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Abstract. In this article we study the p-biharmonic equation

∆2
pu + V (x)|u|p−2u = f(x, u), x ∈ RN ,

where ∆2
pu = ∆(|∆u|p−2∆u) is the p-biharmonic operator. When V (x) and

f(x, u) satisfy some conditions, we prove that the above equations have Nehari-

type ground state solutions.

1. Introduction and statement of main results

In this article, we study the p-biharmonic equation

∆2
pu+ V (x)|u|p−2u = f(x, u), x ∈ RN , (1.1)

where p ≥ 2, ∆2
pu = ∆(|∆u|p−2∆u) is an operator of fourth order, the so-called p-

biharmonic operator. Equation (1.1), especially with p = 2, has attracted growing
interests and figures in a variety of applications. Many authors studied the existence
of at least one solution and infinitely many solutions, ground state solution, sign-
changing solutions and least energy nodal solution for biharmonic equations; we
refer readers to [4, 5, 13, 14, 16, 18, 20, 21].

When p > 2, Equation (1.1) becomes an interesting topic and it arises from
mathematical modeling of non Newtonian fluids and elastic mechanics, in particu-
lar, the electro-rheological fluids. This important class of fluids is characterized by
the change of viscosity which is not easy and depends on the electric field. These
fluids, which are known under the name ER fluids, have many applications in elas-
tic mechanics, fluid dynamics etc.. For more information, the reader can refer to
Ruzicka [8].

Recently many authors have studied the ground state solutions of various types
equations including biharmonic equations, see [5, 9, 10, 11, 12, 17, 19]. The so-
called ground state solutions are the solutions that have the least energy. But for
p-biharmonic equations, there are just few papers that have studied the existence
of nontrivial solutions, see [1, 3, 7] and sign-changing solutions, see [6]. And there is
no paper studying the ground state solutions of p-biharmonic equations until now.
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In a recent paper Chen and Tang [2] studied the existence of ground state so-
lutions for p-superlinear p-Laplacian equations by using the following assumptions
on V (x) and f(x, u):

(A1) V (x) ∈ C(RN ,R) is 1-periodic in each of x1, x2, . . . , xN and

0 < inf
x∈RN

V (x) ≤ sup
x∈RN

V (x) < +∞;

(A2) f ∈ C(RN × R,R) is 1-periodic in each of x1, x2, . . . , xN and

lim
|t|→∞

|f(x, t)|
|t|p∗−1

= 0, uniformly in x ∈ RN ,

where p∗ = pN/(N − p) if N > p and p∗ ∈ (p,+∞) if N ≤ p;
(A3) lim|t|→0

|f(x,t)|
|t|p−1 < γ−pp uniformly in x ∈ RN , where γs = supu∈E,‖u‖=1 ‖u‖s

for p ≤ s ≤ p∗ and tf(x, t) − pF (x, t) = o(|t|p) as |t| → 0, uniformly in
x ∈ RN ;

(A4) lim|t|→∞
|F (x,t)|
|t|p = ∞ for almost every x ∈ RN , and there exists r0 ≥ 0

such that F (x, t) ≥ 0 for |t| ≥ r0;
(A5) there exists a θ0 ∈ (0, 1) such that

1− θp

p
tf(x, t) ≥

∫ t

θt

f(x, s)ds, ∀(x, t) ∈ RN × R, θ ∈ [0, θ0].

The solutions obtained in [2] are in the set M = {u ∈ E\{0} : Φ′(u) = 0} which
may contain only one element. It is a very small subset of the Nehari manifold

N = {u ∈ E\{0} : 〈Φ′(u), u〉 = 0},
which contains infinitely many elements of E. The main difference between our
arguments and those in [2] is that their solutions are inM, while ours are in N . In
fact, for any u ∈ E\{0}, there exists t = t(u) > 0 such that t(u)u ∈ N , see Lemma
2.2. If u0 is a solution at which Φ (Φ is the corresponding functional) has least
“energy” in set N , we shall call it a Nehari-type ground state solution.

