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BOUNDEDNESS AND SQUARE INTEGRABILITY OF
SOLUTIONS OF NONLINEAR FOURTH-ORDER DIFFERENTIAL

EQUATIONS WITH BOUNDED DELAY
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Communicated by Mokhtar Kirane

Abstract. In this article, we give sufficient conditions for the boundedness,
uniformly asymptotic stability and square integrability of the solutions to a

fourth-order non-autonomous differential equation with bounded delay by us-

ing Lyapunov’s second method.

1. Introduction

Ordinary differential equations have been studied for more than 300 years since
the seventeenth century after the concepts of differentiation and integration were
formulated by Newton and Leibniz. By means of ordinary differential equations,
researchers can explain many natural phenomena like gravity, projectiles, wave,
vibration, nuclear physics, and so on. In addition, in Newtonian mechanics, the
system’s state variable changes over time, and the law that governs the change
of the system’s state is normally described by an ordinary differential equation.
The question concerning the stability of ordinary differential equations has been
originally raised by the general problem of the stability of motion (Lyapunov [22]).

However, thereafter along with the development of technology, it is seen that
the ordinary differential equations cannot respond to the needs arising in sciences
and engineering. For example, in many applications, it can be seen that physical
or biological background of modeling system shows that the change rate of the
system’s current status often depends not only on the current state but also on the
history of the system. This usually leads to so-called retarded functional differential
equations (Smith [33]).

To the best of our knowledge, the study of qualitative properties of functional
differential equations of higher order has been developed at a high rate in the last
four decades. Functional differential equations of higher order can serve as ex-
cellent tools for description of mathematical modeling of systems and processes in
economy, stochastic processes, biomathematics, population dynamics, medicine, in-
formation theory, physics, chemistry, aerodynamics and many fields of engineering
like atomic energy, control theory, mechanics, etc., Therefore, the investigation of
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the qualitative properties of solutions of functional differential equations of higher
order, stability, boundedness, oscillation, integrability etc. of solutions play an im-
portant role in many real world phenomena related to the sciences and engineering
technique fields. In fact, we would not like to give here the details of the applications
related to functional differential equations of higher order here.

In particular, for more results on the stability, boundedness, convergence, etc.
of ordinary or functional equations differential equations of fourth order, see the
book of Reissig et al. [30] as a good survey for the works done by 1974 and the
papers of Burton [6], Cartwright [7], Ezeilo [11, 12, 13, 14], Harrow [15, 16], Tunç
[36, 37, 38, 39, 40, 41, 42], Remili et al. [25, 26, 27, 28, 29], Wu [44] and others and
theirs references. These information indicate the importance of investigating the
qualitative properties, of solutions of retarded functional differential equations of
fourth order.

In this article, we study the uniformly asymptotic stability of the solutions for
p(t, x, x′, x′′, x′′′) ≡ 0 and also square integrable and boundedness of solutions to
the fourth order nonlinear differential equation with delay

x(4) + a(t)(g(x(t))x′′(t))′ + b(t)(q(x(t))x′(t))′

+ c(t)f(x(t))x′(t) + d(t)h(x(t− r(t))) = p(t, x, x′, x′′, x′′′).
(1.1)

For convenience, we let

θ1(t) = g′(x(t))x′(t), θ2(t) = q′(x(t))x′(t), θ3(t) = f ′(x(t))x′(t).

We write (1.1) in the system form

x′ = y,

y′ = z,

z′ = w,

w′ = −a(t)g(x)w − (b(t)q(x) + a(t)θ1)z − (b(t)θ2 + c(t)f(x))y

− d(t)h(x) + d(t)
∫ t

t−r(t)
h′(x)ydη + p(t, x, y, z, w),

(1.2)

where r is a bounded delay, 0 ≤ r(t) ≤ ψ, r′(t) ≤ ξ, 0 < ξ < 1, ξ and ψ some positive
constants, ψ which will be determined later, the functions a, b, c, d are continuously
differentiable functions and the functions f, h, g, q, p are continuous functions de-
pending only on the arguments shown. Also derivatives g′(x), q′(x), f ′(x) and h′(x)
exist and are continuous. The continuity of the functions a, b, c, d, p, g, g′, q, q′, f, h
guarantees the existence of the solutions of equation (1.1). If the right hand side
of the system (1.2) satisfies a Lipchitz condition in x(t), y(t), z(t), w(t) and x(t− r)
,and exists of solutions of system (1.2) , then it is unique solution of system (1.2).

