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EXISTENCE OF SOLUTIONS FOR INFINITE SYSTEMS OF
DIFFERENTIAL EQUATIONS IN SPACES OF TEMPERED

SEQUENCES
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Communicated by Vicentiu Radulescu

Abstract. The aim of this article is to study the existence of solutions for

infinite systems of differential equations. We look for solutions in Banach
tempered sequence spaces, using techniques associated with measures of non-

compactness, and results from differential equations in abstract Banach spaces.

1. Introduction

The theory of differential equations in Banach spaces is nowadays almost a closed
branch of mathematical analysis. Roughly speaking, after the publication of [3, 10,
11, 13, 15, 16, 19, 22] there have not appeared books or article presenting essential
progress in the theory in question.

One of the most important reason of such a situation is the generality of problems
raised in that theory. From this point of view we may consider the mentioned
theory as closed or almost closed. Nevertheless, if we consider a particular case of
differential equations in Banach spaces created by infinite systems of differential
equations, the situation seems to be very far to be closed or even to be satisfactory
developed. Up to now there appeared only a few papers devoted to the study of
the theory of infinite systems of differential equations. The current state of that
theory is presented in the recent monograph [8] (cf. also [4, 5]).

On the other hand infinite systems of differential equations find numerous ap-
plications in describing of several real world problems which can be encountered in
the theory of neural nets, the theory of branching processes, the theory of dissoci-
ation of polymers and a lot of others (see for example [9, 10, 14, 18, 25]). It is also
worthwhile mentioning that infinite systems of differential equations are applied to
solve some problems investigated in mechanics [20, 21, 26]. Moreover, when we
consider some problems of partial differential equations, we can use the process of
semidiscretization to transform those problems into infinite systems of differential
equations (cf. [10, 23, 24]).
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To establish some preliminary facts let us consider the infinite system of ordinary
differential equations which can be written in the general form

x′n = fn(t, x1, x2, . . . ) (1.1)

for t ∈ I = [0, T ] and for n = 1, 2, . . . .
The Cauchy problem for system (1.1) can be formulated as the initial value

conditions
xn(0) = xno , for n = 1, 2, . . . . (1.2)

Let us pay attention to be fact that any solution of (1.1)-(1.2) has the form of a
function sequence

x(t) = (xn(t)) = (x1(t), x2(t), . . . ) (1.3)
where t runs over an interval [0, T ] (or [0, T1] ⊂ [0, T ]). To avoid unnecessary
ambiguities we will denote the interval of the definition of solution (1.3) of (1.1)-
(1.2) by I i.e., I = [0, T ]. Thus, for each fixed t ∈ I the sequence (xn(t)) presents
certain sequence of real numbers. Therefore, we consider the solvability of problem
(1.1)-(1.2) in some sequence space c0, c, lp, l∞ (cf. [8, 10]). Details concerning the
mentioned sequence spaces will be given later on.

Now we show that even in rather simple situations the mentioned classical se-
quence spaces are not sufficient for the location of our investigations.

Example 1.1. To show the influence of the choice of initial values in a sequence
space in which are located solutions of a considered initial value problem for an
infinite system of differential equations, let us consider the linear diagonal infinite
system of differential equations

x′n = xn (1.4)

with the initial conditions

xn(0) = n, for n = 1, 2, . . . . (1.5)

We consider problem (1.4)–(1.5) on an interval I = [0, T ].
It is easily seen that the solution of (1.4)-(1.5) has the form

x(t) = (xn(t)) = (net) = (et, 2et, 3et, . . . ).

This means that x(t) /∈ l∞ for each t ∈ I. Thus the sequence space l∞ is not
suitable to consider solvability of problem (1.4)–(1.5) in this space. Obviously,
such a situation appears quite naturally since the initial point (xon) = (n) is not a
member of l∞.

Example 1.2. Let us consider the infinite system of differential equations

x′n = n

√
|xn|√
|xn|+ 1

(1.6)

for n = 1, 2, . . . , together with initial conditions

xn(0) = 0, for n = 1, 2, . . . . (1.7)

Let us fix arbitrarily a natural number n. Then, we can easy calculate that the
solution of problem (1.6)–(1.7) has the form

xn(t) =
n2t2

2 + nt+ 2
√

1 + nt
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for t ∈ I. Hence, we obtain the estimate

xn(t) ≥ n2t2

2 + nt+ 2
√

1 + 2nt+ n2t2

=
n2t2

2 + nt+ 2(1 + nt)
≥ n2t2

4 + 4nt
=

1
4

(
nt− 1 +

1
nt+ 1

) (1.8)

for n = 1, 2, . . . and for t ∈ I.

Further, let us represent the solution of (1.6)–(1.7) in the form x(t) = (xn(t)) =
(x1(t), x2(t), . . . ). Then, from estimate (1.8) we infer that x(t) /∈ l∞ for any t > 0.
On the other hand let us notice that the right-hand sides of equations (1.6) are not
bounded. Indeed, we have

n
√
x√

x+ 1
→ n, as x→∞.

The above given examples suggest that we have to enlarge the spaces under
considerations to ensure that solutions of infinite systems of differential equations
starting from a point in such a space remain in the space in question when t runs
over some interval I. It seems that a natural way to realize the enlargement is to
consider the so - called tempered sequence spaces. Those spaces can be obtained
from classical sequence spaces with help of a tempering sequence. For example, if
we take the classical space l∞ and the tempering sequence βn = 1

n (n = 1, 2, . . . )
then the new sequence space lβ∞ with β = (βn) = ( 1

n ) is understood as the space of
all sequences (xn) such that the sequence (βnxn) = ( 1

nxn) is bounded. The details
concerning tempered sequence spaces will be described later on.

It is worthwhile noticing that such an approach enables us to study an essentially
larger class of infinite systems of differential equations in comparison with the
classical setting.

In this article we discuss some classes of infinite systems of differential equations
having solutions in the above mentioned tempered sequence spaces. The results of
the paper generalize several ones obtained up to now in classical sequence spaces
(see [4, 5, 8, 10, 11, 17]).

2. Auxiliary facts concerning the theory of measures of
noncompactness

This section is devoted to recall a few facts concerning the theory of measures of
noncompactness, which will be needed in our further considerations. Those facts
come mainly from monograph [3] (cf. also [1, 2]). To set the stage for our study we
establish first the notation used in this article.

