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MOVING-BOUNDARY PROBLEMS FOR THE
TIME-FRACTIONAL DIFFUSION EQUATION
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Abstract. We consider a one-dimensional moving-boundary problem for the

time-fractional diffusion equation. The time-fractional derivative of order α ∈
(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, as

t tends to infinity, of a general solution by using a fractional weak maximum
principle. Also, we give some particular exact solutions in terms of Wright

functions.

1. Introduction

The beginning of fractional calculus dates to the 19th century. Abel, Liouville,
Riemann and Letnikov proposed several definitions of fractional derivatives moti-
vated by the idea of providing a novel operator that includes the classical concept
of derivative. However, these definitions were not used until a century later. It was
in the 1950s when the study of fractional differential equations gained relevance.
From that moment, many authors pointed out that derivatives and integrals of non-
integer order were useful for describing properties of various real-world materials
such as polymers and some types of non-homogeneous solids [1, 6, 23, 24].

Among the fractional partial differential equations, we have the fractional diffu-
sion equation (FDE), obtained from the standard diffusion equation by replacing
the first order time-derivative by a fractional derivative. This equation was studied
in [9, 10, 21, 11, 26, 35]. Several applications have been considered in the past
two decades: Mainardi studied the FDE in the context of the theory of linear vis-
coelasticity in [22]. Voller et al. [32] stated that the FDE can be derived if we
consider a new kind of heat flux involving the memory of the material, instead
of the classical local flux and we replace it in the balance heat equation (see [13]
where a general theory of heat conduction for materials with memory is presented).
FDEs ha been solved numerically by several authors; see a general discussion in [7].
Some numerical results for a fractional Stefan problem based on a finite difference
method adapted to the FDE are presented in [4]. A finite difference scheme for an
initial-boundary value problem is presented in [16].
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In this article, we consider a moving-boundary problem for the FDE in which
a time-fractional derivative of order α ∈ (0, 1) in the sense of Caputo [5]. More
precisely, we consider the problem

0D
α
t u(x, t) = λ2 uxx(x, t), s1(t) < x < s2(t), 0 < t ≤ T, 0 < α < 1,

u(s1(t), t) = g(t), 0 < t ≤ T,
u(s2(t), t) = h(t), 0 < t ≤ T,

u(x, 0) = f(x), a ≤ x ≤ b, s1(0) = a, s2(0) = b,

(1.1)

where

0D
α
t u(x, t) =

1
Γ(1− α)

∫ t

0

(t− τ)−αut(x, τ)dτ, (1.2)

and the given functions s1, s2, g, h and f are continuous functions is their respective
domains.

Problem (1.1) has not yet been deeply studied (some works related to it are
[3, 15, 18, 27, 30, 31]) and our purpose is to present some explicit solutions and
then analyze the asymptotic behavior of a general solution as t tends to infinity.
In partial differential equations of parabolic type, the asymptotic behavior of a
solution is closely linked to the maximum principles (weak and strong) valid for
this kind of problems. These statements are not yet valid for fractional parabolic
operators, but we gather some results known at the moment for the FDE (which is
a particular case of of a fractional differential operator of parabolic type) related to
maximum principles [2, 20, 19]. Using these results in conjunction with the benefits
of the Mittag-Leffler functions, the asymptotic behaviour is obtained.

2. Some exact solutions

Definition 2.1. Let [a, b] ⊂ R, α ∈ R+ and n ∈ N be such that n − 1 < α < n,
and let f ∈ Wn(a, b) = {f ∈ Cn(a, b] : f (n) ∈ L1[a, b]} be. The fractional Caputo
derivative of order α is defined by

aD
αf(x) =

{
1

Γ(n−α)

∫ x
a

(x− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n

f (n)(x), α = n.

Proposition 2.2. Let α ∈ R+. Then the fractional Caputo derivative of order α
is a linear operator such that:

(a) aD
α(C) = 0 for every C ∈ R.