Assume that there are positive constants a0, b0, c0, d0, f0, g0, q0, a1, b1, c1, d1,
f1, g1, q1, m, M , δ, η1 such that the following assumptions hold:

(A1) 0 < a0 ≤ a(t) ≤ a1, 0 < b0 ≤ b(t) ≤ b1, 0 < c0 ≤ c(t) ≤ c1, 0 < d0 ≤ d(t) ≤
d1 for t ≥ 0;

(A2) 0 < f0 ≤ f(x) ≤ f1, 0 < g0 ≤ g(x) ≤ g1, 0 < q0 ≤ q(x) ≤ q1 for x ∈ R and
0 < m < min{f0, g0, 1}, M > max{f1, g1, 1};

(A3) h(x)
x ≥ δ > 0 for x 6= 0, h(0) = 0;

(A4)
∫∞

0
(|a′(t)|+ |b′(t)|+ |c′(t)|+ |d′(t)|)dt < η1;

(A5) |p(t, x, y, z, w)| ≤ |e(t)|.
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Motivated by the results of references, we obtain some new results on the uni-
formly asymptotic stability and boundedness of the solutions by means of the Lya-
punov’s functional approach. Our results differ from that obtained in the literature
(see, the references in this article and the references therein). By this way, we mean
that this paper has a contribution to the subject in the literature, and it may be
useful for researchers working on the qualitative behaviors of solutions of functional
differential equations of higher order. In view of all the mentioned information, it
can be checked the novelty and originality of the current paper.

2. Preliminaries

We also consider the functional differential equation

ẋ = f(t, xt), xt(θ) = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0. (2.1)

where f : I × CH → Rn is a continuous mapping, f(t, 0) = 0, CH := {φ ∈
(C[−r, 0],Rn) : ‖φ‖t ≤ H}, and for H1 < H, there exists L(H1) > 0, with
|f(t, φ)| < L(H1) when ‖φ‖t < H1.

Lemma 2.1 ([6]). Let V (t, φ) : I × CH → R be a continuous functional satisfying
a local Lipchitz condition, V (t, 0) = 0, and wedges Wi such that:

(i) W1(‖φ‖t) ≤ V (t, φ) ≤W2(‖φ‖t);
(ii) V ′(2.1)(t, φ) ≤ −W3(‖φ‖t).

Then, the zero solution of (2.1) is uniformly asymptotically stable.

3. Main results

Lemma 3.1 ([19]). Let h(0) = 0, xh(x) > 0 (x 6= 0) and δ(t)−h′(x) ≥ 0 (δ(t) > 0),
then 2δ(t)H(x) ≥ h2(x), where H(x) =

∫ x
0
h(s)ds.

Theorem 3.2. In addition to the basic assumptions imposed on the functions a,
b, c, d, p, f , h, g, q suppose that there are positive constants h0, h1, δ0, δ1, η2, η3

such that the following conditions are satisfied:
(i) h0 − a0mδ0

d1
≤ h′(x) ≤ h0

2 for x ∈ R;
(ii) δ1 = d1h0a1M

c0m
+ c1M+δ0

a0m
< b0q0;

(iii)
∫ +∞
−∞ (|g′(s)|+ |q′(s)|+ |f ′(s)|)ds < η2;

(iv)
∫∞

0
|e(t)|dt < η3.

Then any solution x(t) of (1.1) and its derivatives x′(t), x′′(t) x′′′(t) are bounded
and satisfy ∫ ∞

0

(x′2(s) + x′′2(s) + x′′′2(s))ds <∞,

provided that

ψ <
(1− ξ)
d1h1

min
{ εc0f0

α+ β(2− ξ) + 1
,

2[b0q0 − δ1 − εM(a1 + c1)]
(1− ξ)

,
2ε

α(1− ξ)

}
.