By the symbol R we will denote the set of real numbers, and by N the set of
natural numbers (positive integers). We write R+ to denote the interval [0,∞).
Further, assume that E is a Banach space with the norm ‖ · ‖ and the zero element
θ. Denote by B(x, r) the closed ball in E centered at x and with radius r. We write
Br to denote the ball B(θ, r). If X is a subset of E then by X̄, ConvX we will
denote the closure and convex closure of X, respectively. Moreover, the symbols
X + Y , λX, (λ ∈ R) stand for standard algebraic operations on sets X and Y .

We denote by ME the family of all nonempty and bounded subset of the space
E, and by NE its subfamily consisting of all relatively compact sets.
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In what follows we will accept the following axiomatic definition of the concept
of a measure of noncompactness [3].

Definition 2.1. A function µ : ME → R+ is called a measure of noncompactness
if the following conditions are satisfied:

(i) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ;
(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y );
(iii) µ(X̄) = µ(X);
(iv) µ(ConvX) = µ(X);
(v) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];
(vi) if (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n =

1, 2, . . . and limn→∞ µ(Xn) = 0 then the set X∞ = ∩∞n=1Xn is nonempty.

The family kerµ from axiom (i) is said to be the kernel of the measure µ.
Further, let us observe that from axiom (vi) it follows that µ(X∞) ≤ µ(Xn) for

n = 1, 2, . . . . This yields that µ(X∞) = 0. Hence we conclude that the intersection
set X∞ belongs to the kernel kerµ. This simple fact plays a very essential role in
applications.

In the sequel we will also consider measures of noncompactness having some
additional properties. Thus, a measure µ is referred to as sublinear if it satisfies
the following two conditions:

(vii) µ(λX) = |λ|µ(X), λ ∈ R;
(viii) µ(X + Y ) ≤ µ(X) + µ(Y ).

We say that a measure of noncompactness has maximum property if
(ix) µ(X ∪ Y ) = max{µ(X), µ(Y )}.

The measure µ is said to be full if
(x) kerµ = NE .

Finally, the measure of noncompactness µ is called regular if it is sublinear, full
and has maximum property.

The most convenient and simultaneously important regular measure of noncom-
pactness is the so - called Hausdorff measure χ defined in the following way

χ(X) = inf{ε > 0 : X has a finite ε-net in E}.
It can be shown that this measure has also some other interesting and useful prop-
erties (cf. [1, 2, 3, 6]).

The usefulness of the Hausdorff measure χ leads to the question if each regular
measure of noncompactness µ is equivalent to the Hausdorff measure χ. It was
shown in [7] that, in general, the answer is negative. Nevertheless, we have the
following theorem [3] which shows that each regular measure of noncompactness is
one - sided comparable with the Hausdorff measure.

Theorem 2.2. If µ is a regular measure then

µ(X) ≤ µ(B1)χ(X)

for any set X ∈ME.

In practice we use those measures of noncompactness which can be expressed
with help of a convenient formula associated with the structure of a considered
Banach space. It turns out that we know only a few Banach spaces in which the
Hausdorff measure of noncompactness can be expressed (or, at least, estimated)
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in such a way [3]. By these regards we mostly apply measures of noncompactness
being not regular but which are connected with sufficient conditions for relative
compactness in Banach spaces under considerations [3, 8].

3. Measures of noncompactness in classical sequence spaces

Now we work in the sequence spaces c0, c, lp and l∞ being the classical sequence
spaces. We recall briefly the definition of these spaces.

By the space c0 we mean the set of all real (or complex) sequences x = (xn)
converging to zero and normed by the classical supremum (or maximum) norm:

‖x‖c0 = ‖(xn)‖c0 = sup{|xn| : n = 1, 2, . . . } = max{|xn| : n = 1, 2, . . . }.

Obviously c0 with this norm creates the Banach space.
Next, denote by c the space of all sequences x = (xn) converging to a (finite)

limit, with the norm

‖x‖c = ‖(xn)‖c = sup{|xn| : n = 1, 2, . . . }.

The space c with the norm ‖ · ‖c is a Banach space and c0 is a closed subspace of c.
If we fix a number p, p ≥ 1, then by lp we denote the space consisting of all

sequences x = (xn) such that
∑∞
n=1 |xn|p <∞ . If we normed it by

‖x‖lp = ‖(xn)‖lp =
( ∞∑
n=1

|xn|p
)1/p

it becomes a Banach space.
Finally, by the symbol l∞ we denote the space of all bounded sequences x = (xn)

with the supremum norm

‖x‖l∞ = ‖(xn)‖l∞ = sup{|xn| : n = 1, 2, . . . }.

Now, we present the known facts concerning the measures of noncompactness in
the above mentioned sequence spaces [3, 8]. In the case of sequence spaces c0, c
and lp the situation concerning measures of noncompactness seems to be thoroughly
recognized. Indeed, in the spaces c0 and lp we know formulas expressing the most
convenient measure of noncompactness i.e., the Hausdorff measure χ (cf. Section
2). To present the mentioned formulas let us consider first the space c0 and let us
take an arbitrary nonempty and bounded subset of c0 i.e., take a set X ∈ Mc0 .
Then we have [3]

χ(X) = lim
n→∞

{
sup

(xn)∈X

{
sup{|xi| : i ≥ n}

}}
.

Next, if we fix arbitrarily a number p, p ≥ 1, then for X ∈Mlp we have [3, 8]

χ(X) = lim
n→∞

{
sup

{( ∞∑
k=n

|xn|p
)1/p

: x = (xi) ∈ X
}}

.

In the case of the sequence space c the situation is a bit more complicated.
Namely, we do not know a formula for the Hausdorff measure χ in c but we know
only a good estimate χ. Indeed, for X ∈Mc let us define the quantity µ(X) by the
formula

µ(X) = lim
n→∞

{
sup

(xk)∈X

{
sup{|xi − lim

k→∞
xk| : i ≥ n}

}}
. (3.1)
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Then we have the estimate
1
2
µ(X) ≤ χ(X) ≤ µ(X) (3.2)

and this estimate is sharp [3].
It can be shown that measure (3.1) is regular. Nevertheless, let us pay attention

to the fact that the measure µ has only theoretical meaning since the use of formula
(3.1) requires to know limits of sequences belonging to a set X. Therefore, to obtain
a more convenient formula we can use the classical Cauchy condition associated with
the limit of a sequence, since such an approach does not require the use of the limit
of a sequence. Thus, for X ∈Mc we define the quantity

µc(X) = lim
k→∞

{
sup

(xi)∈X

{
sup{|xn − xm| : n,m ≥ k}

}}
. (3.3)

It is worthwhile mentioning that in a few papers and monographs (see [3, 5, 8],
for example) we can encounter results asserting that the measure µc defined by
formula (3.3) is regular and equivalent to the Hausdorff measure χ in the space c.
On the other hand there are no proof of that fact. Therefore, to bridge this gap we
provide below the complete proof of the following theorem.

