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EXISTENCE OF SOLUTIONS TO NONLINEAR PROBLEMS
WITH THREE-POINT BOUNDARY CONDITIONS

DIONICIO PASTOR DALLOS SANTOS

Abstract. Using Leray-Schauder degree theory and the method of upper and

lower solutions, we obtain a solution for nonlinear boundary-value problem`
ϕ(u′)

´′
= f(t, u, u′)

l(u, u′) = 0,

where l(u, u′) = 0 denotes the three-point boundary conditions on [0, T ], and

ϕ is a homeomorphism such that ϕ(0) = 0.

1. Introduction

The purpose of this article is to obtain a solution for the nonlinear problem(
ϕ(u′)

)′ = f(t, u, u′)

l(u, u′) = 0,
(1.1)

where l(u, u′) = 0 denotes the boundary conditions u(T ) = u′(0) = u′(T ) or u(0) =
u(T ) = u′(0) on the interval [0, T ], ϕ is a singular or classic homeomorphism such
that ϕ(0) = 0, and f : [0, T ]× R× R→ R is continuous.

Solvability of two-point boundary value problems can be investigated by various
methods: fixed point theorems, topological degree arguments, variational methods,
lower and upper functions, etc., see for example, [1, 7, 8, 9, 12, 13] and the reference
therein. In particular, the author in [13] proved the existence of solutions for the
Dirichlet and mixed problems, assuming f and ϕare continuous and that ϕ is strictly
increasing and satisfies ϕ(R) = R and ϕ−1 ∈ C1(R).

Bereanu and Mawhin [2] proved the existence of solutions for the periodic bound-
ary-value problem (

ϕ(u′)
)′ = f(t, u, u′)

u(0) = u(T ), u′(0) = u′(T ),

assuming that f : [0, T ] × R × R → R is a continuous function and ϕ : R →
(−a, a) (0 < a ≤ ∞) is an increasing homeomorphism such that ϕ(0) = 0. They
obtained solutions by using the method of upper and lower solutions and the Leray-
Schauder degree. The interest in this class of nonlinear operators u 7→ (ϕ(u′))′ is
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mainly due to the fact that they include the p-Laplacian operator

u 7→ |u′|p−2u′,

where p > 1.
Using the barrier strip argument and topological transversality theorem the au-

thors in [10] obtained the existence of solutions for nonlinear boundary-value prob-
lems (

ϕ(u′)
)′ = f(t, u, u′)

u(0) = A, u′(1) = B,

where f : [0, T ] × R × R → R is continuous and ϕ : R → R is an increasing
homeomorphism.

Inspired by these results, the main aim of this paper is to study the existence
of solutions for (1.1) using topological methods based upon Leray-Schauder degree.
The main contribution of this paper is the extension of some results above cited to
a more general type of boundary conditions. Such problems do not seem to have
been studied in the literature.

This article is organized as follows. In Section 2, we introduce some notations
and preliminaries, which will be crucial in the proofs of our results. Section 3 is
devoted to the study of existence of solutions for boundary-value problems(

ϕ(u′)
)′ = f(t, u, u′)

u(T ) = u′(0) = u′(T ),

where ϕ : (−a, a) → R (we call it singular). We call solution of this problem
any function u : [0, T ] → R of class C1 such that max[0,T ] |u′(t)| < a, satisfying
the boundary conditions and the function ϕ(u′) is continuously differentiable and
(ϕ(u′(t)))′ = f(t, u(t), u′(t)) for all t ∈ [0, T ]. Combining the method of upper and
lower solutions and the fixed point theorem of Schauder, we prove in Section 4 an
existence result (Theorem 4.3) for boundary-value problems of the form(

ϕ(u′)
)′ = f(t, u, u′)

u(0) = u(T ) = u′(0),

where ϕ : R → R is an increasing homeomorphism. A solution of this problem
is any function u : [0, T ] → R of class C1 satisfying the boundary conditions and
satisfying that ϕ(u′) is continuously differentiable and (ϕ(u′(t)))′ = f(t, u(t), u′(t))
for all t ∈ [0, T ].

2. Preliminaries

We first introduce some notation. Let C = C([0, T ],R) denote the Banach space
of continuous functions from [0, T ] to R endowed with the uniform norm ‖ ·‖∞, and
C1 = C1([0, T ],R) the Banach space of continuously differentiable functions from
[0, T ] to R equipped with the usual norm ‖u‖1 = ‖u‖∞ + ‖u′‖∞.