Proof. We define a Lyapunov functional

W = W (t, x, y, z, w) = e
−1
η

R t
0 γ(s)dsV, (3.1)

where

γ(t) = |a′(t)|+ |b′(t)|+ |c′(t)|+ |d′(t)|+ |θ1(t)|+ |θ2(t)|+ |θ3(t)|,
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and

2V = 2βd(t)H(x) + c(t)f(x)y2 + αb(t)q(x)z2 + a(t)g(x)z2 + 2βa(t)g(x)yz

+ [βb(t)q(x)− αh0d(t)]y2 − βz2 + αw2 + 2d(t)h(x)y + 2αd(t)h(x)z

+ 2αc(t)f(x)yz + 2βyw + 2zw + σ

∫ 0

−r(t)

∫ t

t+s

y2(γ)dγds

with H(x) =
∫ x

0
h(s)ds, α = 1

a0m
+ ε, β = d1h0

c0m
+ ε, ε and η are positive constants

to be determined later in the proof. We can rearrange 2V as

2V = a(t)g(x)
[ w

a(t)g(x)
+ z + βy

]2
+ c(t)f(x)

[d(t)h(x)
c(t)f(x)

+ y + αz
]2

+
d2(t)h2(x)
c(t)f(x)

+ 2εd(t)H(x) + σ

∫ 0

−r(t)

∫ t

t+s

y2(γ)dγds+ V1 + V2 + V3 ,

where

V1 = 2d(t)
∫ x

0

h(s)
[d1h0

c0m
− 2

d(t)
c(t)f(x)

h′(s)
]
ds,

V2 =
[
αb(t)q(x)− β − α2c(t)f(x)

]
z2,

V3 =
[
βb(t)q(x)− αh0d(t)− β2a(t)g(x)

]
y2 +

[
α− 1

a(t)g(x)
]
w2.

Let
ε < min

{ 1
a0m

,
d1h0

c0m
,
b0q0 − δ1
M(a1 + c1)

}
(3.2)

then
1

a0m
< α <

2
a0m

,
d1h0

c0m
< β < 2

d1h0

c0m
. (3.3)

By using conditions (A1)–(A3), (i)–(ii) and inequalities (3.2), (3.3) we obtain

V1 ≥ 4d(t)
d1

c0m

∫ x

0

h(s)[
h0

2
− h′(s)]ds ≥ 0,

V2 = (α(b(t)q(x)− βa(t)− αc(t)f(x)) + β(αa(t)− 1))z2

≥ α
(
b0q0 −

d1h0a1

c0m
− c1M

a0m
− ε(a1 + c1M)

)
z2 + β(

1
m
− 1)z2

≥ α(b0q0 − δ1 − εM(a1 + c1))z2 ≥ 0,

and

V3 ≥ β
(
b0q0 −

α

β
h0d1 − βa1M

)
y2 + (α− 1

a0m
)w2

≥ β
(
b0q0 −

c0
a0
− a1

d1h0M

c0m
− ε(c0m+ a1M)

)
y2 + εw2

≥ β(b0q0 − δ1 − εM(c1 + a1))y2 + εw2 ≥ 0.

Thus, it is clear from the above inequalities that there exists positive constant D0

such that
2V ≥ D0(y2 + z2 + w2 +H(x)). (3.4)

From Lemma 3.1, (A3) and (i), it follows that there is a positive constant D1 such
that

2V ≥ D1(x2 + y2 + z2 + w2) (3.5)
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In this way V is positive definite. From (A1)–(A3), it is clear that there is a positive
constant U1 such that

V ≤ U1(x2 + y2 + z2 + w2). (3.6)
From (iii), we have∫ t

0

(|θ1(s)|+ |θ2(s)|+ |θ3(s)|)ds

=
∫ α2(t)

α1(t)

