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GROUND STATE SOLUTIONS FOR CHOQUARD TYPE
EQUATIONS WITH A SINGULAR POTENTIAL

TAO WANG

Communicated by Claudianor O. Alves

Abstract. This article concerns the Choquard type equation

−∆u+ V (x)u =
“Z

RN

|u(y)|p

|x− y|N−α
dy
”
|u|p−2u, x ∈ RN ,

where N ≥ 3, α ∈ ((N − 4)+, N), 2 ≤ p < (N + α)/(N − 2) and V (x) is a
possibly singular potential and may be unbounded below. Applying a variant

of the Lions’ concentration-compactness principle, we prove the existence of

ground state solution of the above equations.

1. Introduction

In this article, we study the Choquard type equation

−∆u+ V (x)u =
(∫

RN

|u(y)|p

|x− y|N−α
dy
)
|u|p−2u, x ∈ RN , (1.1)

where N ≥ 3, α ∈ ((N −4)+, N), p ∈ [2, N+α
N−2 ) and V is a given potential satisfying

the following assumptions
(A1) V : RN → R is a measurable function;
(A2) V∞ := lim|y|→∞ V (y) ≥ V (x), for almost every x ∈ RN , and the inequality

is strict in a non-zero measure domain;
(A3) there exists C̄ > 0 such that for any u ∈ H1(RN ),∫

RN
(|∇u|2 + V (x)|u|2)dx ≥ C̄

(∫
RN

(|∇u|2 + |u|2)dx
)
.

Clearly, (A3) implies V∞ > 0. When N = 3, α = 2, p = 2, (1.1) with V ≡ 1 just is
the classical stationary Choquard equation

−∆u+ u =
(∫

RN

|u(y)|2

|x− y|
dy
)
u in R3. (1.2)

This equation appeared at least as early as in 1954, in a work by Pekar describing
the quantum mechanics of a polaron at rest [29]. In 1976, Choquard used (1.2) to
describe an electron trapped in its own hole, in a certain approximation to Hartree-
Fock theory of one component plasma [17]. As is known to us, the existence and
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multiplicity of radial solutions to (1.2) has been studied in [15] and [18]. Further
more results for related problems can be founded in [3, 9, 11, 19, 20, 24, 28, 30, 32]
and references therein, where V may be not a positive constant.

In recent years, the existence and properties of solutions for the generalized
Choquard type equation (1.1) are widely considered. When the potential V is a
positive constant, Ma and Zhao [23] proved the positive solutions for the generalized
Choquard equation (1.1) must be radially symmetric and monotone decreasing
about some point under appropriate assumptions on p, α,N . They also showed the
positive solutions of (1.2) is uniquely determined, up to translations, see also [7].
Moroz and Van Schaftingen [25] obtained the existence, regularity, positivity and
radial symmetry of ground state solution of (1.1), and they also derived the sharp
decay asymptotic of the ground state solution. For more related problems, one can
see [13, 14, 21, 26]. When the potential V is continuous and bounded below in RN ,
Alves and Yang [4] studied the multiplicity and concentration behaviour of positive
solutions for quasilinear Choquard equation

− εp∆pu+ V (x)|u|p−2u = εµ−N
(∫

RN

Q(y)F (u(y))
|x− y|µ

dy
)
Q(x)f(u) in RN , (1.3)

where ∆p is the p-Laplacian operator, 1 < p < N , V and Q are two continuous real
functions on RN , F (s) is the primitive function of f(s) and ε is a positive parameter.
Furthermore results for related problems can be found in [5, 6, 10, 27, 34] and
references therein.

To the best of our knowledge, there are only a few results on the existence of
ground state solutions of (1.1) with singular potentials which may be unbounded
below. In this paper, we succeed in finding a ground state solution of (1.1) under
the assumptions (A1)–(A3). Here we remark the assumptions are introduced in
[1] to study the singular nonlinear Schrödinger-Maxwell equations. Our aim is to
extend the results in [1] to the case of Choquard type equations with some new
techniques. Recall that u ∈ H1(RN ) is said to be a ground state solution to (1.1),
if u solves (1.1) and minimizes the energy functional associated with (1.1) among
all possible nontrivial solutions.

Remark 1.1. According to [1, Remark 1.3], we can conclude that the potential V
can be satisfied by the following type of functions which are singular and unbounded
below. Let V (x) = γ(x)− λ|x|−σ. Here γ satisfies (A1) and (A2), and is bounded
below by a positive constant, σ ∈ (0, 2] and λ is a positive constant small enough.
Indeed, we only need to verify (A3). By Hardy’s inequality (see [12]), there exists
C > 0 such that ∫

RN

u2

|x|2
dx ≤ C

∫
RN
|∇u|2dx.