We introduce the following operators: the Nemytskii operator Nf : C1 → C,
Nf (u)(t) = f(t, u(t), u′(t)),

the integration operator H : C → C1,

H(u)(t) =
∫ t
0
u(s)ds,
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also the following continuous linear mappings:

K : C → C1, K(u)(t) = −
∫ T

t

u(s)ds,

Q : C → C, Q(u)(t) =
1
T

∫ T

0

u(s)ds,

S : C → C, S(u)(t) = u(T ),

P : C → C, P (u)(t) = u(0).

The following technical result proved by Bereanu and Mawhin is needed for the
construction of the equivalent fixed point problem (see [3]).

Lemma 2.1. For each h ∈ C, there exists a unique Qϕ = Qϕ(h) ∈ Im(h) (where
Im(h) denotes the range of h) such that∫ T

0
ϕ−1(h(t)−Qϕ(h))dt = 0.

Moreover, the function Qϕ : C → R is continuous and sends bounded sets into
bounded sets.

3. Boundary value problems with singular ϕ-Laplacian

In this section we are interested in boundary-value problems of the type(
ϕ(u′)

)′ = f(t, u, u′)

u(T ) = u′(0) = u′(T ),
(3.1)

where ϕ : (−a, a)→ R is a homeomorphism such that ϕ(0) = 0 and f : [0, T ]×R×
R → R is a continuous function. We remember that an solution of this problem
is any function u : [0, T ] → R of class C1 such that max[0,T ] |u′(t)| < a, satisfying
the boundary conditions and the function ϕ(u′) is continuously differentiable and
(ϕ(u′(t)))′ = f(t, u(t), u′(t)) for all t ∈ [0, T ].

Let us consider the operator M1 : C1 → C1,

M1(u) = S(u) +Q(Nf (u)) +K(ϕ−1[H(Nf (u)−Q(Nf (u))) + ϕ(S(u))]).

Here ϕ−1 is understood as the operator ϕ−1 : C → Ba(0) ⊂ C defined for
ϕ−1(v)(t) = ϕ−1(v(t)). The symbol Ba(0) denoting the open ball of center 0
and radius a in C. It is clear that ϕ−1 is continuous and sends bounded sets into
bounded sets. When ϕ : R→ R, such an operator has been considered in [5].

Lemma 3.1. A map u ∈ C1 is a solution of (3.1) if and only if u is a fixed point
of the operator M1.

Proof. For u ∈ C1, we have the following equivalences:

(ϕ(u′))′ = Nf (u), u′(T ) = u′(0), u′(0) = u(T )

⇔ (ϕ(u′))′ = Nf (u)−Q(Nf (u)), Q(Nf (u)) = 0, u′(0) = u(T )

⇔ ϕ(u′) = H(Nf (u)−Q(Nf (u))) + ϕ(u′(0)), Q(Nf (u)) = 0, u′(0) = u(T )

⇔ u′ = ϕ−1[H(Nf (u)−Q(Nf (u))) + ϕ(u′(0))], Q(Nf (u)) = 0, u′(0) = u(T )

⇔ u = u(T ) +K(ϕ−1[H(Nf (u)−Q(Nf (u))) + ϕ(u′(0))]),

Q(Nf (u)) = 0, u′(0) = u(T )

⇔ u = u(T ) +Q(Nf (u)) +K(ϕ−1[H(Nf (u)−Q(Nf (u))) + ϕ(u(T ))])
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⇔ u = S(u) +Q(Nf (u)) +K(ϕ−1[H(Nf (u)−Q(Nf (u))) + ϕ(S(u))]).

�

Remark 3.2. Note that u′(T ) = u′(0)⇔ Q(Nf (u)) = 0.

Lemma 3.3. The operator M1 : C1 → C1 is completely continuous.

Proof. Let Λ ⊂ C1 be a bounded set. Then, if u ∈ Λ, there exists a constant ρ > 0
such that

‖u‖1 ≤ ρ. (3.2)

Next, we show that M1(Λ) ⊂ C1 is a compact set. Let (vn)n be a sequence in
M1(Λ), and let (un)n be a sequence in Λ such that vn = M1(un). Using (3.2), we
have that there exists a constant L1 > 0 such that, for all n ∈ N,

‖Nf (un)‖∞ ≤ L1,

which implies
‖H(Nf (un)−Q(Nf (un)))‖∞ ≤ 2L1T.