(|g′(u)|+ |q′(u)|+ |f ′(u)|)du

≤
∫ +∞

−∞
(|g′(u)|+ |q′(u)|+ |f ′(u)|)du < η2 <∞

(3.7)

where α1(t) = min{x(0), x(t)} and α2(t) = max{x(0), x(t)}. From inequalities
(3.2), (3.6) and (3.7), it follows that

W ≥ D2(x2 + y2 + z2 + w2) (3.8)

where D2 = D1
2 e
− η1+η2

η . Also, it is easy to see that there is a positive constant U2

such that
W ≤ U2(x2 + y2 + z2 + w2) (3.9)

for all x, y, z, w and all t ≥ 0.
Now, we show that Ẇ is negative definite function. The derivative of the function

V along any solution (x(t), y(t), z(t), w(t)) of system (1.2), with respect to t is after
simplifying

2V̇(1.2) = −2εc(t)f(x)y2 +V4 +V5 +V6 +V7 +V8 +V9 +2(βy+z+αw)p(t, x, y, z, w)

where

V4 = −2
(d1h0

c0m
c(t)f(x)− d(t)h′(x)

)
y2 − 2αd(t)(h0 − h′(x))yz,

V5 = −2(b(t)q(x)− αc(t)f(x)− βa(t)g(x))z2,

V6 = −2(αa(t)g(x)− 1)w2,

V7 = 2αd(t)w
∫ t

t−r(t)
h′(x(η))x′(η)dη + 2βd(t)y(t)

∫ t

t−r(t)
h′(x(η))x′(η)dη

+ 2d(t)z(t)
∫ t

t−r(t)
h′(x(η))x′(η)dη + σr(t)y2(t)− σ(1− r′(t))

∫ t

t−r(t)
y2(η)dη,

V8 = −a(t)θ1(z2 + 2αzw)− b(t)θ2(αz2 + 2αzw + βy2 + 2yz)

+ c(t)θ3(y2 + 2αyz),

V9 = d′(t)[2βH(x)− αh0y
2 + 2h(x)y + 2αh(x)z]

+ c′(t)[f(x)y2 + 2αf(x)yz] + b′(t)[αq(x)z2 + βq(x)y2]

+ a′(t)[g(x)z2 + 2βg(x)yz].

By regarding conditions (A1), (A2), (i), (ii) and inequalities (3.3), (3.4), we have

V4 ≤ −2[d(t)h0 − d(t)h′(x)]y2 − 2αd(t)[h0 − h′(x)]yz

≤ −2d(t)[h0 − h′(x)]y2 − 2αd(t)[h0 − h′(x)]yz

≤ 2d(t)[h0 − h′(x)][(y +
α

2
z)2 − (

α

2
z)2]
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≤ α2

2
d(t)[h0 − h′(x)]z2.

In this case,

V4 + V5 ≤ −2
[
b(t)q(x)− αc(t)f(x)− βa(t)g(x)− α2

4
d(t)[h0 − h′(x)]

]
z2

≤ −2
[
b0q0 − (

1
a0m

+ ε)c1M − (
d1h0

c0m
+ ε)a1M −

α2

4
(a0mδ0)

]
z2

≤ −2
[
b0q0 −

M

a0m
c1 −

d1h0a1M

c0m
− δ0
a0m

− εM(a1 + c1)
]
z2

≤ −2[b0q0 − δ1 − εM(a1 + c1)]z2 ≤ 0,

and

V6 ≤ −2[αa0m− 1]w2 = −2εw2 ≤ 0.

By taking h1 = max{|d1h0−a0mδ0
d1

|, |h0
2 |}, we have

V7 ≤ d1h1r(t)(αw2 +βy2 +z2)+σr(t)y2 +[d1h1(α+β+1)−σ(1−ξ)]
∫ t

t−r(t)
y2(s)ds

If we choose σ = d1h1(α+β+1)
(1−ξ) , we obtain

V7 ≤
d1h1

(1− ξ)
r(t)[α(1− ξ)w2 + (α+ β(2− ξ) + 1)y2 + (1− ξ)z2].

Thus, there exists a positive constant D3 such that

−εc(t)f(x)y2 + V4 + V5 + V6 + V7 ≤ −2D3(y2 + z2 + w2).