(b) aD
α((t− a)β) = Γ(1+β)

Γ(1+β−α) (t− a)β−α.

Definition 2.3. For every x ∈ R, ρ > 0 the Mittag-Leffler function is defined by

Eρ(x) =
∞∑
k=0

xk

Γ(ρk + 1)
, x ∈ R, ρ > 0. (2.1)

Definition 2.4. For every x ∈ R, ρ > −1 and β ∈ R the Wright function [33] is
defined by

W (x; ρ;β) =
∞∑
k=0

xk

k!Γ(ρk + β)
. (2.2)
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The Mainardi function [12] is a special case of the Wright function defined by

Mρ(x) = W (−x,−ρ, 1− ρ) =
∞∑
n=0

(−x)n

n!Γ(−ρn+ 1− ρ)
, x ∈ C, 0 < ρ < 1. (2.3)

Proposition 2.5. The Mittag-Leffler function defined in (2.1) satisfies the follow-
ing properties:

(a) Eρ is an entire function if ρ > 0.
(b) limt→∞Eρ(−t) = 0 for every ρ > 0.
(c) 0D

ρ(Eρ(µxρ)) = µEρ(µxρ) for every x, µ ∈ R, ρ > 0.
(d) Eρ is completely monotonic on the negative real axis. In particular Eρ(−t)

is a decreasing function in R+.

See [14] for items (a), (b) and (c), and [21] for item (d).

Proposition 2.6. The Wright function satisfies the following properties:
(a) The Wright function (2.2) is an entire function if ρ > −1.
(b) The derivative of the Wright function can be computed as ∂

∂xW (x, ρ, β) =
W (x, ρ, ρ+ β).

(c) For all α, c ∈ R+, ρ ∈ (0, 1), β ∈ R we have

0D
α(xβ−1W (−cx−ρ,−ρ, β)) = xβ−α−1W (−cx−ρ,−ρ, β − α).

(d) The following limits involving the parameter α hold:

lim
α↗1

Mα/2(x) = M1/2(x) =
e−

x2
4

√
π
, lim

α↗1
[1−W (−x,−α

2
, 1)] = erf(

x

2
)

where erf(x) = 2√
π

∫ x
0
e−ξ

2
dξ. This result allows us to call function 1 −

W (−·,−α2 , 1) as the “fractional erf function”.
(e) The “fractional erf function” 1 − W (−·,−α2 , 1) is a positive and strictly

increasing function in R+ such that 0 < 1 − W (−x,−α2 , 1) < 1, for all
x > 0.

(f) For every α ∈ (0, 1), and β > 0,

lim
x→∞

W (−x,−α
2
, β) = 0.

For items (a) and (b), see [34]. A proof of (c) is given in [25], and a proof of (d)
and (e) can be founded in [28]. For (f), see [12]

We will consider the following two regions related to problem (1.1):

Ω0 = {(x, t) : s1(t) < x < s2(t), 0 < t ≤ T},
∂pΩ0 = {(s1(t), t) : 0 < t ≤ T} ∪ {(s2(t), t) : 0 < t ≤ T} ∪ {(x, 0) : a ≤ x ≤ b},

where the latter is called parabolic boundary.

Definition 2.7. A function u = u(x, t) is a solution of problem (1.1) if
• u is defined in [a0, b0] × [0, T ], where a0 := min{s1(t) : t ∈ [0, T ]} and
b0 := max{s2(t) : t ∈ [0, T ]}.
• u ∈ CWΩ0 := C(Ω0) ∩W 1

t ((0, T )) ∩ C2
x(Ω0), where

W 1
t ((0, T )) := {f(x, ·) ∈ C1((0, T )) ∩ L1(0, T )for every fixed x ∈ [a0, b0]}.
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• u is continuous in Ω0 ∪ ∂pΩ0 except perhaps at (a, 0) and (b, 0) where

0 ≤ lim inf
(x,t)→(a,0)

u(x, t) ≤ lim sup
(x,t)→(a,0)

u(x, t) < +∞,

0 ≤ lim inf
(x,t)→(b,0)

u(x, t) ≤ lim sup
(x,t)→(b,0)

u(x, t) < +∞.