Theorem 3.1. The quantity µc defined by formula (3.3) is a regular measure of
noncompactness in the space c. Moreover, the following inequalities are satisfied

χ(X) ≤ µc(X) ≤ 2χ(X) (3.4)

for X ∈Mc

Proof. At the beginning let us observe that keeping in mind formula (3.3) it is not
hard to show the quantity µc satisfies axioms (ii)–(v) and (vii)–(ix) of the definition
of a regular measure of noncompactness (cf. Section 2 and Definition 2.1).

Next, fix arbitrarily a set X ∈Mc and choose a sequence x = (xi) ∈ X. Take a
fixed natural number k. Then, for arbitrary n,m ≥ k we have

|xn − xm| ≤ |xn − lim
i→∞

xi|+ |xm − lim
i→∞

xi|.

Hence we derive the estimate

µc(X) ≤ 2µ(X), (3.5)

where µ is the measure of noncompactness defined by (3.1). Linking (3.2) and (3.5)
we obtain

µc(X) ≤ 4χ(X) (3.6)

for X ∈Mc.
Now, let us denote r = µc(X). Fix ε > 0 and find a natural number k0 such

that
|xn − xm| ≤ r + ε (3.7)

for each x = (xi) ∈ X and n,m ≥ k0. Consider the set Xko = {(x1, x2, . . . , xk0) :
x = (x1, x2, . . . , xk0 , xk0+1, . . . ) ∈ X}. Obviously Xk0 is a bounded subset of the
Euclidean space Rk0 . Thus there exists a finite ε-net of the set Xk0 formed by some
k0 - tuples ỹ1, ỹ2, . . . , ỹm, where ỹp = (yp1 , y

p
2 , . . . , y

p
k0

) for p = 1, 2, . . . ,m.
Next, we consider the sequence yp (p = 1, 2, . . . ,m) defined as

yp = (yp1 , y
p
2 , . . . , y

p
k0
, ypk0 , y

p
k0
, . . . ).
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We show that the set {y1, y2, . . . , ym} forms the r+2ε-net of the set X in the space
c. To this end take an arbitrary sequence x = (xi) ∈ X. Then, we can find a
k0-tuple ỹp = (yp1 , y

p
2 , . . . , y

p
k0

) (1 ≤ p ≤ m) such that

|xi − ypi | ≤ ε (3.8)

for i = 1, 2, . . . , k0. Further, for i ≥ k0, we obtain

|xi − ypi | ≤ |xi − xk0 |+ |xk0 − y
p
i | = |xi − xk0 |+ |xk0 − y

p
k0
|.

Hence, from (3.7) and (3.8) we obtain

|xi − ypi | ≤ r + ε+ ε = r + 2ε. (3.9)

Linking (3.8) and (3.9) we conclude that the set {y1, y2, . . . , ym} forms an r+2ε-net
of the set X in the space c. Moreover, in view of the arbitrariness of ε this yields

χ(X) ≤ r,

which leads to the inequality
χ(X) ≤ µc(X). (3.10)

Combining estimates (3.6) and (3.10) we derive the following inequalities

χ(X) ≤ µc(X) ≤ 4χ(X), (3.11)

which are satisfied for X ∈Mc.
Now, let us observe that from inequalities (3.11) we obtain that the quantity µc

satisfies axioms (i) and (vi) of Definition 2.1. Thus, µc is a sublinear measure of
noncompactness with maximum property in the space c. Applying (3.11) again we
deduce that µc is a regular measure equivalent to the Hausdorff measure χ.

In what follows let us observe that the estimate on the right hand side of (3.11)
i.e., estimate (3.6) can be improved. Indeed, since µc is a regular measure of
noncompactness then, in view of Theorem 2.2 we have

µc(X) ≤ µc(B1)χ(X) (3.12)

for an arbitrary set X ∈Mc (the symbol B1 stands for the unit ball in c). On the
other hand it is easy to calculate that µc(B1) = 2. Thus, from (3.12) we obtain

µc(X) ≤ 2χ(X). (3.13)

Finally, combining estimates (3.10) and (3.13) we obtain desired estimate (3.4).
The proof is complete. �

In the sequel we shall deal with measures of noncompactness in the space l∞.
Firstly, let us notice that in this space we do not know a formula which expresses the
Hausdorff measure of noncompactness χ. Even more, we do not know formulas for
regular measures in l∞ [1, 3, 8]. Thus, in this case we can only obtain formulas for
measures of noncompactness defined in an axiomatic way (cf. Definition 2.1). It is
worthwhile mentioning that there are known and used some convenient formulas for
measures of noncompactness in the space l∞ [3, 8]. Unfortunately, in the literature
there are no proofs of the correctness of those formulas. More precisely, there are
no proofs of the fact that the formulas in question are measures on noncompactness
in l∞. Below we are going to fill this gap.
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To present the above mentioned formulas let us fix a set X ∈ Ml∞ . Next, we
define the following three quantities:

µ∞1 (X) = lim
n→∞

{
sup

(xi)∈X

{
sup{|xi| : i ≥ n}

}}
, (3.14)

µ∞2 (X) = lim
k→∞

{
sup

(xi)∈X

{
sup{|xn − xm| : n,m ≥ k}

}}
, (3.15)

µ∞3 (X) = lim sup
n→∞

diamXn, (3.16)

where Xn = {xn : x = (xi) ∈ X} and diamXn = sup
{
|xn − yn| : x = (xi), y =

(yi) ∈ X
}

. Observe that the formula expressing the quantity µ∞1 coincides with
the formula for the Hausdorff measure of noncompactness in the space c0. On the
other hand, formula (3.15) for the quantity µ∞2 coincides with formula (3.3) for the
measure of noncompactness µc in the sequence space c.

Theorem 3.2. The quantities µ∞i (i = 1, 2, 3) are sublinear measures of noncom-
pactness in the space l∞. In addition, the measures µ∞1 and µ∞2 have maximum
property. Moreover, for an arbitrary set X ∈Ml∞ the following inequalities hold

χ(X) ≤ µ∞2 (X), (3.17)

χ(X) ≤ µ∞3 (X), (3.18)

µ∞2 (X) ≤ 2µ∞1 (X), (3.19)

µ∞3 (X) ≤ 2µ∞1 (X). (3.20)

Proof. The proof of (3.17) can be conducted in the same way as the proof of (3.10).
Indeed, it follows easily from the fact that c is a subspace of the space l∞.