Throughout this article, we write C for different positive constants. If σ ∈ (0, 2),
using Hölder’s inequality, we have∫

RN

u2

|x|σ
dx ≤

(∫
RN
| u

σ

|x|σ
| 2σ dx

)σ/2(∫
RN
|u2−σ|

2
2−σ

) 2−σ
2

≤ C
(∫

RN
|∇u|2dx

)σ/2(∫
RN
|u|2dx

) 2−σ
2

≤ C
(∫

RN
(|∇u|2 + |u|2)dx

)
.

(1.4)
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By taking λ > 0 small enough, (A3) holds immediately. In particular, γ(x) ≡
positive constant.

Now we are ready to state our main results.

Theorem 1.2. Let N ≥ 3, α ∈ ((N−4)+, N), p ∈ [2, N+α
N−2 ) and suppose (A1)–(A3)

hold. Then (1.1) has a ground state solution in H1(RN ).

The remainder of this article is organized as follows. In Section 2, some prelim-
inary results are presented. In Section 3, we are devoted to the proof of our main
result.

2. Preliminary results

In this article, we use the following notation.
• Let N be positive integers and BR be an open ball of radius R centered at the
origin in RN .
• Let H1(RN ) be the usual Sobolev space with the standard norm

‖u‖H =
(∫

RN
(|∇u|2 + |u|2)dx

)1/2

.

We also use the notation

‖u‖ =
(∫

RN
(|∇u|2 + V (x)|u|2)dx

)1/2

,

which is a norm equivalent to ‖ · ‖H in H1(RN ) under (A1)–(A3) (we will prove the
equivalence in Lemma 2.4).
• Let Ω ⊂ RN be a domain. For 1 ≤ s < ∞, Ls(Ω) denotes the Lebesgue space
with the norm

|u|Ls(Ω) =
(∫

Ω

|u|sdx
)1/s

.

If Ω = RN , we write |u|Ls = |u|Ls(Ω). We can identify u ∈ Ls(Ω) with its extension
to RN obtained by setting u = 0 in RN\Ω, which ensures that we can use Hardy-
Littlewood-Sobolev inequality to deal with the nonlocal problem.
• The dual space of H1(RN ) is denoted by H−1(RN ). The norm on H−1(RN ) is
denoted by ‖ · ‖H−1 .

It is well known that the energy functional I : H1(RN ) → R associated with
(1.1) is defined by

I(u) =
1
2
‖u‖2 − 1

2p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−α
dx dy.

This is a well defined C2(H1(RN ),R) functional whose Gateaux derivative is given
by

I ′(u)v =
∫

RN
(∇u∇v + V (x)uv)dx−

∫
RN

∫
RN

|u(y)|p|u(x)|p−2u(x)v(x)
|x− y|N−α

dx dy

for all v ∈ H1(RN ). It is easy to see that all solutions of (1.1) correspond to critical
points of the energy functional I. For simplicity of notation, we write

D(u) =
∫

RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−α
dx dy.

To study the nonlocal problems related with (1.1), we need to recall the following
well-known Hardy-Littlewood-Sobolev inequality.
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Lemma 2.1 (see [16]). Let s, t > 1 and 0 < µ < N with µ
N + 1

s+ 1
t = 2, f ∈ Ls(RN )

and h ∈ Lt(RN ). There exists a sharp constant C(N,µ, s, t) independent of f, h,
such that ∫

RN

∫
RN

f(x)h(y)
|x− y|µ

dx dy ≤ C(N,µ, s, t)|f |Ls |h|Lt .

Remark 2.2. Suppose N+α
N ≤ p ≤ N+α

N−2 and u ∈ L
2Np
N+α (RN ). Then according to

Lemma 2.1, we have

D(u) ≤ C(N,α, s, t, )|up|Ls |up|Lt = C(N,α, s, t)|u|p
L

2Np
N+α
|u|p

L
2Np
N+α

<∞. (2.1)

where C only depends on N, s, t, α and 1
s + 1

t + N−α
N = 2.

Using [25, Theorem 1 and Proposition 5], we easily obtain the following lemma.

Lemma 2.3. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ). Then there exists a positive
ground state solution w ∈ H1(RN ) of (1.1) with V ≡ positive constant.