Hence the sequence (H(Nf (un) − Q(Nf (un))))n is bounded in C. Moreover, for
t, t1 ∈ [0, T ] and for all n ∈ N, we have

|H(Nf (un)−Q(Nf (un)))(t)−H(Nf (un)−Q(Nf (un)))(t1)|

≤
∣∣ ∫ t

t1

Nf (un)(s)ds
∣∣+
∣∣ ∫ t

t1

Q(Nf (un))(s)ds
∣∣

≤ L1|t− t1|+ |t− t1|‖Q(Nf (un))‖∞
≤ 2L1|t− t1|,

which implies that
(
H(Nf (un) − Q(Nf (un)))

)
n

is equicontinuous. Thus, by the
Arzelà-Ascoli theorem there is a subsequence of (H(Nf (un)−Q(Nf (un))))n, which
we call (H(Nf (unj ) − Q(Nf (unj ))))j , which is convergent in C. Then, passing to
a subsequence if necessary, we obtain that the sequence

(H(Nf (unj )−Q(Nf (unj ))) + ϕ(S(unj )))j

is convergent in C. Using the fact that ϕ−1 : C → Ba(0) ⊂ C is continuous it
follows from

M1(unj )
′ = ϕ−1[(H(Nf (unj )−Q(Nf (unj ))) + ϕ(S(unj )))]

that the sequence (M1(unj )
′)j is convergent in C. Therefore, passing if necessary

to a subsequence, we have that (vnj )j = (M1(unj ))j is convergent in C1. Finally,
let (vn)n be a sequence in M1(Λ). Let (zn)n ⊆M1(Λ) be such that

lim
n→∞

‖zn − vn‖1 = 0.

Let (znj )j be a subsequence of (zn)n such that converge to z. It follows that
z ∈M1(Λ) and (vnj )j converge to z. This completes the proof. �

To apply the Leray-Schauder degree to the equivalent fixed point operator M1,
for λ ∈ [0, 1], we introduce the family of boundary-value problems

(ϕ(u′))′ = λNf (u) + (1− λ)Q(Nf (u))

u(T ) = u′(0) = u′(T ).
(3.3)
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Note that (3.3) coincide with (3.1) for λ = 1. So, for each λ ∈ [0, 1], the nonlinear
operator associated with (3.3) by Lemma 3.1 is the operator M(λ, ·), where M is
defined on [0, 1]× C1 by

M(λ, u) = S(u) +Q(Nf (u)) +K(ϕ−1[λH(Nf (u)−Q(Nf (u))) + ϕ(S(u))]). (3.4)

Using the same arguments as in the proof of Lemma 3.3 we show that the operator
M is completely continuous. Moreover, using the same reasoning as in Lemma 3.1,
system (3.3) is equivalent to the problem

u = M(λ, u).

The following lemma gives a priori bounds for the possible fixed points of M .

Lemma 3.4. Let f : [0, T ] × R × R → R be continuous. If (λ, u) ∈ [0, 1] × C1 is
such that u = M(λ, u), then

‖u‖1 ≤ a(2 + T ).

Proof. Let [0, T ]× C1 be such that u = M(λ, u). Then

u = M(λ, u) = S(u) +Q(Nf (u)) +K(ϕ−1[λH(Nf (u)−Q(Nf (u))) + ϕ(S(u))]).

Differentiating, we obtain

u′ = [M(λ, u)]′ = ϕ−1[λH(Nf (u)−Q(Nf (u))) + ϕ(S(u))],

so that ‖u′‖∞ ≤ a. Because u ∈ C1 is such that u(T ) = u′(0), we have

|u(t)| ≤ |u(T )|+
∫ T

0

|u′(s)|ds ≤ a+ aT, t ∈ [0, T ],

and hence ‖u‖1 = ‖u‖∞ + ‖u′‖∞ ≤ a + aT + a = a(2 + T ). This completes the
proof �

3.1. Existence result. We can now prove an existence theorem for (3.1). We
denote by degB the Brouwer degree and for degLS the Leray-Schauder degree, and
define the mapping G : R2 → R2 by

G(x, y) = (xT + yT 2 − yT − 1
T

∫ T

0

f(t, x+ yt, y)dt, y − x− yT ).

Theorem 3.5. Let f : [0, T ]×R×R→ R be continuous. Then for all ρ > a(2+T )

degLS(I −M(1, ·), Bρ(0), 0) = degB(G,Bρ(0) ∩ R2, 0).