To prove (3.18) let us fix X ∈Ml∞ and put r = µ∞3 (X). Next, take an arbitrary
number ε > 0. Then, in view of definition (3.16) we can find a natural number n0

such that diamXn ≤ r + ε for n ≥ n0. Hence we infer that for arbitrary elements
x = (xi), y = (yi) of the set X we have

|xn − yn| ≤ r + ε (3.21)

for n ≥ n0. Further, we consider the set X̄n0 = {(x1, x2, . . . , xn0) : (xi) ∈ X}.
This set is a relatively compact subset of the Euclidean space Rn0 . Thus, there
exists a finite ε-net of the set X̄n0 composed by n0 - tuples ỹ1 = (y1

1 , y
1
2 , . . . , y

1
n0

),
ỹ2 = (y2

1 , y
2
2 , . . . , y

2
n0

), ỹm = (ym1 , y
m
2 , . . . , y

m
n0

). Next, fix an arbitrary element
y = (yi) = (y1, y2, . . . , yn0 , yn0+1, . . . ) of the set X and consider the finite subset
Y = {y1, y2, . . . , ym} of the space l∞ such that

yi = (yi1, y
i
2, . . . , y

i
n0
, yn0+1, yn0+2, . . . )

for i = 1, 2, . . . ,m. We show that Y forms a finite r + ε-net of the set X. To
this end take an arbitrary element x = (xi) ∈ X and consider the n0-tuple x̃ =
(x1, x2, . . . , xn0). Then we can find a n0-tuple ỹk ∈ X̄n0 , ỹk = (yk1 , y

k
2 , . . . , y

k
n0

) such
that

|xi − yki | ≤ ε (3.22)
for i = 1, 2, . . . , n0.

Now, we take the element yk = (yk1 , y
k
2 , . . . , y

k
n0
, yn0+1, yn0+2, . . . ) ∈ Y . Then, in

view of (3.21) and (3.22), we have

|xn − yn| ≤ r + ε
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for n = 1, 2, . . . . This means that ‖x − yk‖l∞ ≤ r + ε. Thus the set Y forms a
finite r + ε-net of the set X. Hence we conclude that χ(X) ≤ r + ε. In view of
the arbitrariness of ε this implies inequality (3.18). Further, let us observe that
estimates (3.19) and (3.20) are a simple consequence of the triangle inequality for
absolute value.

Next, from (3.17) and (3.19) (or from (3.18) and (3.20)) we obtain the following
estimate

1
2
χ(X) ≤ µ∞1 (X). (3.23)

Finally, taking into account inequalities (3.17), (3.18) and (3.23) we conclude
that the quantities µ∞i (i = 1, 2, 3) satisfy axioms (i) and (vi) of Definition 2.1.
The fact that there are satisfied other conditions (ii)–(v) and (vii), (viii) for all
quantities µ∞i (i = 1, 2, 3) and condition (ix) for µ∞1 and µ∞2 is easy to prove. This
completes the proof. �

4. Measures of noncompactness in spaces of tempered sequences

As we saw in introduction, classical sequence spaces are not always suitable to
consider initial value problems for infinite systems of differential equations. There-
fore, in order to consider those initial value problems we are frequently forced to
treat the problems in question in enlarged sequence spaces. Such sequence spaces
can be obtained if we consider the so - called tempered sequence spaces.

To define the mentioned spaces let us fix a real sequence β = (βn) such that βn
is positive for n = 1, 2, . . . and the sequence (βn) is nonincreasing. Such a sequence
β will be called the tempering sequence. Next, consider the set X consisting of all
real (or complex) sequences x = (xn) such that βnxn → 0 as n → ∞. It is easily
seen that X forms a linear space over the field of real (or complex) numbers. We
will denote this space by the symbol cβ0 .

It is easy to check that cβ0 is a Banach space under the norm

‖x‖cβ0 = ‖(xn)‖cβ0 = sup{βn|xn| : n = 1, 2, . . . } = max{βn|xn| : n = 1, 2, . . . }.

In a similar way we may consider the space cβ consisting of real (complex)
sequences (xn) such that the sequence (βnxn) converges to a finite limit. Obviously
cβ forms a linear space and it becomes a Banach space if we normed it by the
supremum norm

‖x‖cβ = ‖(xn)‖cβ = sup{βn|xn| : n = 1, 2, . . . }.

In the same way we can consider the tempered sequence space lβ∞ of all sequences
(xn) (real or complex) such that the sequence (βnxn) is bounded. The space lβ∞ is
a Banach space under the norm

‖x‖lβ∞ = ‖(xn)‖lβ∞ = sup{βn|xn| : n = 1, 2, . . . }.

Let us pay attention to the fact that taking βn = 1 for n = 1, 2, . . . we obtain
spaces cβ0 = c0, cβ = c and lβ∞ = l∞. Similarly, if the sequence (βn) is bounded
from below by a positive constant m i.e., if βn ≥ m > 0 for n = 1, 2, . . . , then the
norms in the tempered sequence spaces cβ0 , cβ and lβ∞ are equivalent to the classical
supremum norm in each of the spaces c0, c and l∞. Thus, to obtain an essential
enlargement of the spaces c0, c and l∞ we should to assume that the tempering
sequence (βn) converges to zero. In what follows we will impose such a requirement.
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The most important fact for our further purposes is the assertion saying that
the pairs of the spaces (c0, c

β
0 ), (c, cβ) and (l∞, lβ∞) are isometric. Indeed, consider

for example the spaces l∞ and lβ∞. Next, take the mapping J : lβ∞ → l∞ defined in
the following way

J(x) = J((xn)) = (βnxn).

Then, for arbitrarily fixed x, y ∈ lβ∞ we have

‖J(x)− J(y)‖l∞ = ‖J((xn))− J((yn))‖l∞
= ‖(βnxn)− (βnyn)‖l∞
= sup{|βnxn − βnyn| : n = 1, 2, . . . }
= sup{βn|xn − yn| : n = 1, 2, . . . } = ‖x− y‖lβ∞ .

This shows that the mapping J is an isometry between the spaces lβ∞ and l∞.
Obviously, the same mapping establishes the isometry between the spaces cβ and
c and the spaces cβ0 and c0, respectively.