According to the assumptions (A1)–(A3), we have the following lemma whose
proof is standard.

Lemma 2.4. For any u ∈ H1(RN ), there exist two positive constants C1 and C2

such that
C1‖u‖H ≤ ‖u‖ ≤ C2‖u‖H . (2.2)

In this article, we define the Nehari manifold

N = {u ∈ H1(RN )\{0} : I ′(u)u = 0}.
Let

c := inf
u∈N

I(u).

It is easy to check that 0 /∈ ∂N and c > 0. Now we show some properties of the
Nehari manifold N .

Lemma 2.5. Suppose (A1)–(A3) hold. Then the following statements hold:
(i) For every u ∈ H1(RN )\{0}, there exists a unique tu ∈ (0,∞) such that tuu ∈ N

and tu =
(
‖u‖2
D(u)

) 1
2p−2

. Furthermore,

I(tuu) = sup
t>0

I(tu) = (
1
2
− 1

2p
)
( ‖u‖2

D
1
p (u)

) p
p−1

.

(ii) c = infu∈N I(u) = infu∈H1(RN )\{0} supt>0 I(tu).

Proof. Statement (i) follows by a direct calculation. Then by (i), we have I(tuu) =
supt>0 I(tu) ≥ infu∈N I(u). Hence infu∈H1(RN )\{0} supt>0 I(tu) ≥ infu∈N I(u). On
the other hand, for any u ∈ N ,

I(u) = sup
t>0

I(tu) ≥ inf
u∈H1(RN )\{0}

sup
t>0

I(tu).

This shows (ii) and completes the proof. �

Let λ > 0. We define

Iλ(u) =
1
2

∫
RN

(|∇u|2 + λu2)dx− 1
2p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−α
dx dy,

c(λ) = inf
u∈Nλ

Iλ(u), (2.3)



EJDE-2017/52 CHOQUARD TYPE EQUATIONS 5

where Nλ is the Nehari manifold of Iλ. Then we give some preliminary lemmas
which can be proved by using the similar arguments as in [2, Lemma 2.7] with some
necessary modifications.

Lemma 2.6. Let c(λ) be defined in (2.3). Then c(λ) is a continuous and strictly
increasing function in (0,∞).

Proof. Let λ, δ, λn > 0. We first show c(λ) is strictly increasing with respect to λ.
To be precise, if λ < δ, we have c(λ) < c(δ).

Indeed, according to Lemma 2.3, there exists u ∈ H1(RN ) such that u is a
positive critical point of Iδ and Iδ(u) = c(δ). On the other hand, by Lemma 2.5
(i), we can find a unique tu > 0 such that tuu ∈ Nλ. Then

c(δ) = Iδ(u) ≥ Iδ(tuu)

= Iλ(tuu) + (δ − λ)
∫

RN
|tuu|2dx

≥ c(λ) + (δ − λ)
∫

RN
|tuu|2dx.

(2.4)

So if λ < δ, it holds c(λ) < c(δ).
Now we prove c(λ) is continuous with respect to λ. To be precise, if λn → λ,

then c(λn)→ c(λ).
Let λn = λ+ hn, where hn → 0 as n→∞. It suffices to prove c(λ+ hn)→ c(λ)

as n→∞. We shall complete the proof by distinguishing two cases.
Case 1. We show that

c+ := lim
hn→0+

c(λ+ hn) = c(λ).

In fact, according to the monotonicity of c(λ), we have c+ ≥ c(λ) > 0. By way of
contradiction, suppose

c+ > c(λ). (2.5)
By Lemma 2.3, there exists a positive function u ∈ H1(RN ) such that I ′λ(u) = 0
and Iλ(u) = c(λ). In addition, for each n, there exists a unique θn > 0 such that
θnu ∈ Nλn due to Lemma 2.5 (i). Note that∫

RN
|∇u|2 + λ|u|2 = D(u)∫

RN
|∇u|2 + λn|u|2 = θ2p−2

n D(u).

Then a standard argument shows that (θn)n≥1 is uniformly bounded. In addition,
by Lemma 2.5 (i) and Sobolev embedding theorem, we have

c+ ≤ c(λ+ hn) ≤ Iλn(θnu)

= Iλ(θnu) +
1
2

(λn − λ)
∫

RN
|θnu|2

≤ Iλ(u) +
1
2

(λn − λ)
∫

RN
|θnu|2

= c(λ) +
1
2

(λn − λ)
∫

RN
|θnu|2

≤ c(λ) + Chn‖θnu‖2H .
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Letting n→∞, we conclude c+ ≤ c(λ), a contradiction to (2.5).
Case 2. We shall prove

c− := lim
hn→0−

c(λ+ hn) = c(λ).