If furthermore
degB(G,Bρ(0) ∩ R2, 0) 6= 0,

then problem (3.1) has at least one solution.

Proof. Let M be the operator given by (3.4) and let ρ > a(2 + T ). Using Lemma
3.4, we have that, for each λ ∈ [0, T ], the Leray-Schauder degree degLS(I −
M(λ, ·), Bρ(0), 0) is well defined, and by the homotopy invariance, one has

degLS(I −M(0, ·), Bρ(0), 0) = degLS(I −M(1, ·), Bρ(0), 0).

On the other hand,

degLS(I −M(0, ·), Bρ(0), 0) = degLS(I − (S +QNf +KS), Bρ(0), 0).

But the range of the mapping

u 7→ S(u) +Q(Nf (u)) +K(S(u))
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is contained in the subspace of related functions, isomorphic to R2. Using homotopy
invariance and reduction properties of Leray-Schauder degree [6], we obtain

degLS(I − (S +QNf +KS), Bρ(0), 0)

= degB
(
I − (S +QNf +KS)

∣∣
Bρ(0)∩R2 , Bρ(0) ∩ R2, 0

)
= degB(G,Bρ(0) ∩ R2, 0) 6= 0.

Then, degLS(I −M(1, ·), Bρ(0), 0) 6= 0. Hence, there exists u ∈ Bρ(0) such that
M1(u) = u, which is a solution for (3.1). �

Let us give now an application of Theorem 3.5.

Example 3.6. We consider the boundary-value problem

(ϕ(u′))′ = eu
′
+ e

u(T ) = u′(0) = u′(T ),
(3.5)

where ϕ(s) = s/
√

1− s2.
It is not difficult to verify that ϕ : (−1, 1) → R is a homeomorphism and

f(t, x, y) = ey + e is a continuous function. If we choose ρ > 2 + T , then the
equation

G(x, y) =
(
xT + yT 2 − yT − 1

T

∫ T

0

f(t, x+ yt, y)dt, y − x− yT
)

= (0, 0)

=
(
xT + yT 2 − yT − 1

T

∫ T

0

(ey − e)dt, y − x− yT
)

= (0, 0)

=
(
xT + yT 2 − yT − ey + e, y − x− yT

)
= (0, 0)

does not have solutions on ∂Bρ(0) ∩ R2. Then we have that the Brouwer degree
degB(G,Bρ(0)∩R2, (0, 0)) is well defined and, by the properties of that degree, we
have that

degB(G,Bρ(0) ∩ R2, (0, 0)) =
∑

(x,y)∈G−1(0,0)

sgn JG(x, y) = sgn(−e) = −1,

where (0, 0) is a regular value of G and JG(x, y) =detG′(x, y) is the Jacobian of G
at (x, y). So, using Theorem 3.5, we obtain that the boundary-value problem (3.5)
has at least one solution.

Remark 3.7. Using the family of boundary-value problems

(ϕ(u′))′ = λNf (u) + (1− λ)Q(Nf (u))

u(0) = u′(0) = u′(T )
(3.6)

which gives the completely continuous homotopy M̃ defined on [0, 1]× C1 by

M̃(λ, u) = P (u) +Q(Nf (u)) +H(ϕ−1[λH(Nf (u)−Q(Nf (u))) + ϕ(P (u))]),

and similar a priori bounds as in the Lemma 3.4, it is not difficult to see that (3.6)
has a solution for λ = 1.
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4. Boundary value problems with ϕ-Laplacian

In this section we study the existence of solutions for the boundary-value problem

(ϕ(u′))′ = f(t, u, u′)

u(0) = u(T ) = u′(0),
(4.1)

where ϕ : R→ R is an increasing homeomorphism, ϕ(0) = 0 and f : [0, T ]×R×R→
R is continuous.

Let us consider the operator M1 : C1 → C1,

M1(u)ϕ−1(−Qϕ(H(Nf (u)))) +H(ϕ−1[H(Nf (u))−Qϕ(H(Nf (u)))]).

As in the previous section, here ϕ−1 with an abuse of notation is understood as the
operator ϕ−1 : C → C defined for ϕ−1(v)(t) = ϕ−1(v(t)). It is clear that ϕ−1 is
continuous and sends bounded sets into bounded sets.

To transform problem (4.1) to a fixed point problem we use Lemma 2.1.

Lemma 4.1. A map u ∈ C1 is a solution of (4.1) if and only if u is a fixed point
of the operator M1.