• u satisfies the conditions in (1.1).

Remark 2.8. We require u to be defined in [a0, b0] × [0, T ] since the fractional
derivative 0D

α
t u(x, t) involves values ut(x, τ) for all τ in [0, t].

Problem 1. Consider s1(t) = 0, s2(t) = tα/2, g(t) = 1 and h(t) = 0 in problem
(1.1). Note that condition (1.1)(4) is not considered because a = b = 0. Taking
β = 1 and ρ = α

2 in Proposition 2.6(c), using Proposition 2.6(b) and the principle
of superposition (valid due to Proposition 2.2), we can state that function

u(x, t) = a+ b[1−W (− x

tα/2
,−α

2
, 1)]

is a solution to the following initial-boundary problem associated with the FDE,

0D
α
t u(x, t) = uxx(x, t), 0 < x, 0 < t ≤ T, 0 < α < 1,

u(0, t) = a, 0 < t ≤ T,
u(x, 0) = a+ b, 0 < x.

(2.4)

Clearly a = 1. Evaluating u at the curve s2(t) = tα/2, 0 < t < T , we obtain

u(tα/2, t) = 1 + b[1−W (−1,−α
2
, 1)].

Since 1 − W (−1,−α2 , 1) 6= 0 by Proposition 2.6 item (d), we can take b =
− 1

1−W (−1,−α2 ,1) , and state that

u(x, t) = 1− 1
1−W (−1,−α2 , 1)

[1−W (− x

tα/2
,−α

2
, 1)] (2.5)

is a solution to the problem

0D
α
t u(x, t) = uxx(x, t), 0 < x < tα/2, 0 < t ≤ T, 0 < α < 1,

u(0, t) = 1, 0 < t ≤ T,

u(tα/2, t) = 0, 0 < t ≤ T.
(2.6)

Problem 2. Consider s1(t) = −tα/2, s2(t) = tα/2, in problem (1.1). Functions g
and h will be determined latter. It is reasonable to try to find a solution related to
the solution (2.5). But now we have to deal with negative values of the variable x.

From [21] and [8], we can state that function

u1(x, t) =
∫ ∞
−∞

1
2tα/2

Mα/2(
|x− ξ|
tα/2

)f(ξ)dξ (2.7)

is a solution to the Cauchy problem

0D
α
t u(x, t) = uxx(x, t), x ∈ R, 0 < t ≤ T, 0 < α < 1,

u(x, 0) = f(x), x ∈ R.
(2.8)
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for any piecewise continuous and bounded function f . By considering

f(x) =

{
1 if x > 0
−1 if x < 0,

(as it was done in [17] and [29]) it results that

u1(x, t) =
∫ ∞

0

1
2tα/2

[
Mα/2

( |x− ξ|
tα/2

)
−Mα/2

( |x+ ξ|
tα/2

)]
dξ. (2.9)

In particular, for x < 0 we have that |x − ξ| = ξ − x for all ξ > 0, and using
Proposition 2.6 items 2 and 5, it results that

u1(x, t) =
∫ ∞

0

1
2tα/2

[
Mα/2

(ξ − x
tα/2

)
−Mα/2

( |x+ ξ|
tα/2

)]
dξ

=
∫ ∞

0

1
2tα/2

Mα/2

(ξ − x
tα/2

)
dξ −

∫ −x
0

1
2tα/2

Mα/2

(−(x+ ξ)
tα/2

)
dξ

−
∫ ∞
−x

1
2tα/2

Mα/2

(x+ ξ

tα/2
)
dξ

=
∫ ∞

0

1
2tα/2

Mα/2

(ξ − x
tα/2

)
dξ −

∫ −x
0

1
2tα/2

Mα/2

(−(x+ ξ)
tα/2

)
dξ

−
∫ ∞
−x

1
2tα/2

Mα/2

(x+ ξ

tα/2
)
dξ

= W (
x

tα/2
,−α

2
, 1)− 1.