Indeed, the monotonicity of c(λ) yields c− ≤ c(λ). By way of contradiction, we
suppose

c− < c(λ). (2.6)
By Lemma 2.3, for each n ≥ 1, there exists a positive function vn ∈ H1(RN ) such
that I ′λn(vn) = 0 and Iλn(vn) = c(λn). Since c(λ2 ) ≤ c(λn) = Iλn(vn) ≤ c(λ) for
n large enough, we can find C1, C2 > 0 such that C1 ≤ ‖vn‖H ≤ C2 uniformly in
H1(RN ). By Lemma 2.5 (i), for each n ≥ 1, there exists a unique θ(vn) > 0 such
that θ(vn)vn ∈ Nλ. Note that∫

RN
|∇vn|2 + λn|vn|2 = D(vn)∫

RN
|∇vn|2 + λ|vn|2 = θ2p−2(vn)D(vn).

Then a standard argument shows that (θ(vn))n≥1 is uniformly bounded. In addi-
tion, by Lemma 2.5 (i) and Sobolev embedding theorem, we have

c(λ) ≤ Iλ(θ(vn)vn)

= Iλn(θ(vn)vn) +
1
2

(λ− λn)
∫

RN
|θ(vn)vn|2

≤ Iλn(vn) +
1
2

(λ− λn)
∫

RN
|θ(vn)vn|2

= c(λn) +
1
2

(λ− λn)
∫

RN
|θ(vn)vn|2

≤ c(λn) + Chn‖θ(vn)vn‖2H .

Since limn→∞ c(λn) = c−, letting n → ∞, we conclude c(λ) ≤ c−, a contradiction
to (2.6). The proof is complete. �

Lemma 2.7. Let (A1)–(A3) hold. Then c < c(V∞). Moreover, there exists µ > 0
such that c < c(V∞ − µ) < c(V∞).

Proof. By Lemma 2.3, there exists a positive function u ∈ H1(RN ) such that
I ′V∞(u) = 0 and IV∞(u) = c(V∞). In addition, there exists a unique tu > 0 such
that tuu ∈ N . By (A2), we obtain

c(V∞) = IV∞(u) ≥ IV∞(tuu)

= I(tuu) +
∫

RN
(V∞ − V (x))|tuu|2dx

≥ c+
∫

RN
(V∞ − V (x))|tuu|2dx > c.

(2.7)

By Lemma 2.6, there exists µ > 0 such that

|c(V∞)− c(V∞ − µ)| < c(V∞)− c
2

,

which implies c(V∞ − µ) > c. In addition, we have c(V∞ − µ) < c(V∞). This
completes the proof. �
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3. Proof of Theorem 1.2

In this section, motivated by [1] and [8], we shall prove the existence of ground
state solution of (1.1) by using a variant of Lions’ concentration-compactness prin-
ciple.

Let (un)n≥1 ⊂ N be a minimizing sequence such that

lim
n→∞

I(un) = c. (3.1)

In what follows, we shall prove (un)n≥1 is a (PS)c sequence of I.

Definition 3.1. We say that (un)n≥1 ⊂ H1(RN ) is (PS)c sequence of I, if (un)n≥1

satisfies
I(un)→ c, I ′(un)→ 0, as n→∞. (3.2)

Lemma 3.2. If (un)n≥1 ⊂ N is a minimizing sequence such that (3.1) holds, then
(un)n≥1 is a (PS)c sequence of I.

Proof. The outline of the proof is as follows.
Step 1. We shall show G′(un) 6= 0 for any n ≥ 1. In fact, it is easy to check
(un)n≥1 is uniformly bounded in H1(RN ). Let G : H1(RN )→ R defined by

G(u) = ‖u‖2 − D(u).

By standard arguments, we deduce G is of class C2(H1(RN ),R) and its Gateaux
derivative is given by

G′(u)v = 2
∫

RN
(∇u∇v+V (x)uv) dx dy−2p

∫
RN

∫
RN

|u(y)|p|u(x)|p−2u(x)v(x)
|x− y|N−α

dx dy

for all u, v in H1(RN ). Since (un)n≥1 is uniformly bounded, by (2.1), we deduce
G′(un) is uniformly bounded in H−1(RN ). Note that for any u ∈ N ,

I(u) = (
1
2
− 1

2p
)‖u‖2 ≥ c.