The above assertions enable us to define measures of noncompactness in the
tempered sequence spaces cβ0 , c

β and lβ∞. In fact, the Hausdorff measure of non-
compactness χ(X) for X ∈Mcβ0

can be expressed in the following way (cf. Section
3):

χ(X) = lim
n→∞

{
sup

(xi)∈X

{
sup

{
βi|xi| : i ≥ n

}}}
. (4.1)

Similarly, the analogue of the measure of noncompactness µc defined by formula
(3.3) has the form

µcβ (X) = lim
k→∞

{
sup

(xi)∈X

{
sup{|βnxn − βmxm| : n,m ≥ k}

}}
, (4.2)

where X ∈Mcβ .
Obviously, in view of the fact that the spaces c and cβ are isometric (by the

above mentioned isometry J), on the basis of Theorem 3.1 we have the estimates

χ(X) ≤ µcβ (X) ≤ 2χ(X)

for each X ∈ Mcβ , where χ denotes the Hausdorff measure of noncompactness in
the space cβ .

Now, let us take into account the tempered sequence space lβ∞. Then, keeping in
mind formulas (3.14) - (3.16) expressing measures of noncompactness in the space
l∞, we obtain the following formulas for the counterparts of those measures in the
space lβ∞:

µβ1 (X) = lim
n→∞

{
sup

(xi)∈X

{
sup

{
βi|xi| : i ≥ n

}}}
, (4.3)

µβ2 (X) = lim
k→∞

{
sup

(xi)∈X

{
sup{|βnxn − βmxm| : n,m ≥ k}

}}
, (4.4)

µβ3 (X) = lim sup
n→∞

diamXβ
n , (4.5)

where X ∈Mlβ∞
. Moreover, Xβ

n in (4.5) is understood in the following way

Xβ
n = {xnβn : (xi) ∈ X}.

Apart from this diamXβ
n = sup

{
βn|xn − yn| : (xi), (yi) ∈ X

}
.
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Further, taking into account Theorem 3.2 we deduce the inequalities

χ(X) ≤ µβ2 (X), (4.6)

χ(X) ≤ µβ3 (X), (4.7)

µβ2 (X) ≤ 2µβ1 (X), (4.8)

µβ3 (X) ≤ 2µβ1 (X), (4.9)

where X ∈Mlβ∞
and the symbol χ denotes the Hausdorff measure of noncompact-

ness in the space lβ∞.
In view of inequalities (4.6)–(4.9) it is easily seen that the kernel kerµβ1 consists

of all sets X belonging to the family Mlβ∞
such that the sequences (βnxn) tend to

zero at infinity uniformly with respect to the set X i.e., for any ε > 0 there exists
a natural number n0 such that βn|xn| ≤ ε for all (xi) ∈ X and for n ≥ n0.

Similarly, the kernel kerµβ2 consists of all sets X ∈Mlβ∞
such that the sequences

(βnxn) tend to finite limits uniformly on the set X. In other words, the sequences
(βnxn) satisfy Cauchy condition uniformly with respect to X.

Finally, the kernel kerµβ3 consists of all sets X belonging to the family Mlβ∞
such that the thickness of the bundle formed by sequences (βnxn), where (xi) ∈ X,
tends to zero at infinity.

Let us also observe that the measures of noncompactness µβ1 , µβ2 , µβ3 are not
regular in the space lβ∞.

5. Results from differential equations in Banach spaces

This section has an auxiliary character and contains a few results from the theory
of ordinary differential equations in Banach spaces (cf. [5, 8, 10]). To present those
results let us assume that E is a Banach space with a norm ‖ · ‖. Let x0 be a fixed
element of E i.e., x0 ∈ E and let B(x0, r) denotes a ball in E. We will consider the
differential equation

x′ = f(t, x) (5.1)

with the initial condition

x(0) = x0. (5.2)

Here, we assume that f = f(t, x) is a given function such that f : [0, T ]×B(x0, r)→
E. We will write I = [0, T ]. Throughout this section we will assume that µ is a
measure of noncompactness in the space E.

Further, by the symbol Eµ we will denote the so - called kernel set of the measure
of noncompactness µ [8] which is defined in the following way

Eµ = {x ∈ E : {x} ∈ ker µ}.

It can be shown that Eµ is a closed, convex subset of the space E. Moreover, if µ
is a sublinear measure then Eµ is a linear closed subspace of E. It is worthwhile
mentioning that the concept of the kernel set plays an important role in the theory
of differential equations in Banach spaces.

Now, we recall a result concerning initial value problem (5.1)–(5.2) which is not
very general but is useful for our purposes (cf. [3]).
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Theorem 5.1. Suppose the function f is uniformly continuous on I × B(x0, r)
and ‖f(t, x)‖ ≤ A, where AT ≤ r. Further, let µ be a sublinear measure of non-
compactness in E such that {x0} ∈ kerµ. We assume that for any nonempty set
X ⊂ B(x0, r) and for almost all t ∈ I the following inequality holds

µ(f(t,X)) ≤ p(t)µ(X), (5.3)

where p(t) is an integrable function on the interval I. Then (5.1)–(5.2) has at least
one solution x = x(t) on the interval I such that x(t) ∈ Eµ for t ∈ I.

The below given theorem is a slightly modified version of the result contained
in Theorem 5.1, which will be more convenient in our further considerations (cf.
[5, 8]).

Theorem 5.2. Assume that f is a function defined on [0, T ]×E with values in E
such that

‖f(t, x)‖ ≤ P +Q‖x‖ (5.4)
for each t ∈ [0, T ] and x ∈ E, where P and Q are nonnegative constants. Further,
assume that f is uniformly continuous on the set [0, T1]×B(x0, r), where QT1 < 1
and r = (P+Q)T1‖x0‖

1−QT1
. Moreover, we assume that f satisfies condition (5.3) with

a sublinear measure of noncompactness µ such that x0 ∈ Eµ. Then, initial value
problem (5.1)–(5.2) has a solution x = x(t) on the interval [0, T1] such that x(t) ∈
Eµ for t ∈ [0, T1].

Remark 5.3. Observe that in the case when µ = χ (the Hausdorff measure of
noncompactness), the assumption on the uniform continuity of the function f can
be replaced by the weaker one requiring only the continuity [16]. The same assertion
is also true if µ is a regular measure of noncompactness equivalent to the Hausdorff
measure [12, 16].

6. Infinite systems of differential equations in the tempered
sequence space cβo

The considerations of this section will be located in the Banach tempered se-
quence space cβo described in Section 4. Thus, we will assume that β = (βn) is a
sequence with positive terms which is nonincreasing. The space cβo consists of all
sequences (xn) such that the sequence (βnxn) converges to zero. We will consider
here only real sequences (xn). The norm in the space cβo is defined by the formula

‖x‖cβ0 = ‖(xn)‖cβ0 = sup{βn|xn| : n = 1, 2, . . . }.