Then, the function

u(x, t) =

{
1−W (− x

tα/2
,−α2 , 1), 0 < x < tα/2

W ( x
tα/2

,−α2 , 1)− 1, −tα/2 < x < 0

is a solution to (1.1)(1) for every x 6= 0, −tα/2 < x < tα/2. Moreover, due to the
linearity of the Caputo derivative we can state that

u(x, t) =

{
a[1−W (− x

tα/2
,−α2 , 1)] + b, 0 < x < tα/2

a[W ( x
tα/2

,−α2 , 1)− 1] + b, −tα/2 < x < 0

is a solution to (1.1)(1) for every x 6= 0, −tα/2 < x < tα/2.
We would like to extend this solution to the values of x = 0, but if we extend u

to this values, it results that

u(x, t) =

{
a[1−W (− x

tα/2
,−α2 , 1)] + b, 0 ≤ x < tα/2

a[W ( x
tα/2

,−α2 , 1)− 1] + b, −tα/2 < x < 0,
(2.10)

is a C1
x(DT ) function, but uxx(0+, t) 6= uxx(0−, t).

To obtain a C2
x(Ω0) solution according to definition 2.7 we apply the following

Lemma proved in [11].

Lemma 2.9. Let v(x, t) be a solution of the FDE such that F (x, t) =
∫∞
x
v(ξ, t)dξ

is well defined for every (x, t) ∈ R × R+, limx→∞
∂v
∂x (x, t) = 0, | ∂∂τ v(ξ, τ)| ≤ g(ξ)

in L1(x,∞) and
∂
∂τ v(ξ, τ)
(t− τ)α

∈ L1((x,∞)× (0, t)).
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Then
∫∞
x
v(ξ, t)dξ is a solution to the FDE.

From Proposition 2.6 and using estimates made in [11], it yields that v(x, t) =
W (− x

tα/2
,−α2 , 1) is under the assumptions of Lemma 2.9 for every x ≥ 0. Then∫ ∞

x

v(ξ, t)dξ = tα/2W (− x

tα/2
,−α

2
, 1 +

α

2
)

satisfies (1.1)(1). By using the linearity of the Caputo derivative and the principle
of superposition we can state that

wpos(x, t) = a[x+ tα/2W (− x

tα/2
,−α

2
, 1 +

α

2
)] + bx (2.11)

is a solution to the FDE such that ∂
∂xwpos(x, t) = u(x, t) for every x ≥ 0, t > 0.

For negative values of x we enunciate an analogous lemma.

Lemma 2.10. Let v(x, t) be a solution of the FDE such that F (x, t) =
∫ x
−∞ v(ξ, t)dξ

is well defined for every (x, t) ∈ R× R+, limx→−∞
∂v
∂x (x, t) = 0, | ∂∂τ v(ξ, τ)| ≤ g(ξ)

in L1(−∞, x) and
∂
∂τ v(ξ, τ)
(t− τ)α

∈ L1((−∞, x)× (0, t)).

Then
∫ x
−∞ v(ξ, t)dξ is a solution to the FDE.

Proof. The required assumptions allows us to apply Fubini’s theorem. Then

0D
α
t F (x, t) =

1
Γ(1− α)

∫ t

0

∂
∂τ F (x, τ)
(t− τ)α

dτ

=
1

Γ(1− α)

∫ t

0

1
(t− τ)α

( ∂
∂τ

∫ x

−∞
v(ξ, τ)dξ

)
dτ

=
1

Γ(1− α)

∫ t

0

1
(t− τ)α

∫ x

−∞

∂

∂τ
v(ξ, τ)dξdτ

=
∫ x

−∞

1
Γ(1− α)

∫ t

0

∂
∂τ v(ξ, τ)
(t− τ)α

dτ

=
∫ x

−∞
0D

α
t v(ξ, t)dξ

=
∫ x

−∞
λ2 ∂

2v

∂x2
(ξ, t)dξ

= λ2 ∂v

∂x
(ξ, t)

∣∣∣x
−∞

=
∂2

∂x2
F (x, t).