Then, for all u ∈ N ,

G′(u)u = 2‖u‖2 − 2pD(u) = (2− 2p)‖u‖2 ≤ −4pc < 0.

Hence G′(un) 6= 0.
Step 2. We shall prove I ′(un) → 0 as n → ∞. Let Jλ(un) := ‖I ′(un) −
λG′(un)‖H−1 . By [33, Theorem 8.5], we assume

min
λ∈R

Jλ(un)→ 0, as n→∞.

Then up to a subsequence, we have

min
λ∈R

Jλ(un) <
1

2n
.

On the other hand, for each n, we can find λn ∈ R such that

|Jλn(un)−min
λ∈R

Jλ(un)| < 1
2n

.

Therefore,

Jλn(un) = ‖I ′(un)− λnG′(un)‖H−1 → 0, as n→∞. (3.3)

Note that

|I ′(un)un − λnG′(un)un| ≤ ‖I ′(un)− λnG′(un)‖H−1‖un‖. (3.4)
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Since I ′(un)un = 0 and G′(un)un 6= 0, we conclude from (3.3) that λn → 0 as
n→∞. Note that G′(un) 6= 0 by Step 1. Then we have

‖I ′(un)‖H−1 ≤ ‖I ′(un)− λnG′(un)‖H−1 + ‖λnG′(un)‖H−1 → 0

as n→∞. This completes the proof. �

Next we need some compactness on the minimizing sequence (un)n≥1 defined in
(3.1) in order to prove our existence results. Define the functional J : H1(RN )→ R
by

J(u) = (
1
2
− 1

2p
)
∫

RN
|∇u|2 + V (x)|u|2.

It is easy to check that for any u ∈ N , we have I(u) = J(u). Using a variant of
Lion’s concentration-compactness principle presented in [8, Lemma 6.1] (see also
[22, Proposition 3.1]), we have the following lemma. Throughout this section, O(µ)
denotes a constant depending on µ such that |O(µ)

µ | ≤ C.

Lemma 3.3. For any ε > 0, there exists R̄ = R̄(ε) > 0 such that for any n ≥ R̄,∫
|x|>R̄

(|∇un|2 + |un|2) < ε.

Proof. By way of contradiction, we suppose that there exist ε0 > 0 and a subse-
quence (uk)k≥1 such that for any k ≥ 1,∫

|x|>k
(|∇uk|2 + |uk|2) ≥ ε0. (3.5)

Let

ρk(Ω) =
∫

Ω

(|∇uk|2 + |uk|2).

Fix l > 1 and define

Ar := {x ∈ RN |r ≤ |x| ≤ r + l}, for any r > 0.

We shall finish the proof by distinguishing four steps.
Step 1. We shall show that for any µ,R > 0, there exists r = r(µ,R) > R such
that ρk(Ar) < µ for infinitely many k.

We argue by contradiction. Suppose there exist µ0 > 0 and R̃ ∈ N such that, for
any m ≥ R̃, there exists a strictly increasing sequence {p(m)}m≥R̃ ⊂ (0,∞) such
that

ρk(Am) ≥ µ0, for any k ≥ p(m).
By applying this fact, we have

‖uk‖2H ≥ ρk(Bm\BR̃) ≥
(m− R̃

l

)
µ0, for any m ≥ R̃, k ≥ p(m).

Take m > R̃+ l
µ0

supn≥1 ‖un‖2H . Then

‖up(m)‖2H > sup
n≥1
‖un‖2H ≥ ‖up(m)‖2H ,

which is a contradiction.
Step 2. We shall show there exists µ0 ∈ (0, 1) such that for any µ ∈ (0, µ0), we
have the following results:
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(i) It holds

c < c(V∞ − µ) < c(V∞). (3.6)

(ii) There exists Rµ > 0 such that for almost every |x| > Rµ,

V (x) ≥ V∞ − µ > 0. (3.7)

(iii) There exists r > Rµ such that, going if necessary to a subsequence,

ρk(Ar) < µ, for all k ≥ 1. (3.8)

(iv) It holds ∫
Ar

|∇uk|2 + V (x)|uk|2 = O(µ), for all k ≥ 1, (3.9)∫
Ar

∫
RN

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy = O(µ), for all k ≥ 1. (3.10)

Indeed, (i) follows from Lemma 2.7. By (V 2), we can find Rµ > 0 such that for
almost every |x| > Rµ, (3.7) holds. Consider µ and Rµ satisfying (3.6) and (3.7).
Then by Step 1, we can take r > Rµ such that, going if necessary to a subsequence,
(3.8) is valid. According to (A2), (3.7)and (3.8), we can easily obtain (3.9). Since
µ ∈ (0, 1), combining (2.1), we have (3.10).