Proof. If u ∈ C1 is solution of (4.1), then

(ϕ(u′(t)))′ = Nf (u)(t) = f(t, u(t), u′(t)), u(0) = u(T ), u(0) = u′(0)

for all t ∈ [0, T ]. Applying H to both members and using the fact that u(0) = u′(0),
we deduce that

ϕ(u′(t)) = ϕ(u(0)) +H(Nf (u))(t).
Composing with the function ϕ−1, we obtain

u′(t) = ϕ−1[H(Nf (u))(t) + c],

where c = ϕ(u(0)). Integrating from 0 to t ∈ [0, T ], we have

u(t) = u(0) +H(ϕ−1[H(Nf (u)) + c])(t).

Because u(0) = u(T ), we have∫ T

0

ϕ−1[H(Nf (u))(t) + c]dt = 0.

Using Lemma 2.1, it follows that c = −Qϕ(H(Nf (u))). Hence,

u = ϕ−1(−Qϕ(H(Nf (u)))) +H(ϕ−1[H(Nf (u))−Qϕ(H(Nf (u)))]).

Now suppose that u ∈ C1 be such that u = M1(u). It follows that

u(t) = ϕ−1(−Qϕ(H(Nf (u)))) +H(ϕ−1[H(Nf (u))−Qϕ(H(Nf (u)))])(t) (4.2)

for all t ∈ [0, T ]. Since∫ T

0

ϕ−1[H(Nf (u))(t)−Qϕ(H(Nf (u)))]dt = 0,

we have u(0) = u(T ). Differentiating (4.2), we obtain

u′(t) = ϕ−1[H(Nf (u))−Qϕ(H(Nf (u)))](t)

= ϕ−1[H(Nf (u))(t)−Qϕ(H(Nf (u)))].

Applying ϕ to both of its members, and differentiating we have

(ϕ(u′(t)))′ = Nf (u)(t), u(0) = u(T ), u(0) = u′(0)
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for all t ∈ [0, T ]. This completes the proof. �

Using an argument similar to the one introduced in the proof of [5, Lemma
4.2], it is not difficult to see that M1 : C1 → C1 is well defined and completely
continuous.

4.1. Upper and lower solutions. The functions considered as lower and upper
solutions for the initial problem (4.1) are defined as follows.

Definition 4.2. A lower solution α (resp. upper solution β) of (4.1) is a function
α ∈ C1 such that ϕ(α′) ∈ C1, α′(0) ≥ α(0) = α(T ) (resp. β ∈ C1, ϕ(β′) ∈
C1, β′(0) ≤ β(0) = β(T )) and

(ϕ(α′(t)))′ ≥ f(t, α(t), α′(t)) (resp. (ϕ(β′(t)))′ ≤ f(t, β(t), β′(t)) (4.3)

for all t ∈ [0, T ].

We can now prove some existence results for (4.1). These results are inspired on
works by Bereanu and Mawhin [2] and Carrasco and Minhós [4].

Theorem 4.3. Suppose that (4.1) has a lower solution α and an upper solution β
such that α(t) ≤ β(t) for all t ∈ [0, T ]. If there exists a continuous function g(t, x)
on [0, T ]× R such that

|f(t, x, y)| ≤ |g(t, x)|, for all (t, x, y) ∈ [0, T ]× R× R, (4.4)

then (4.1) has a solution u such that α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ].

Proof. Let α, β be, respectively, lower and upper solutions of (4.1). Let γ : [0, T ]×
R→ R be the continuous function defined by

γ(t, x) =


β(t), x > β(t)
x, α(t) ≤ x ≤ β(t)
α(t), x < α(t),

and define F : [0, T ]× R× R→ R by F (t, x, y) = f(t, γ(t, x), y) + x−γ(t,x)
1+|x−γ(t,x)| . We

consider the modified problem

(ϕ(u′))′ = F (t, u, u′)

u(0) = u(T ) = u′(0).
(4.5)

For clearness, the proof will follow several steps.
Step 1 We show that if u is a solution of (4.5), then α(t) ≤ u(t) ≤ β(t) for all
t ∈ [0, T ] and hence u is a solution of (4.1). Let u be a solution of the modified
problem (4.5) and suppose by contradiction that there is some t0 ∈ [0, T ] such that

max
[0,T ]

(α(t)− u(t)) = α(t0)− u(t0) > 0. (4.6)