Motivated by the above facts, we shall use new techniques to establish the exis-
tence of Nehari-type ground state solutions of (1.1). To state our results, we make
the following assumptions:

(A6) there exists p < q < p∗ such that

1− tq

q
uf(x, u) ≥

∫ u

tu

f(x, s)ds, ∀(x, u) ∈ RN × R, t ≥ 0;

(A6’) there exist p < q < p∗ and K ≥ 1 such that
1− tq

q
uf(x, u) ≥ F (x, u)−KF (x, tu), ∀(x, u) ∈ RN × R, t ≥ 0;

(A7) pF (x, t) ≤ tf(x, t) for all (x, t) ∈ RN × R.
Our main results read as follows.

Theorem 1.1. Assume that (A1)–(A4), (A6), (A7) are satisfied. Then (1.1) has
a Nehari-type ground state solution.

Obviously, we see that (A6′) implies (A6), then we have the following corollary.

Corollary 1.2. Assume that (A1)–(A4), (A6’), (A7) are satisfied. Then (1.1) has
a Nehari-type ground state solution.
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The remainder of this article is organized as follows. In Section 2, some prelim-
inary results are presented. In Section 3, we give the proof of our main results.

2. Preliminaries

Throughout this article, in Ls(RN ) the norm is ‖u‖s = (
∫

RN |u|sdx)1/s, and
positive constants are denoted Ci. As usual, we let

E = {u ∈W 2,p(RN ) ∩W 1,p
0 (RN )|

∫
RN

(|∆u|p + V (x)|u|p)dx <∞}.

Then, by condition (A1), E is a Sobolev space, with norm

‖u‖ =
(∫

RN

(|∆u|p + V (x)|u|p)dx
)1/p

And define

Φ(u) =
1
p

∫
RN

(|∆u|p + V (x)|u|p)dx−
∫

RN

F (x, u)dx, (2.1)

obviously, the solutions of (1.1) are the critical points of the functional Φ, and it is
easy to see that Φ ∈ C1(E,R) and

〈Φ′(u), v〉 =
∫

RN

(|∆u|p−2∆u∆v + V (x)|u|p−2uv) dx−
∫

RN

f(x, u)v dx, (2.2)

and define the Nehari manifold

N = {u ∈ E\{0} : 〈Φ′(u), u〉 = 0}. (2.3)

To prove Theorem 1.1, we use the well known arguments involving the Nehari
manifold. So we give the following lemmas.

Lemma 2.1 ([2, Lemma 2.1]). Let X be a Banach space. Let M0 be a closed
subspace of the metric space M and Γ0 ⊂ C(M0, X). Define

Γ = {γ ∈ C(M,X) : γ|M0 ∈ Γ0}.
If ϕ ∈ C1(X,R) satisfies

∞ > b := inf
γ∈Γ

sup
t∈M

ϕ(γ(t)) > a := sup
γ0∈Γ0

sup
t∈M0

ϕ(γ0(t)), (2.4)

then there exists a sequence {un} ⊂ X satisfying

ϕ(un)→ b, ‖ϕ′(un)‖(1 + ‖un‖)→ 0. (2.5)

Lemma 2.2. Assume that (A1)–(A3) are satisfied. Then for any u ∈ E\{0}, there
exists t(u) > 0 such that t(u)u ∈ N .

Proof. Let u ∈ E\{0} be fixed and define the function g(t) := Φ(tu) on [0,∞).
Obviously, we have

g′(t) = 0⇔ tu ∈ N ⇔ ‖u‖p =
1

tp−1

∫
RN

f(x, tu)udx.

Using (A2) and (A3), fix p < q < p∗, there exist ε0 > 0, ε > 0 and Cε > 0 such that

|f(x, t)| ≤ 1
γpp + ε0

|t|p−1 + ε|t|p
∗−1 + Cε|t|q−1, ∀(x, t) ∈ RN × R, (2.6)

|F (x, t)| ≤ 1
p(γpp + ε0)

|t|p +
ε

p∗
|t|p
∗

+
Cε
q
|t|q, ∀(x, t) ∈ RN × R. (2.7)
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Combining this and it is easy to verify that g(0) = 0, g(t) > 0 for t > 0 small and
g(t) < 0 for t > 0 large. Therefore, maxt∈[0,∞) g(t) is achieved at a t = t(u) so that
g′(t(u)) = 0 and t(u)u ∈ N . �

Lemma 2.3. Assume that (A1)–(A3), (A6) are satisfied. Then for u ∈ N , it holds

Φ(u) ≥ Φ(tu), t ∈ [0,∞). (2.8)

Proof. For u ∈ N , one has

‖u‖p =
∫

RN

f(x, u)udx. (2.9)

Thus, by (2.1), (2.9) and (A6), there exists p < q < p∗ such that

Φ(u)− Φ(tu) =
1− tp

p
‖u‖p +

∫
RN

[F (x, tu)− F (x, u)]dx

≥ 1− tp

p
‖u‖p − 1− tq

q

∫
RN

f(x, u)udx

=
1− tp

p
‖u‖p +

tq − 1
q
‖u‖p

= (
1− tp

p
+
tq − 1
q

)‖u‖p.