�

Applying Lemma 2.10 to function v(x, t) = W ( x
tα/2

,−α2 , 1) for x < 0, and rea-
soning as before, it yields that

wneg(x, t) = a[−x+ tα/2W (
x

tα/2
,−α

2
, 1 +

α

2
)] + bx (2.12)

is a solution to the FDE such that ∂
∂xwneg(x, t) = u(x, t) for every x < 0, t > 0.

Combining (2.11) with (2.12) we have

w(x, t) =

{
a[x+ tα/2W (− x

tα/2
,−α2 , 1 + α

2 )] + bx, 0 ≤ x < tα/2

a[−x+ tα/2W ( x
tα/2

,−α2 , 1 + α
2 )] + bx, −tα/2 < x < 0,

(2.13)
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is a solution to (1.1)(1). Clearly w is a C2
x(Ω0) function and by varying the pa-

rameters a and b we obtain different solutions associated with different boundary
conditions. For example, if b = 1

2 and a = 1
2(1+W (−1,−α2 ,1+α

2 )) it yields that (2.13)
is a solution to the moving-boundary problem

0D
α
t u(x, t) = λ2 uxx(x, t), −tα/2 < x < tα/2, 0 < t ≤ T, 0 < α < 1,

u(−tα/2, t) = 0, 0 < t ≤ T,

u(tα/2, t) = tα/2, 0 < t ≤ T.

(2.14)

3. Asymptotic behaivor as t tends to infinity

Hereinafter we call Lα to the operator associated with the FDE, Lα := ∂2

∂x2 −Dα.
The following two results have been proved in [19] and [27] respectively.

Proposition 3.1. Let f ∈W 1
t ((0, T ])∪C([0, T ]) be a function that attains its max-

imum at the point t0 ∈ (0, T ]. Then for every α ∈ (0, 1) it results that Dαf(t0) ≥ 0.

Remark 3.2. Note that this extremum principle is not valid either if α > 1 or if
the fractional derivative is taken in the Riemann-Liouville sense.

Proposition 3.3. If u is a function with Lα[u] > 0 (resp. Lα[u] < 0) in Ω0, then
u does not attain its maximum (resp. minimum) at Ω0.

Let us adapt here the next theorem obtained in [18] to the moving-boundary
problem (1.1).

Theorem 3.4. Let u ∈ CWΩ0 be a solution of (1.1). Then either u(x, t) ≥ 0 for
all (x, t) ∈ Ω0 or u attains its negative minimum on ∂pΩ0.

Proof. If u ≥ 0 in Ω0 the prove is finished. Now, suppose that there exists a
point (x0, t0), such that s1(t0) < x0 < s2(t0), 0 < t0 ≤ T and u(x0, t0) <
min∂pΩ0 u(x, t) = m ≤ 0. Let ε = m − u(x0, t0) > 0 be and consider the auxil-
iary function

w(x, t) = u(x, t)− ε

2
T − t
T

, (x, t) ∈ Ω0. (3.1)

Note that
w(x, t) ≥ u(x, t)− ε

2
∀(x, t) ∈ Ω0, (3.2)

and that for every (x, t) ∈ ∂pΩ0, it results that

w(x0, t0) = u(x0, t0)− ε

2
T − t0
T

≤ u(x0, t0)

= m− ε ≤ u(x, t)− ε ≤ w(x, t) +
ε

2
− ε

= w(x, t)− ε

2
.

Consequently w(x, t) > w(x0, t0) for all (x, t) ∈ ∂pΩ0 and we can state that

w must attain its minimum at Ω0. (3.3)

On the other hand, from Proposition 2.2 it follows that

Lα[w] = Lα[u]− ε

2
Γ(2)

Γ(2− α)
t1−α

T
< 0 ∀(x, t) ∈ Ω0.

