j=1

rj
N−2∑
k=0

rk+2
k∑
l=0

1
l!(k − l)!

∫
∂O
A(l)
j (z)(y)n(y) · ∇(k−l)U i(z − η)(yk−l) ds(y)
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+O(rN+1)

=
N∑
j=3

rj
j−3∑
k=0

k∑
l=0

1
l!(k − l)!

∫
∂O
A(l)
j−k+2(z)(y)n(y) · ∇(k−l)U i(z − η)(yk−l) ds(y)

+O(rN+1).

�

Proof of Lemma 3.4. We have∫
∂Oξ,r

σx(Zk, Sk)(
x− z
r

)n·U i(x−η) ds(x) = r

∫
∂O

σy(Zk, Sk)(y)nU i(z−η+ry) ds(y).

As η ∈ R3\Ω, the function x 7→ U i(x− η) is C∞ in the neighborhood of z. We can
derive the expansion

U i(x− η) = U i(z − η) +
N−1∑
j=1

rj

j!
∇(j)U i(z − η)(yj) +O(rN ).

Then we deduce∫
∂Oξ,r

σx(Zk, Sk)(
x− z
r

)n.U i(x− η) ds(x)

=
N−1∑
j=0

rj+1

j!

∫
∂O

[σy(Zk, Sk)n(y)].[∇(j)U i(z − η)(yj)] +O(rN ).

Therefore,
N∑
j=0

rj
∫
∂Oξ,r

σ(Zj , Sj)(
x− z
r

)n.U i(x− z) ds(x)

=
N∑
j=1

rj
j−1∑
q=0

1
q!

∫
∂O

[σ(Zj−q−1, Sj−q+1)(y)n(y)]

· [∇(q)U i(z − η)(y(q))] ds(y) +O(rN ).

�
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