It is easy to verify that
1− tp

p
+
tq − 1
q
≥ 0, ∀t ≥ 0, 2 ≤ p < q < p∗.

Then (2.8) holds. �

Define

c1 := inf
N

Φ, c2 := inf
u∈E\{0}

max
t≥0

Φ(tu), c := inf
γ∈Γ

sup
t∈[0,1]

Φ(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0,Φ(γ(1)) < 0}.

Lemma 2.4. Assume that (A1)–(A3), (A7) are satisfied. Then c1 = c2 = c > 0
and there exists a sequence {un} ⊂ E satisfying

Φ(un)→ c, ‖Φ′(un)‖(1 + ‖un‖)→ 0. (2.10)

Proof. (1) Both Lemmas 2.2 and 2.3 imply that c1 = c2. Next, we prove that
c = c1 = c2. By the definition of c2, we can choose a sequence {un} ∈ E\{0} such
that

c2 ≤ max
t≥0

Φ(tun) < c2 +
1
n
, ∀n ∈ N. (2.11)

For u ∈ E\{0} and t large enough, we have Φ(tu) < 0, and then there exist
tn = t(un) > 0 and sn > tn such that

Φ(tnun) = max
t≥0

Φ(tun), Φ(snun) < 0, ∀n ∈ N. (2.12)

Let γn(t) = tsnun, t ∈ [0, 1], then γn ∈ Γ. And it follows from (2.11) and (2.12)
that

sup
t∈[0,1]

Φ(γn(t)) = max
t≥0

Φ(tun) < c2 +
1
n
, ∀n ∈ N,
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which implies that c ≤ c2. On the other hand, the manifold N separates E into two
components: E+ = {u ∈ E : 〈Φ′(u), u〉 > 0} ∪ {0} and E− = {u ∈ E : 〈Φ′(u), u〉 <
0}.

Combining (A7) with (2.1) and (2.2), we obtain

Φ(u) ≥ 1
p
〈Φ′(u), u〉, ∀u ∈ E.

It follows that Φ(u) ≥ 0 for all u ∈ E+. Since (A2) and (A3), it follows that (2.6)
implies that E+ contains a small ball around the origin. Thus every γ ∈ Γ has to
cross N , because γ(0) ∈ E+ and γ(1) ∈ E−. So c1 ≤ c. The proof of part (1) is
complete.

(2) To prove the second part of Lemma 2.4, we apply Lemma 2.1 with M = [0, 1],
M0 = {0, 1}, and Γ0 = {γ0 : {0, 1} → E : γ0(0) = 0,Φ(γ0(1)) < 0}. By (A2) and
(A3), it is easy to verify that there exists r > 0 such that min‖u‖≤r Φ(u) = 0,
inf‖u‖=r Φ(u) > 0. Hence we obtain

c ≥ inf
‖u‖=r

Φ(u) > 0 = sup
γ0∈Γ0

sup
t∈M0

Φ(γ0(t)).

As a consequence, all assumptions of Lemma 2.1 are satisfied. Therefore, there
exists a sequence {un} ⊂ E satisfying (2.10). �

Lemma 2.5. Assume (A1)–(A4), (A6) are satisfied. Then any sequence {un} ⊂ E
satisfying

Φ(un)→ c, 〈Φ′(un), un〉 → 0 (2.13)
is bounded in E.