Step 3. We shall first give some estimates. Let η ∈ C∞(RN ) such that η = 1 in
Br and η = 0 in Bcr+l, 0 ≤ η ≤ 1 and |∇η| ≤ 2, where r is defined in Step 2 (iii).
Define vk = ηuk and wk = (1− η)uk.

It follows from (3.7) and (3.9) that∫
Ar

|∇vk|2 + V (x)|vk|2 = O(µ),∫
Ar

|∇wk|2 + V (x)|wk|2 = O(µ).
(3.11)

This, combined with (3.9), implies that∫
RN
|∇uk|2 + V (x)|uk|2

=
∫
Ar

|∇uk|2 + V (x)|uk|2 +
∫
Br

|∇vk|2 + V (x)|vk|2 +
∫
Bcr+l

|∇wk|2 + V (x)|wk|2

=
∫

RN
|∇vk|2 + V (x)|vk|2 +

∫
RN
|∇wk|2 + V (x)|wk|2 +

∫
Ar

|∇uk|2 + V (x)|uk|2

−
∫
Ar

|∇vk|2 + V (x)|vk|2 −
∫
Ar

|∇wk|2 + V (x)|wk|2

=
∫

RN
|∇vk|2 + V (x)|vk|2 +

∫
RN
|∇wk|2 + V (x)|wk|2 +O(µ).

(3.12)
According to Step 1 above, we can take l > 0 appropriately large such that∫

Br

∫
Bcr+l

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy = O(µ).
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Then we conclude from (3.9), (3.10) and (3.11) that∫
RN

∫
RN

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy

=
∫
Br

∫
Br

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy + 2

∫
Br

∫
Bcr+l

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy

+
∫
Br

∫
Ar

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy +

∫
Bcr+l

∫
Bcr+l

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy

+
∫
Bcr+l

∫
Ar

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy +

∫
Ar

∫
RN

|uk(x)|p|uk(y)|p

|x− y|N−α
dx dy

=
∫

RN

∫
RN

|vk(x)|p|vk(y)|p

|x− y|N−α
dx dy +

∫
RN

∫
RN

|wk(x)|p|wk(y)|p

|x− y|N−α
dx dy +O(µ).

(3.13)
Next, observe that for k ≥ 1 large enough, there exists ε′ > 0 such that∫

RN
|∇wk|2 + V (x)|wk|2 ≥ ε′. (3.14)

Indeed, we can conclude from (3.5) and (3.7) that for k > r + l, it holds that∫
RN
|∇wk|2 + V (x)|wk|2

≥
∫
Bcr+l

|∇wk|2 + (V∞ − µ)|wk|2

=
∫
|x|>k

|∇wk|2 + (V∞ − µ)|wk|2 +
∫
Bk\Br+l

|∇wk|2 + (V∞ − µ)|wk|2

≥
∫
|x|>k

|∇uk|2 + (V∞ − µ)|uk|2

≥ min{1, V∞ − µ}ε0.

Hence (3.14) holds.
Therefore, by (3.12) and (3.14), the following equality and inequality hold.

J(uk) = J(vk) + J(wk) +O(µ), (3.15)

J(uk) ≥ J(wk) +O(µ), (3.16)

J(uk)− Cε′ ≥ J(vk) +O(µ). (3.17)

Step 4. Recall G(u) defined in Lemma 3.2. By (3.12) and (3.13), we deduce

0 = G(uk) = G(vk) +G(wk) +O(µ). (3.18)

We shall complete the proof by distinguishing three cases.
Case 1. Up to a subsequence, G(vk) ≤ 0. By Lemma 2.5 (i), for any k ≥ 1, there
exists a unique tk > 0 such that tkvk ∈ N . Then∫

RN
|∇vk|2 + V (x)|vk|2 = t2p−2

k D(vk). (3.19)

Note that ∫
RN
|∇vk|2 + V (x)|vk|2 ≤ D(vk).
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This, combined with (3.19), implies that tk ≤ 1 uniformly. By (3.17), we obtain

c ≤ I(tkvk) = J(tkvk) ≤ J(vk)

≤ J(uk)− Cε′ +O(µ) = c− Cε′ +O(µ) + ok(1).
(3.20)

Here and in the following part, we point out ok(1)→ 0 as k →∞. By letting µ→ 0
and k →∞, (3.20) yields a contradiction.