To simplify the notation we will use the symbol ‖ · ‖ instead of ‖ · ‖cβ0 .
The object of our study in this section will be first semilinear lower diagonal

infinite systems of differential equations having the form

x′n =
kn∑
i=1

anni(t)xni + fn(t, x1, x2, . . . ) (6.1)

with the initial value conditions

xn(0) = xn0 , for x = 1, 2, . . . . (6.2)

We assume that for any fixed n ∈ N the sequence (n1, n2, . . . , nkn) is such that
1 ≤ n1 < n2 < · · · < nkn ≤ n. Moreover, the sequence (n1) tends to infinity when
n → ∞. Apart from that we assume that there exists a natural number K such
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that kn ≤ K for all n = 1, 2, . . . . In other words, this means that any “linear
part” of system (6.1) contains only finite number of nonzero terms and the number
of those terms does not exceed K. In what follows infinite systems (6.1) satisfying
the above requirement will be called infinite systems of differential equations with
linear parts of constant width.

Apart of the requirement concerning the constant width of linear parts we will
impose the following assumptions in our study of initial value problem (6.1)–(6.2):

(i) The function anni = anni(t) is continuous on a fixed interval I = [0, T ] for
n = 1, 2, . . . and for i = 1, 2, . . . , kn;

(ii) the functions anni(t) are uniformly bounded on the interval I by a positive
constant A i.e., |anni(t)| ≤ A for t ∈ I and for n = 1, 2 . . . and for i =
1, 2, . . . , kn;

(iii) the sequence (xn0 ) belongs to the space cβ0 ;
(iv) for each fixed n the function fn(t, x1, x2, . . . ) = fn(t, x) acts from the set

I × R∞ into R. Moreover, the function fn : I × cβ0 → R is continuous on
I × cβ0 ;

(v) there exists a sequence (pn) of nonnegative terms with the property that
βnpn → 0 as n→∞ and such that |fn(t, x)| ≤ pn for t ∈ I, x ∈ cβ0 and for
n = 1, 2 . . . .

Now, we can formulate our existence result.

Theorem 6.1. Assume that the functions involved in system (6.1) having linear
parts of constant width K, satisfy conditions (i)–(v). Then initial value problem
(6.1)–(6.2) has at least one solution x(t) = (xn(t)) = ((x1(t), x2(t), . . . ) in the
sequence space cβ0 on the interval I.

Proof. For arbitrarily fixed n ∈ N let us denote

gn(t, x) = gn(t, x1, x2, . . . ) =
kn∑
i=1

anni(t)xni + fn(t, x1, x2, . . . ),

where t ∈ I and x = (xn) ∈ cβ0 . Then, keeping in mind our assumptions, we obtain

βn|gn(t, x1, x2, . . . )| ≤ βn
kn∑
i=1

|anni(t)||xni |+ βn|fn(t, x1, x2, . . . )|

≤ βnA
kn∑
i=1

|xni |+ βnpn = A

kn∑
i=1

βn|xni |+ βnpn

≤ A
kn∑
i=1

βni |xni |+ βnpn

≤ AK max{βni |xni | : i = 1, 2, . . . , kn}+ βnpn

≤ AK sup{βj |xj | : j ≥ n1}+ βnpn.

Hence, replacing n by j and j by i, we can write the above inequality in the form

βj |gj(t, x1, x2, . . . )| ≤ AK sup{βi|xi| : i ≥ j1}+ βjpj . (6.3)
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Next, let us notice that from estimate (6.3) it follows that the following inequality
holds

‖g(t, x)‖ = sup{βj |gj(t, x1, x2, . . . )| : j = 1, 2, . . . }
≤ AK sup

j∈N

{
sup{βi|xi| : i ≥ j1}

}
+ sup{βjpj : j = 1, 2, . . . }

= AK‖x‖+ P,

(6.4)

where the operator g = g(t, x) is defined on the set I × cβ0 in the following way

g(t, x) = (g1(t, x), g2(t, x), . . . ).

In view of estimate (6.4) we see that g transforms the set I × cβ0 into the space cβ0 .
Now, we show that the operator g is continuous on the set I × cβ0 . To this end

we split the operator g into two terms

g(t, x) = (Lx)(t) + f(t, x),

where the operators L and f are defined as follows:

(Lx)(t) = ((L1x)(t), (L2x)(t), . . . )

where

(Lnx)(t) =
kn∑
i=1

anni(t)xni

(n = 1, 2, . . . ), and
f(t, x) = (f(t1, x), f(t2, x), . . . ).

First we show that the operator f is continuous on the set I × cβ0 . To do this fix
arbitrarily a number ε > 0 and a point x ∈ cβ0 . According to assumption (v) we
can choose a natural number n0 such that

βnpn ≤
ε

2
(6.5)

for n ≥ n0. Next, in view of assumption (iv) we can find a number δi (i =
1, 2, . . . , n0) such that for any y ∈ cβ0 such that ‖x − y‖ ≤ δi and for arbitrary
t ∈ I we have

|fi(t, x)− fi(t, y)| ≤ ε

β1
.

Let us take δ = min{δ1, δ2, . . . , δn0}. Then, for arbitrary y ∈ cβ0 such that ‖x−y‖ ≤
δ and for t ∈ I we have

|fi(t, x)− fi(t, y)| ≤ ε

β1
(6.6)

Combining (6.5) and (6.6), for y ∈ cβ0 with ‖x− y‖ ≤ δ and for t ∈ I, we obtain

‖f(t, x)− f(t, y)‖ = sup{βn|fn(t, x)− fn(t, y)| : n = 1, 2, . . . }

= max
{

max
{
βn|fn(t, x)− fn(t, y)| : n = 1, 2, . . . , n0

}
,

sup
{
βn|fn(t, x)− fn(t, y)| : n > n0

}}
≤ max

{
max

{
β1|fn(t, x)− fn(t, y)| : n = 1, 2, . . . , n0

}
,

sup{βn
[
|fn(t, x)|+ |fn(t, y)|

]
: n > n0}

}
≤ max

{
β1

( ε
β1

)
, sup

{
2βnpn : n > n0

}}
= ε.
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This shows that the operator f is continuous at an arbitrary point (t, x) ∈ I × cβ0 .
Next, we show that the operator L is continuous on the set I × cβ0 . Similarly

as before, fix arbitrarily x ∈ cβ0 , t ∈ I and a number ε > 0. Then, for y ∈ cβ0
with ‖x− y‖ ≤ ε and for an arbitrary fixed natural number n, in view of imposed
assumptions we obtain

βn|(Lnx)(t)− (Lny)(t))|

= βn

∣∣∣ kn∑
i=1

anni(t)xni −
kn∑
i=1

anni(t)yni
∣∣∣

≤ βn
kn∑
i=1

|anni(t)||xni − yni |

≤ A
kn∑
i=1

βn|xni − yni | ≤ A
kn∑
i=1

βi|xni − yni |

≤ AK max{βi|xni − yni | : i = 1, 2, . . . , kn}
≤ AK sup{βj |xj − yj | : j ≥ n1}
≤ AK sup{βj |xj − yj | : j = 1, 2, . . . } = AK‖x− y‖ ≤ AKε.