Now, applying Proposition 3.3 to w, it results that w can not attain its minimum
in Ω0, which contradicts (3.3). �



8 S. D. ROSCANI EJDE-2017/44

Theorem 3.5. Let u be a solution of the fractional moving-boundary problem (1.1)
such that:

(a) s1 is a decreasing continuous functions in R+
0 such that limt→∞ s1(t) = a0,

(b) s2 is an increasing continuous functions in R+
0 such that limt→∞ s2(t) = b0

and s1(t) < s2(t) for every t > 0,
(c) f is a non-negative continuous function defined in [a, b],
(d) g and h are non-negative continuous functions defined in R+ such that

limt→∞ g(t) = limt→∞ h(t) = 0.
Then limt→∞ u(x, t) = 0 uniformly in [a0, b0].

Proof. Consider the function ϕ(x) = exp{2b0}− exp{x} defined in [a0, b0]. Clearly
ϕ is a decreasing positive function in [a0, b0], with ϕmin = ϕ(b0), ϕmax = ϕ(a0).
Let Ψ: [a0, b0]× R+

0 be the non-negative function defined by

Ψ(x, t) = εϕ(x) +
A

ϕmin
ϕ(x)Eα(−γtα) (3.4)

where ε, A and γ will be determined later, and Eα is the Mittag-Leffler function
with parameter α. Applying the Lα operator to Ψ and using Proposition 2.5(c), it
yields that

LαΨ(x, t) = −ε exp{x}+
A

ϕmin
Eα(−γtα)[− exp{x}+ γϕ(x)]. (3.5)

Applying Proposition 2.5(d) it results that

LαΨ(x, t) < 0 for every (x, t) in [a0, b0]× R+
0 if γ <

1
exp{2b0 − a0} − 1

. (3.6)

Now, let z = Ψ−u be. Taking into account the non negativity of the Mittag-Leffler
function and that g and h are non–negative functions, such that limt→∞ g(t) =
limt→∞ h(t) = 0, there exist t1 and t2 such that the next inequalities hold

z(s1(t), t) = εϕ(s1(t)) +
Aϕ(s1(t))
ϕmin

Eα(−γtα)− g(t)

≥ εϕmin − g(t) > 0 if t > t1.

(3.7)

z(s2(t), t) = εϕ(s2(t)) +
Aϕ(s2(t))
ϕmin

Eα(−γtα)− h(t)

≥ εϕmin − h(t) > 0 if t > t2.

(3.8)

Consider t̃ = max{t1, t2}, Mt̃ = max{u(x, t); s1(t) ≤ x ≤ s2(t), 0 ≤ t ≤ t̃} and take
A such that

A ≥ Mt̃

Eα(−γt̃α)
. (3.9)

Then
z(x, t̃) ≥ 0, s1(t̃) < x < s2(t̃). (3.10)

Consider the region Ωt̃ = {(x, t) : s1(t) < x < s2(t), t̃ < t}. Note that in-
equalities (3.7), (3.8) and (3.10) imply that z ≥ 0 in ∂pΩt̃. With the aim to prove
that z ≥ 0 in Ωt̃, fix T > t̃ large enough and suppose that there exists a point
(x0, t0) ∈ {(x, t) : s1(t) < x < s2(t), t̃ < t ≤ T} where z attains its negative
minimum. Clearly

z(x0, t) ≥ z(x0, t0) for all t̃ ≤ t ≤ T. (3.11)
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From Proposition 2.5(d) and (3.9) it results that

z(x0, t) ≥ 0 for all t < t̃. (3.12)

Inequalities (3.11) and (3.12) imply that the function z(x0, ·) attains its abso-
lute minimum at t0 in the interval [0, T ]. Applying Proposition 3.1 it holds that
Dαz(x0, t0) ≤ 0. Then

Lαu(x0, t0) = LαΨ(x0, t0)− Lαz(x0, t0)