Case 2. Up to a subsequence, G(wk) ≤ 0. For any k ≥ 1, there exists sk > 0
such that skwk ∈ N . Arguing as in Case 1, we have sk ≤ 1 uniformly. Define
w̄k = skwk. Then there exists θk > 0 such that θkw̄k ∈ NV∞−µ. By (3.7), we have∫

RN
|∇w̄k|2 + (V∞ − µ)|w̄k|2 ≤

∫
RN
|∇w̄k|2 + V (x)|w̄k|2 = D(w̄k),

which implies that θk ≤ 1 uniformly. Hence, by (3.16), we deduce

c(V∞ − µ) ≤ IV∞−µ(θkw̄k)

≤ (
1
2
− 1

2p
)
∫

RN
|∇w̄k|2 + (V∞ − µ)|w̄k|2

≤ (
1
2
− 1

2p
)
∫

RN
|∇w̄k|2 + V (x)|w̄k|2

≤ J(wk)

≤ J(uk) +O(µ)

= c+ ok(1) +O(µ).

(3.21)

Letting µ→ 0 and k →∞, we obtain a contradiction with (3.6).

Case 3. Up to a subsequence, G(vk) > 0 and G(wk) > 0. According to (3.18), we
have

G(wk) = O(µ) > 0, G(vk) = O(µ) > 0.

For any k ≥ 1, there exists sk > 0 such that skwk ∈ N and then G(skwk) = 0. So
that ∫

RN
|∇wk|2 + V (x)|wk|2 = s2p−2

k D(wk),∫
RN
|∇wk|2 + V (x)|wk|2 − D(wk) = O(µ) > 0,

which implies sk ≥ 1 uniformly. Since (wk)k≥1 is bounded, by (3.14), we have

s2p−2
k =

∫
RN |∇wk|

2 + V (x)|wk|2

D(wk)
≤ C

ε′ −O(µ)
.

Hence (sk)k≥1 is uniformly bounded when µ is small enough.
Now we need to distinguish two cases.
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Case 3-(i). Up to a subsequence, if limk→∞ sk = 1, for k large enough, 1 ≤ sk ≤
1 +O(µ). Using similar arguments as in Case 2, we have

c(V∞ − µ) ≤ IV∞−µ(θkw̄k)

≤ (
1
2
− 1

2p
)
∫

RN
|∇w̄k|2 + (V∞ − µ)|w̄k|2

≤ (
1
2
− 1

2p
)
∫

RN
|∇w̄k|2 + V (x)|w̄k|2

≤ (1 +O(µ))2J(wk)

≤ (1 +O(µ))2(J(uk) +O(µ))

= (1 +O(µ))2(c+ ok(1) +O(µ)).

(3.22)

Letting µ→ 0 and k →∞, we obtain a contradiction with (3.6).

Case 3-(ii). Up to a subsequence, if limk→∞ sk = s0 > 1, for k large enough,
sk > 1. On the other hand, we have

O(µ) = G(wk) =
∫

RN
|∇wk|2 + V (x)|wk|2 − D(wk)

= (1− s
1

2p−2
k )

∫
RN
|∇wk|2 + V (x)|wk|2.

Hence ∫
RN
|∇wk|2 + V (x)|wk|2 = O(µ),

which contradicts (3.14). The proof is complete. �

Proof of Theorem 1.2. Since (un)n≥1 is uniformly bounded, going if necessary to a
subsequence, there exists u0 ∈ H1(RN ) such that un ⇀ u0 in H1(RN ) and un → u0

a.e. in RN . By Lemma 3.2, we have I ′(un) → 0 as n → ∞, and then I ′(u0) = 0
because of [31, Lemma 2.6].

Now we show u0 6= 0. According to Lemma 3.3, for any ε > 0, there exists r > 0
such that, up to a subsequence,

‖un‖H1(Bcr) < ε, for any n ≥ 1.

Let s ∈ [2, 2N
N−2 ). For n ≥ 1 large enough, we have

|un − u0|Ls(RN ) = |un − u0|Ls(Br) + |un − u0|Ls(Bcr)

≤ ε+ C0(‖un‖H1(Bcr) + ‖u0‖H1(Bcr))

≤ (1 + 2C0)ε.