Hence we deduce that the operator L is continuous on the set I×cβ0 . Consequently,
as we announced before, we conclude that the operator g is continuous on the set
I × cβ0 .

In what follows let us take a number T1 such that T1 < T and AKT1 < 1.
According to assumptions of our theorem take the number r = (P+AK)T1‖x0‖

1−AKT1
and

consider the ball B(x0, r). Next, choose an arbitrary subset X of the ball B(x0, r).
Then, for x ∈ X and t ∈ [0, T1], in view of estimate (6.3), for an arbitrary fixed
natural number n, we obtain:

sup{βj |gj(t, x1, x2, . . . )| : j ≥ n}
≤ sup

{
AK sup{βi|xi| : i ≥ j1} : j ≥ n

}
+ sup

{
βjpj : j ≥ n

}
≤ AK sup

{
sup{βi|xi| : i ≥ n1}, sup{βi|xi| : i ≥ (n+ 1)1},

sup{βi|xi| : i ≥ (n+ 2)1}, . . .
}

+ sup
{
βjpj : j ≥ n

}
.

This yields the estimate

sup
x∈X

{
sup{βj |gj(t, x1, x2, . . . )| : j ≥ n}

}
≤ AK sup

x∈X

{
sup{sup{βi|xi| : i ≥ ji} : j ≥ n}+ sup{βjpj : j ≥ n}

}
.

Passing with n → ∞ in the above estimate and taking into account that j1 → ∞
as j →∞, we obtain

χ(g(t,X)) ≤ AKχ(X),

where χ denotes the Hausdorff measure of noncompactness in the space cβ0 expressed
with help of formula (4.1). Finally, in view of the above established facts and
Theorem 5.2, we complete the proof. �

The following example illustrates the result in Theorem 6.1.
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Example 6.2. Consider the infinite system of differential equations

x′1 = x1 +

√
|x1|√
|x1|+ 1

,

x′2 = x1 + x2 + 2

√
|x2|√
|x2|+ 1

,

x′3 = x2 + x3 + 3

√
|x3|√
|x3|+ 1

,

. . .

x′n = xn−1 + xn + n

√
|xn|√
|xn|+ 1

,

. . . .

(6.7)

with initial conditions
xn(0) = n for n = 1, 2, . . . . (6.8)

Observe that (6.7) is a semilinear lower diagonal infinite system of differential
equations with linear parts of constant width K = 2. Moreover, it is easily seen
that system (6.7) is a particular case of system (6.2) if we take anni(t) = 1 for
t ∈ I, where we put I = [0, T1], where T1 > 0 is a number chosen according to
assumptions of Theorem 5.2. Additionally, n = 1, 2 . . . and i = 1, 2 for n ≥ 2.
Hence we see that there is satisfied assumption (i) of Theorem 6.1.

Further, we have that |anni(t)| ≤ 1 for t ∈ I and n = 1, 2, . . . , i = 1, 2. This
means that functions anni(t) satisfy assumption (ii).

In what follows let us take the sequence βn = 1
n2 for n = 1, 2 . . . . Obviously we

have that x0 = (xn0 ) = (n) ∈ cβ0 , where β = (βn) = ( 1
n2 ). Thus there is satisfied

assumption (iii). From the form of system (6.7) we see that we can take

fn(t, x1, x2, . . . ) = n

√
|xn|√
|xn|+ 1

for n = 1, 2 . . . . Obviously, the function fn = fn(t, x) is continuous on the set
I × cβ0 . Moreover, we have

|fn(t, x1, x2, . . . )| ≤ n, for n = 1, 2 . . . .

Thus we conclude that the functions fn satisfy assumptions (iv) and (v) with pn = n
for n = 1, 2 . . . .

Finally, on the basis of Theorem 6.1 we deduce that there exists at least one
solution x(t) = (xn(t)) of initial value problem (6.7)–(6.8) defined on some interval
I = [0, T1] such that for each t ∈ I the sequence (xn(t)) belongs to the space cβ0
with β = ( 1

n2 ). This means that xn(t) = o(n2) as n→∞, for any fixed t ∈ [0, T1].
In the sequel we will also consider the semilinear lower diagonal infinite system

of differential equations of the form (6.1) i.e.,

x′n =
kn∑
i=1

anni(t)xni + fn(t, x1, x2, . . . ) (6.9)

with initial value conditions

xn(0) = x0
n, for n = 1, 2, . . . . (6.10)
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Now, we dispense with the assumption requiring that system (6.9) has linear
parts of constant width. We replace this assumption, as well as assumption (ii), by
the following hypotheses:

(ii’) The sequence (n1) tends to ∞ as n→∞;
(ii”) the sequence

(∑kn
i=1 |anni(t)|

)
is uniformly bounded on the interval I =

[0, T1] i.e., there exists a constant A > 0 such that

kn∑
i=1

|anni(t)| ≤ A

for each t ∈ I and for n = 1, 2, . . . .
Then we have the following result.

Theorem 6.3. Assume that (i), (ii’), (ii”), (iii)–(v) of Theorem 6.1 are satisfied.
Then initial value problem (6.9)–(6.10) has at least one solution x(t) = (xn(t)) in
the sequence space cβ0 defined on the interval I = [0, T1], where T1 is a number
chosen according to Theorem 5.2.

Proof. Similarly, as in the proof of Theorem 6.1, for a fixed n ∈ N let us denote

gn(t, x) =
kn∑
i=1

anni(t)xni + fn(t, x),

(Lnx)(t) =
kn∑
i=1

anni(t)xni ,

where t ∈ I and x = (xn) = (x1, x2, . . . ) ∈ cβ0 . Next, let us put

g(t, x) = (g1(t, x), g2(t, x), . . . ),

(Lx)(t) = ((L1x)(t), (L2x)(t), . . . ),

f(t, x) = (f1(t, x), f2(t, x), . . . ).

Now, in view of our assumptions, we obtain:

βn|gn(t, x1, x2, . . . )| ≤ βn
kn∑
i=1

|anni(t)||xni |+ βn|fn(t, x1, x2, . . . )|

≤
kn∑
i=1

|anni(t)|βni |xni |+ βnpn

≤
kn∑
i=1

|anni |max
{
βni |xni | : i = 1, 2, . . . , kn

}
+ βnpn

≤ A sup{βj |xj | : j ≥ n1}+ βnpn.