Proof. To prove the boundedness of {un}, we argue by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖, then ‖vn‖ = 1. Passing to a subsequence, we may
assume that vn ⇀ v in E, vn → v in Lsloc(RN ), p ≤ s < p∗ and vn → v almost
everywhere on RN . If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|vn|pdx = 0,

then by Lions’ concentration compactness principle [15, Lemma 1.21], vn → 0 in
Ls(RN ) for p < s < p∗. Fix R > [p(c+ 1)(γpp + ε0)/ε0]1/p, ε = p∗/[4(Rγp∗)p

∗
] > 0,

it follows from (2.7) that

lim sup
n→∞

∫
RN

F (x,Rvn)dx ≤ (Rγp)p

p(γpp + ε0)
+
ε(Rγp∗)p

∗

p∗
+
RqCε
q

lim
n→∞

‖vn‖qq

=
(Rγp)p

p(γpp + ε0)
+

1
4
.

(2.14)

Since ‖un‖ → ∞, R/‖un‖ ∈ [0, 1) for large n ∈ N. Hence using (2.13), (2.14) and
Lemma 2.3,

c+ o(1) = Φ(un) ≥ Φ(Rvn)

=
Rp

p
−
∫

Rn

F (x,Rvn)dx

≥ ε0R
p

p(γpp + ε0)
− 1

4
+ o(1)

>
3
4

+ c+ o(1),
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which is a contradiction. Thus, δ > 0.
Going if necessary to a subsequence, we assume the existence of kn ∈ ZN such

that
∫
B1+

√
N (kn)

|vn|pdx > δ/2. Let ωn(x) = vn(x+ kn). Then∫
B1+

√
N (0)

|ωn|pdx >
δ

2
. (2.15)

Now we define ũn(x) = un(x+ kn), then ‖ũn‖ = ‖un‖ and ũn/‖un‖ = ωn. Passing
to a subsequence, we have ωn ⇀ ω in E, ωn → ω in Lsloc(RN ), p ≤ s < p∗ and
ωn → ω almost everywhere on RN . Thus (2.15) implies that ω 6= 0.

By (A2) and (A3), there exists C1 > 0 such that

|f(x, t)| ≤ 1
γpp
|t|p−1 + C1|t|p

∗−1, ∀(x, t) ∈ RN × R,

which implies

|F (x, t)| ≤ 1
pγpp
|t|p +

C1

p∗
|t|p
∗
, ∀(x, t) ∈ RN × R. (2.16)

For 0 ≤ a < b, let Ωn(a, b) = {x ∈ RN : a ≤ |ũn(x)| < b}. Set A := {x ∈ RN :
ω(x) 6= 0}, then meas(A) > 0. For almost every x ∈ A, we have limn→∞ |ũn(x)| =
∞. Hence A ⊂ Ωn(rn,∞) for large n ∈ N, it follows from (2.1), (2.13), (2.16), (A4)
and Fatou’s lemma that

0 = lim
n→∞

c+ o(1)
‖un‖p

= lim
n→∞

Φ(un)
‖un‖p

= lim
n→∞

[
1
p
−
∫

RN

F (x, ũn)
|ũn|p

|ωn|pdx]

= lim
n→∞

[
1
p
−
∫

Ωn(0,r0)

F (x, ũn)
|ũn|p

|ωn|pdx−
∫

Ωn(r0,∞)

F (x, ũn)
|ũn|p

|ωn|pdx]

≤ lim sup
n→∞

[
1
p

+ (
1
pγpp

+
C1

p∗
rp
∗−p

0 )
∫

RN

|ωn|pdx−
∫

Ωn(r0,∞)

F (x, ũn)
|ũn|p

|ωn|pdx]

≤ 1
p

+ (
1
pγpp

+
C1

p∗
rp
∗−p

0 )γpp − lim inf
n→∞

∫
Ωn(r0,∞)

F (x, ũn)
|ũn|p

|ωn|pdx

=
1
p

+ (
1
pγpp

+
C1

p∗
rp
∗−p

0 )γpp − lim inf
n→∞

∫
RN

F (x, ũn)
|ũn|p

[χΩn(r0,∞)(x)]|ωn|pdx

≤ 1
p

+ (
1
pγpp

+
C1

p∗
rp
∗−p

0 )γpp −
∫

RN

lim inf
n→∞

F (x, ũn)
|ũn|p

[χΩn(r0,∞)(x)]|ωn|pdx

= −∞,

which is a contradiction. Thus {un} is bounded in E. �

For the proof of Theorem 1.1, we need one more lemma.

Lemma 2.6. Under assumptions (A1)–(A4), (A6), (A7), equation (1.1) has a
nontrivial solution, that is, N 6= ∅.