From (3.4), and the Cauchy Schwartz inequality, we obtain

V8 ≤ a(t)|θ1|(z2 + α(z2 + w2)) + b(t)|θ2|(αz2 + α(z2 + w2) + βy2 + y2 + z2)

+ c(t)|θ3|(y2 + α(y2 + z2))

≤ λ1(|θ1|+ |θ2|+ |θ3|)(y2 + z2 + w2 +H(x))

≤ 2
λ1

D0
(|θ1|+ |θ2|+ |θ3|)V,

where λ1 = max{a1(1 + α), b1(1 + 2α + β), c1(1 + α)}. Using condition (iii) and
Lemma 3.1, we can write

h2(x) ≤ h0H(x),

hereby,

|V9| ≤ |d′(t)|[2βH(x) + αh0y
2 + h2(x) + y2 + α(h2(x) + z2)]

+ |c′(t)|[y2 + α(y2 + z2)] + |b′(t)|[αz2 + βy2]

+ |a′(t)|[z2 + 2β(y2 + z2)]

≤ λ2[|a′(t)|+ |b′(t)|+ |c′(t)|+ |d′(t)|](y2 + z2 + w2 +H(x))

≤ 2
λ2

D0
[|a′(t)|+ |b′(t)|+ |c′(t)|+ |d′(t)|]V,
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such that λ2 = max{2β+(α+1)h0, αh0 +1, α+1}. By taking 1
η = 1

D0
max{λ1, λ2},

we obtain

V̇(1.2) ≤ −D3(y2 + z2 + w2) + (βy + z + αw)p(t, x, y, z, w)

+
1
η

(|a′(t)|+ |b′(t)|+ |c′(t)|+ |d′(t)|+ |θ1|+ |θ2|+ |θ3|)V.
(3.10)

From (A4), (A5),(iii), (3.7), (3.8), (3.10) and the Cauchy Schwartz inequality, we
obtain

Ẇ(1.2) =
(
V̇(1.2) −

1
η
γ(t)V

)
e−

1
η

R t
0 γ(s)ds

≤ (−D3(y2 + z2 + w2) + (βy + z + αw)p(t, x, y, z, w))e−
1
η

R t
0 γ(s)ds (3.11)

≤ (β|y|+ |z|+ α|w|)|p(t, x, y, z, w)|
≤ D4(|y|+ |z|+ |w|)|e(t)|
≤ D4(3 + y2 + z2 + w2)|e(t)|

≤ D4

(
3 +

1
D2

W
)
|e(t)|

≤ 3D4|e(t)|+
D4

D2
W |e(t)|, (3.12)

where D4 = max{α, β, 1}. Integrating (3.12) from 0 to t and using the condition
(iv) and the Gronwall inequality, we have

W ≤W (0, x(0), y(0), z(0), w(0)) + 3D4η3

+
D4

D2

∫ t

0

W (s, x(s), y(s), z(s), w(s))|e(s)|ds

≤ (W (0, x(0), y(0), z(0), w(0)) + 3D4η3)e
D4
D2

R t
0 |e(s)|ds

≤ (W (0, x(0), y(0), z(0), w(0)) + 3D4η3)e
D4
D2

η3 = K1 <∞

(3.13)

Because of inequalities (3.8) and (3.13), we write

(x2 + y2 + z2 + w2) ≤ 1
D2

W ≤ K2, (3.14)

where K2 = K1
D2

. Clearly (3.14) implies

|x(t)| ≤
√
K2, |y(t)| ≤

√
K2, |z(t)| ≤

√
K2, |w(t)| ≤

√
K2 for t ≥ 0.