= LαΨ(x0, t0)− ∂2

∂x2
z(x0, t0) +Dαz(x0, t0) < 0

which is a contradiction. Therefore z ≥ 0 in Ωt̃, or equivalently

u(x, t) ≤ Ψ(x, t) ∀(x, t) ∈ Ωt̃. (3.13)

The non-negativity of functions f, g and h imply the non-negativity of u in ∂Ω0.
Then Theorem 3.4 yields

0 ≤ u(x, t) ∀(x, t) ∈ Ωt̃. (3.14)

Extending u by 0 outside Ω0, using (3.13) and (3.14) we can state that

0 ≤ u(x, t) ≤ εϕmax +
Aϕmax

ϕmin
Eα(−γtα) for all x ∈ [a0, b0], and all t > t̃.

By Proposition 2.5(b), there exists t3 > 0 (we can take t3 > t̃) such that

0 ≤ u(x, t) ≤ 2εϕmax for all x ∈ [a0, b0], and all t > t3. (3.15)

Taking into account that inequality (3.15) holds for every ε > 0 it results that
limt→∞ u(x, t) = 0 uniformly in [a0, b0]. �

Remark 3.6. The following initial-boundary-value problem was considered in [19]:

0D
α
t u(x, t) = λ2uxx(x, t), 0 < x < L, 0 < t, 0 < α < 1,

u(0, t) = 0, 0 < t,

u(L, t) = 0, 0 < t,

u(x, 0) = f(x), 0 ≤ x ≤ L.

(3.16)

There a classical solution was obtained of the form

u(x, t) =
∞∑
i=1

(f,Xi)Eα(−λitα)Xi(x), (3.17)

where Xi, i = 1, 2, dots are the eigenfunctions corresponding to the eigenvalues λi
of the eigenvalue problem

X ′′(x) = λX(x)

X(0) = X(L) = 0,

and f ∈ C1([0, L]) ∪ C2(0, L), f ′′ ∈ L2(0, L) and f(0) = f(L) = 0. Note that
if we ask f to be a non-negative function then Theorem 3.5 gives the uniformly
convergence to zero in [0, L] when t→∞ of (3.17).
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Corollary 3.7. Let u be a solution of the fractional initial-boundary-value problem

0D
α
t u(x, t) = λ2uxx(x, t), 0 < x < L, 0 < t, 0 < α < 1,

u(0, t) = g(t), 0 < t,

u(L, t) = h(t), 0 < t,

u(x, 0) = f(x), 0 ≤ x ≤ L,

(3.18)

such that:
(a) g is a continuous functions defined in R+ such that limt→∞ g(t) = g0 and

g(t) ≥ g0 for every t ∈ R+,
(b) h is a continuous functions defined in R+ such that limt→∞ h(t) = h0 and

h(t) ≥ h0 for every t ∈ R+,
(c) f is a continuous function defined in [0, L] such that f(x)−[h0−g0

L x+g0] ≥ 0
for every x ∈ [0, L].

Then limt→∞ u(x, t) = h0−g0
L x+ g0 for every x ∈ [0, L].

The proof of the above corollary, follows by applying Theorem 3.5 to the function
w(x, t) = u(x, t)− [h0−g0

L x+ g0].

Remark 3.8. The hypotheses g(t) ≥ m1 and h(t) ≥ m2 for every t ∈ R+ in
Corollary 3.7 are essential because we need to guarantee the non-negativity of the
solution in the hole parabolic boundary Ω0 to apply Theorem 3.4, which is used in
the proof of Theorem 3.5. This simple observation is interesting because it makes
gains relevance to the memory of the operator that we are considering.

Note that if we consider the classical parabolic operator, the weak maximum
principle is valid for every region Ωt̃ with t̃ 6= 0, but for the “fractional weak
maximum principle” (Theorem 3.4) this is not valid. This principle only holds in
the hole region Ω0, that is, the region including everything that happened from the
initial time.
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