The proof of the above lemma is similar to that of [2, Lemma 2.8] so it is omitted.
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3. Proof of main results

Proof of Theorem 1.1. Lemma 2.6 shows that N is not empty. By Lemma 2.3 and
c1 = infN Φ, one has Φ(u) ≥ Φ(0) = 0 for all u ∈ N . Let {un} ⊂ N such that
Φ(un) → c, then 〈Φ′(un), un〉 = 0. In view of the proof of Lemma 2.5, {un} is
bounded in E, and

‖un‖p =
∫

RN

f(x, un)un dx.

Let infn∈N ‖un‖ = δ0. If δ0 = 0, going if necessary to a subsequence, we may
assume that ‖un‖ → 0. Fix q ∈ (p, p∗), by (A2) and (A3), there exist ε0 > 0 and
C2 > 0 such that

|f(x, t)| ≤ 1
γpp + ε0

|t|p−1 + |t|p
∗−1 + C2|t|q−1, ∀(x, t) ∈ RN × R.

Thus,

‖un‖p =
∫

RN

f(x, un)un dx

≤ 1
γpp + ε0

‖un‖pp + ‖un‖p
∗

p∗ + C2‖un‖qq

≤
γpp

γpp + ε0
‖un‖p + γp

∗

p∗ ‖un‖p
∗

+ C2γ
q
q‖un‖q,

which implies
ε0

γpp + ε0
≤ γp

∗

p∗ ‖un‖p
∗−p + C2γ

q
q‖un‖q−p = o(1).

This contradiction shows that infn∈N ‖un‖ = δ0 > 0. Choose a constant C3 > 0
such that ‖un‖p∗ ≤ C3. If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|un|pdx = 0,

then by Lions’ concentration compactness principle [15, Lemma 1.21], un → 0 in
Ls(RN ) for p < s < p∗. Fix q ∈ (p, p∗), by (A2) and (A3), for ε = ε0δ

p
0/[2(γpp +

ε0)Cp
∗

3 ] > 0, there exists Cε > 0 such that

|f(x, t)| ≤ 1
γpp + ε0

|t|p−1 + ε|t|p
∗−1 + Cε|t|q−1, ∀(x, t) ∈ RN × R.

Thus,

‖un‖p =
∫

RN

f(x, un)un dx ≤
γpp

γpp + ε0
‖un‖p + ε‖un‖p

∗

p∗ + Cε‖un‖qq,

which yields

ε0δ
p
0

γpp + ε0
≤ ε0
γpp + ε0

‖un‖p

≤ ε‖un‖p
∗

p∗ + Cε‖un‖qq ≤ εC
p∗

3 + o(1)

=
ε0δ

p
0

2(γpp + ε0)
+ o(1).

This contradiction shows that δ > 0.
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Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN
such that

∫
B1+

√
N (kn)

|un|pdx > δ/2. Let us define vn(x) = un(x+ kn) so that∫
B1+

√
N (0)

|vn|pdx >
δ

2
. (3.1)

Since V (x) and f(x, u) are periodic, we have ‖vn‖ = ‖un‖ and by (2.1), (2.2) and
(2.10), we have

Φ(vn)→ c, Φ′(vn) = 0. (3.2)
Passing to a subsequence, we have vn ⇀ v0 in E, vn → v0 in Lsloc(RN ), p ≤ s < p∗

and vn → v0 almost everywhere on RN . Thus (3.1) implies that v0 6= 0. For every
ω ∈ C∞0 (RN ),

〈Φ′(v0), ω〉 = lim
n→∞

〈Φ′(vn), ω〉 = 0.

Hence Φ′(v0) = 0. This shows that v0 ∈ N and so Φ(v0) ≥ c. On the other hand,
by (2.1), (2.2), (3.2) and Fatou’s lemma,

c = lim
n→∞

[Φ(vn)− 1
p
〈Φ′(vn), vn〉]

= lim
n→∞

∫
RN

[
1
p
f(x, vn)vn − F (x, vn)]dx

≥
∫

RN

lim
n→∞

[
1
p
f(x, vn)vn − F (x, vn)]dx

=
∫

RN

[
1
p
f(x, v0)v0 − F (x, v0)]dx

= Φ(v0)− 1
p
〈Φ′(v0), v0〉 = Φ(v0).

This shows that Φ(v0) ≤ c and so Φ(v0) = c = infN Φ. The proof is complete. �
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