Hence

|x(t)| ≤
√
K2, |x′(t)| ≤

√
K2, |x′′(t)| ≤

√
K2, |x′′′(t)| ≤

√
K2 (3.15)

for t ≥ 0. Now, we proof the square integrability of solutions and their derivatives.
We define

Ft = F (t, x(t), y(t), z(t), w(t)) = W + ρ

∫ t

0

(y2(s) + z2(s) + w2(s))ds,

where ρ > 0. It is easy to see that Ft is positive definite, since W = W (t, x, y, z, w)
is already positive definite. Using the following estimate

e−
η1+η2
η ≤ e−

1
η

R t
0 γ(s)ds ≤ 1
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by (3.12) we have

Ḟt(1.2) ≤ −D3(y2(t) + z2(t) + w2(t))e−
η1+η2
η

+D4(|y(t)|+ |z(t)|+ |w(t)|)|e(t)|
+ ρ(y2(t) + z2(t) + w2(t))

(3.16)

By choosing ρ = D3e
− η1+η2

η we obtain

Ḟt(1.2) ≤ D4(3 + y2(t) + z2(t) + w2(t))|e(t)|

≤ D4(3 +
1
D2

W )|e(t)|

≤ 3D4|e(t)|+
D4

D2
Ft|e(t)|.

(3.17)

Integrating from 0 to t and using again the Gronwall inequality and the condition
(iv), we obtain

Ft ≤ F0 + 3D4η3 +
D4

D2

∫ t

0

Fs|e(s)|ds

≤ (F0 + 3D4η3)e
D4
D2

R t
0 |e(s)|ds

≤ (F0 + 3D4η3)e
D4
D2

η3 = K3 <∞

(3.18)

Therefore,∫ ∞
0

y2(s)ds < K3,

∫ ∞
0

z2(s)ds < K3,

∫ ∞
0

w2(s)ds < K3,

which implies∫ ∞
0

[x′(s)]2ds < K3,

∫ ∞
0

[x′′(s)]2ds < K3,

∫ ∞
0

[x′′′(s)]2ds < K3. (3.19)

which completes the proof. �

Remark 3.3. If p(t, x, y, z, w) ≡ 0, similarly to the above proof, the inequality
(3.11) becomes

˙W(1.2) =
(
V̇(1.2) −

1
η
γ(t)V

)
e−

1
η

R t
0 γ(s)ds

≤ −D3(y2 + z2 + w2)e−
1
η

R t
0 γ(s)ds

≤ −µ(y2 + z2 + w2),

where µ = D3e
− η1+η2

η . It can also be observed that the only solution of system
(1.2) for which ˙W(1.2)(t, x, y, z, w) = 0 is the solution x = y = z = w = 0. The
above discussion guarantees that the trivial solution of equation (1.1) is uniformly
asymptotically stable, and the same conclusion as in the proof of theorem can be
drawn for square integrability of solutions of equation (1.1).
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Example 3.4. We consider the fourth-order nonlinear differential equation with
delay

x(4) + (e−2t sin 3t+ 2)
((5x+ 2ex + 2e−x

ex + e−x
)
x′′
)′

+
( sin 2t+ 11t2 + 11

t2 + 1

)(
(
sinx+ 9ex + 9e−x

ex + e−x
)x′
)′

+
(
e−t sin t+ 3

)(x cosx+ x4 + 1
x4 + 1

)
x′

+
( sin2 t+ t2 + 1

5t2 + 5
)( x(t− 1

et+15 )

x2(t− 1
et+15 ) + 1

)
=

2 sin t
t2 + 1 + (xx′x′′)2 + (x′′′)2

(3.20)

by taking

g(x) =
5x+ 2ex + 2e−x

ex + e−x
, q(x) =

sinx+ 9ex + 9e−x

ex + e−x
, f(x) =

x cosx+ x4 + 1
x4 + 1

,

h(x) =
x

x2 + 1
, a(t) = e−2t sin 3t+ 2, b(t) =

sin 2t+ 11t2 + 11
t2 + 1

,

c(t) = e−t sin t+ 3, d(t) =
sin2 t+ t2 + 1

5t2 + 5
, r(t) =

1
et + 15

,

p(t, x, x′x′′, x′′′) =
2 sin t

t2 + 1 + (xx′x′′)2 + (x′′′)2
.