Then we deduce un → u0 in Ls(RN ) for any s ∈ [2, 2N
N−2 ). This, combined with

Brézis-Lieb Lemma (see [33, Theorem 1.32]), implies

|un|p → |u0|p, in L
2N
N+α (RN ).
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Hence using (2.1), we obtain

|D(un)− D(u0)|

≤
∫

RN

∫
RN

∣∣|un(x)|p − |u0(x)|p
∣∣|un(y)|p

|x− y|N−α
dx dy

+
∫

RN

∫
RN

∣∣|un(y)|p − |u0(y)|p
∣∣|u0(x)|p

|x− y|N−α
dx dy.

≤ C
∣∣|un|p − |u0|p

∣∣
L

2N
N+α
|un|p

L
2Np
N+α

+ C
∣∣|un|p − |u0|p

∣∣
L

2N
N+α
|u0|p

L
2Np
N+α

→ 0.

(3.23)

Note that I ′(un)un = 0 and I ′(u0)u0 = 0. Then

I(un) = (
1
2
− 1

2p
)D(un),

I(u0) = (
1
2
− 1

2p
)D(u0).

Since I(un) → c as n → ∞, we conclude from (3.23) that I(un) → I(u0) = c.
Therefore, u0 is a ground state solution of (1.1). This completes the proof. �

Acknowledgments. Research was supported partially by the National Natural
Science Foundation of China (Grant No. 11571371)

References

[1] Azzollini, A.; Pomponio, A.; Ground state solutions to the nonlinear Schrodinger-Maxwell
equations. J. Math. Anal. Appl., 345 (2007), 90-108.

[2] Azzollini, A.; Pomponio, A.; On a zero mass nonlinear Schrödinger equation. Adv. Nonlinear

Stud., 7 (2007), 599-627.
[3] Ackermann, N.; On a periodic Schrödinger equation with nonlocal superlinear part. Math.

Z., 248 (2004), 423-443.

[4] Alves, C. O.; Yang, M.; Existence of semiclassical ground state solutions for a generalized
Choquard equation. J. Differential Equations 257 (2014), 4133-4164.

[5] Alves, C. O.; Yang, M.; Multiplicity and concentration of solutions for a quasilinear Choquard

equation. J. Math. Phys., 55 (2014), 061502.
[6] Alves, C. O.; Figueiredo, G. M.; Yang, M.; Multiple semiclassical solutions for a nonlinear

Choquard equation with magnetic field. Asymptot. Anal., 96 (2016), 135-159.

[7] Cingolani, S.; Clapp, M.; Secchi, S.; Multiple solutions to a magnetic nonlinear Choquard
equation. Z. angew. Math. Phys., 63 (2012), 233-248.

[8] Cingolani, S.; Lazzo, M.; Multiple positive solutions to nonlinear Schrodinger equations with
competing potential functions. J. Differential Equations, 160 (2000), 118-138.

[9] Clapp, M.; Salazar, D.; Positive and sign changing solutions to a nonlinear Choquard equa-

tion. J. Math. Anal. Appl., 407 (2013), 1-15.
[10] Cingolani, S.; Secchi, S.; Squassina, M.; Semi-classical limit for Schrödinger equations with

magnetic field and Hartree-type nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A, 140

(2010), 973-1009.
[11] Choquard, P.; Stubbe, J.; Vuffracy, M.; Stationary solutions of the Schrödinger-Newton

model-An ODE approach. Differential Interal. Equations, 27 (2008), 665-679.

[12] Evans, L. C.; Partial differential equations. Second. Vol. 19, Graduate Studies in Mathemat-
ics. American Mathematical Society, Providence, RI, 2010.

[13] Ghimenti, M.; Van Schaftingen, J.; Nodal solutions for the Choquard equation. J. Funct.

Anal., 271 (2016), 107-135.
[14] Lei, Y. T.; On the regularity of positive solutions of a class of Choquard type equations. Math.

Z., 273 (2013), 883-905.
[15] Lieb, E. H.; Existence and uniquenness of the minimizing solution of Choquard nonlinear

equation. Stud. Appl. Math., 57 (1977), 93-105.



14 T. WANG EJDE-2017/52

[16] Lieb, E. H.; Loss, M.; Analysis, 2nd ed. Vol. 14, Graduate Studies in Mathematics. American

Mathematical Society, USA, 2001.

[17] Lieb, E. H.; Simon, B.; The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys.,
53 (1977), 185-194.

[18] Lions, P. L.; The Choquard equation and related questions. Nonlinear Anal., 4 (1980), 1063-

1073.
[19] Lions, P. L.; The concentration-compactness principle in the calculus of variations. The

locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-282.
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