If t0 ∈ (0, T ), there are sequences (tk) in [t0−ε, t0) and (t′k) in (t0, t0 +ε] converging
to t0 such that α′(tk)−u′(tk) ≥ 0 and α′(t′k)−u′(t′k) ≤ 0. Therefore α′(t0) = u′(t0).
Using the fact that ϕ is an increasing homeomorphism, this implies (ϕ(α′(t0)))′ ≤
(ϕ(u′(t0)))′. By (4.3) we get the contradiction

(ϕ(α′(t0)))′ ≤ (ϕ(u′(t0)))′ = F (t0, u(t0), u′(t0))

≤ f(t0, α(t0), α′(t0))) +
u(t0)− α(t0)

1 + |u(t0)− α(t0)|
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< f(t0, α(t0), α′(t0))) ≤ (ϕ(α′(t0)))′.

So α(t) ≤ u(t) for all t ∈ (0, T ). If the maximum is attained at t0 = 0 then

max
[0,T ]

(α(t)− u(t)) = α(0)− u(0) > 0.

Using the fact that u is solution of (4.5) and α′(0) ≤ u′(0), we obtain the following
contradiction

α(0) ≤ α′(0) ≤ u′(0) = u(0) < α(0).

If
max
[0,T ]

(α(t)− u(t)) = α(T )− u(T ) > 0,

then, since α(0) = α(T ) and u(0) = u(T ) we obtain again a contradiction. In
consequence we have that α(t) ≤ u(t) for all t ∈ [0, T ]. In a similar way we can
prove that u(t) ≤ β(t) for all t ∈ [0, T ].
Step 2 We show that problem (4.5) has at least one solution. Let u ∈ C1 and
define the operator MF : C1 → C1 by

MF (u) = ϕ−1(−Qϕ(H(NF (u)))) +H(ϕ−1[H(NF (u))−Qϕ(H(NF (u)))]),

with F (t, u, u′) = f(t, γ(t, u), u′) + u−γ(t,u)
1+|u−γ(t,u)| , by Lemma 4.1 it is enough to prove

that MF has a fixed point. Under the hypothesis of the theorem, the operator MF

is bounded. Indeed, if v = MF (u) then

ϕ(v′) = [H(NF (u))−Qϕ(H(NF (u)))], (4.7)

where

|H(NF (u))(t)| ≤
∫ T

0

|f(s, γ(s, u(s)), u′(s)) +
u(s)− γ(s, u(s))

1 + |u(s)− γ(s, u(s))|
|ds

≤
∫ T

0

|f(s, γ(s, u(s)), u′(s))|ds+ T

≤
∫ T

0

|g(s, γ(s, u(s)))|ds+ T

≤ σT + T,

with σ := sups∈[0,T ] |g(s, γ(s, u(s)))|. Using (4.7), we have that

|ϕ(v′(t))| ≤ 2(σT + T ) := δ t ∈ [0, T ], (4.8)

and hence
‖v′‖∞ ≤ ω, (4.9)

where ω = max{|ϕ−1(δ)|, |ϕ−1(−δ)|}. Because v ∈ C1 is such that v(0) = v′(0),
we have

|v(t)| ≤ |v(0)|+
∫ T

0

|v′(s)|ds ≤ ω + Tω t ∈ [0, T ],

and hence
‖v‖1 = ‖v‖∞ + ‖v′‖∞ ≤ ω + Tω + ω = ω(2 + T ).

As the operator MF is completely continuous and bounded, we can use Schauder’s
fixed point theorem to deduce the existence of at least one fixed point in Bω(2+T )(0).
The proof is complete. �



10 D. P. D. SANTOS EJDE-2017/35

Corollary 4.4. Let f(t, x, y) = f(t, x) be a continuous function. If (4.1) has a
lower solution α and a upper solution β such that α(t) ≤ β(t) for all t ∈ [0, T ], then
problem (4.1) has a solution such that α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ].

Example 4.5. We consider the boundary-value problem(
|u′|p−2u′

)′ =
sin(u+ 1)− 1 + 4ueu

2t

1 + t2
,

u(0) = u(T ) = u′(0),
(4.10)

where p ∈ (1,∞). As f(t, x) is a continuous function, and the functions α(t) = −1
and β(t) = 1 are lower and upper solutions of (4.10), respectively, then, by Corollary
(4.4), we obtain that (4.10) has at least one solution u such that −1 ≤ u(t) ≤ 1 for
all t ∈ [0, T ].
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