We obtain g0 = 0.33, g1 = 3.7, f0 = 0.5, f1 = 1.5, q0 = 8.5, q1 = 9.5, a0 = 1,
a1 = 3, b0 = 10, b1 = 12, c0 = 2, c1 = 4, d0 = 0.2, d1 = 0.3, m = 0.3, M = 3.8,
h0 = 2, α = 23

6 , β = 3
2 , δ0 = 17

8 and δ1 = 69.15. Also we have∫ ∞
−∞
|g′(x)|dx

= 5
∫ ∞
−∞

∣∣ 1
ex + e−x

+ x
e−x − ex

(ex + e−x)2

∣∣dx
≤ 5

∫ 0

−∞

∣∣ 1
ex + e−x

− x e−x − ex

(ex + e−x)2

∣∣dx+ 5
∫ ∞

0

∣∣ 1
ex + e−x

− x e−x − ex

(ex + e−x)2

∣∣dx
= 5π, ∫ ∞

−∞
|q′(x)|dx =

∫ ∞
−∞

∣∣ (ex + e−x) cosx− (ex − e−x) sinx
(ex + e−x)2

∣∣dx
≤
∫ ∞
−∞

∣∣ 1
ex + e−x

+ x
ex − e−x

(ex + e−x)2

∣∣dx = π,

∫ ∞
−∞
|f ′(x)|dx =

∫ ∞
−∞

∣∣ cosx
x4 + 1

− 4x4 cosx
(x4 + 1)2

+−x sinx
x4 + 1

∣∣dx
≤
∫ ∞
−∞

∣∣ 5
x4 + 1

+
x2

x4 + 1

∣∣dx = 6
√

2π,

∫ ∞
0

|p(t, x, x′, x′′, x′′′)|dt =
∫ ∞

0

∣∣ 2 sin t
t2 + 1 + (xx′x′′)2 + (x′′′)2

∣∣dt
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≤
∫ ∞

0

∣∣ 2 sin t
t2 + 1

∣∣dt
≤
∫ ∞

0

2
t2 + 1

dt = π,

∫ ∞
0

|a′(t)|dt =
∫ ∞

0

∣∣− 2e−2t sin 3t+ 3e−2t cos 3t
∣∣dt

≤
∫ ∞

0

5e−2tdt =
5
2
,

∫ ∞
0

|b′(t)|dt =
∫ ∞

0

∣∣2 cos 2t
t2 + 1

− 2t
sin 2t

(t2 + 1)2

∣∣dt
≤
∫ ∞

0

3
t2 + 1

dt =
3π
2
,

∫ ∞
0

|c′(t)|dt =
∫ ∞

0

| − e−t sin t+ e−t cos t|dt

≤
∫ ∞

0

2e−tdt = 2,

∫ ∞
0

|d′(t)|dt =
∫ ∞

0

∣∣2 sin t cos t
5t2 + 5

− 2t
sin2 t

(5t2 + 5)2

∣∣dt
≤ 11

25

∫ ∞
0

1
t2 + 1

dt =
11π
50

.

Consequently ∫ +∞

−∞
(|g′(s)|+ |q′(s)|+ |f ′(s)|)ds <∞,∫ ∞

0

(|a′(t)|+ |b′(t)|+ |c′(t)|+ |d′(t)|)dt <∞.

Thus all the assumptions of Theorem 3.2 hold, this shows that every solutions of
equation (3.20) are bounded and derivatives of solutions are square integrable.

Conclusion. A class of nonlinear retarded functional differential equations of fourth
order is considered. Sufficient conditions are established guaranteeing the uniformly
asymptotic stability of the solutions for p(t, x, x′, x′′, x′′′) ≡ 0 and also square inte-
grable and boundedness of solutions of equation (1.1) with delay. In the proofs of
the main results, we benefit from the Lyapunov functional approach. The results
obtained essentially improve, include and complement the results in the literature.
An example is furnished to illustrate the hypotheses by MATLAB-Simulink.
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The asymptotically stability of the null solution for the mentioned differential equation is

shown by the following graph.

Figure 1. Trajectory of x1(t) for Example.

The boundedness of all the solutions for the mentioned differential equation is shown by

the following graph. 

Figure 2. Trajectory of x(t) for Example.
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