(6.11)

Further, from the above estimate we obtain

‖g(t, x)‖ = sup{βn|gn(t, x1, x2, . . . )|} ≤ A‖x‖+ P, (6.12)

where P = sup{βnpn : n = 1, 2, . . . }. Obviously P <∞ since βnpn → 0 as n→∞.
Next, in virtue of estimate (6.12) we have that the operator g transforms the set
I × cβ0 into cβ0 .
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In what follows observe that because of a suitable part of the proof of Theorem
6.1, we conclude that f is continuous on the set I×cβ0 . Thus, to show the continuity
of the operator g on the set I × cβ0 it is sufficient to show that the operator L is
continuous on this set. To this end fix arbitrarily x ∈ cβ0 , t ∈ I and a number ε > 0.
Then, for y ∈ cβ0 with ‖x− y‖ ≤ ε and for a fixed n ∈ N, we obtain:

βn|(Lnx)(t)− (Lny)(t)| = βn|
kn∑
i=1

anni(t)xni −
kn∑
i=1

anni(t)yni |

≤ βn
kn∑
i=1

|anni(t)||xni − yni | ≤
kn∑
i=1

|anni(t)|βni |xni − yni |

≤
kn∑
i=1

|anni(t)| sup{βni |xni − yni | : i = 1, 2, . . . , kn}

≤ A sup{βj |xj − yj | : j = 1, 2, . . . } = A‖x− y‖ ≤ Aε.

Hence we obtain that ‖(Lx)(t)− (Ly)(t)‖ ≤ Aε which means that the operator L is
continuous on the set I×cβ0 . Consequently we obtain the continuity of the operator
g on I × cβ0 .

Now, let us choose a number T1, T1 < T such that AT1 < 1. Next, take the
number r = (P + A)T1‖xo‖/(1 − AT1) and assume that X is a nonempty subset
of the ball B(x0, r). Then, arguing similarly as in the proof of Theorem 6.1 and
utilizing estimate (6.11) we obtain

χ(g(t,X)) ≤ Aχ(X),

where χ is the Hausdorff measure of noncompactness in the space cβ0 described by
formula (4.1). Hence, applying Theorem 5.2 we complete the proof. �

Next we provide an example showing the applicability of Theorem 6.3.

Example 6.4. We consider the lower diagonal infinite system of differential equa-
tions. To expose this system in a transparent way we will assume that n is an
even natural number, say n = 2k. Then, we can present the announced system as
follows:

x′1 = x1 +
x1

1 + x2
1

,

x′2 = x1 + tx2 + 2
x1 + x2

1 + x2
1 + x2

2

,

x′3 =
t2

2!
x3 + 3

x2 + x3

1 + x2
2 + x2

3

,

x′4 =
t2

2!
x3 +

t3

3!
x4 + 4

x3 + x4

1 + x2
3 + x2

4

,

. . . (6.13)

x′n−1(= x′2k−1) =
tk

k!
xk+1 + · · ·+ t2k−2

(2k − 2)!
x2k−1 + (2k − 1)

x2k−2 + x2k−1

1 + x2
2k−2 + x2

2k−1

,

x′n(= x′2k) =
tk

k!
xk+1 + · · ·+ t2k−2

(2k − 2)!
x2k−1 +

t2k−1

(2k − 1)!
x2k + 2k

x2k−1 + x2k

1 + x2
2k−1 + x2

2k

,
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. . . .

We also assume that the following initial conditions are satisfied

xn(0) = n2 (6.14)

for n = 1, 2, . . . .
Let us observe that initial value problem (6.13)–(6.14) is a particular case of prob-

lem (6.9)–(6.10). To justify this assertion we show that the components involved
in (6.13)–(6.14) satisfy assumptions of Theorem 6.3. First of all let us observe that
functions anni(t) appearing in infinite system (6.13) have the form

anni(t) =
tni−1

(ni − 1)!

for ni = n
2 + 1, n2 + 2, . . . , n (if n is even) or ni = [n2 ] + 2, [n2 ] + 3, . . . , n (if n is odd).

Obviously the functions anni(t) are continuous on each interval of the form [0, T ].
Thus, there is satisfied assumption (i).

Since n1 = n
2 + 1 for n even or n1 = [n2 ] + 2 for n odd, we see that assumption

(ii’) is satisfied. To check assumption (ii”) observe that we have
kn∑
i=1

|anni(t)| =
n∑
i=1

|anni(t)| ≤ 1 + t+
t2

2!
+ · · ·+ tn

n!
≤ et

for t ∈ [0, T ]. Hence we have that assumption (ii”) is satisfied with A = eT .
Further, take the tempering sequence of the form β = (βn) = ( 1

n3 ). Then the
sequence (xn0 ) = (n2) is a member of the tempered sequence space cβ0 , so assumption
(iii) is satisfied. Similarly, it is not hard to verify that the functions fn, where

fn(t, x) = fn(t, x1, x2, . . . ) = n
xn−1 + xn

1 + x2
n−1 + x2

n

(n = 2, 3 . . . ) are continuous on the set I×cβ0 . Moreover, for each fixed n we obtain

|fn(t, x)| ≤ n |xn−1|+ |xn|
1 + x2

n−1 + x2
n

≤ n.

Thus, we can put pn = n in assumption (v). Obviously we have that βnpn = 1
n2 → 0

as n→∞. Thus assumption (v) is satisfied.
Hence, in view of Theorem 6.3, initial value problem (6.13)–(6.14) has at least

one solution x(t) = (xn(t)) belonging to the sequence space cβ0 and defined for
t ∈ I = [0, T1], where T1 satisfies the inequality T1A = T1e

T1 < 1. We can calculate
that T1 ≤ 0.568 . . . .

Remark 6.5. Observe that in Example 6.4 instead of β = (βn) = (1/n3) we can
take the tempering sequence of the form βn = 1/n2+δ, where δ is an arbitrary
positive number. Similarly, in Example 6.2 we can take the tempering sequence of
the form βn = 1/n1+δ, where δ > 0 is an arbitrary number and n = 1, 2 . . . .

7. Infinite perturbed diagonal systems

In this section we study the existence of solutions of a perturbed diagonal infinite
system of differential equations in the sequence space cβ . Consider the infinite
perturbed diagonal systems of differential equations of the form

x′n = an(t)xn + gn(t, x1, x2, . . . ) (7.1)
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with the initial conditions
xn(0) = x0

n, (7.2)
for n = 1, 2, . . . and t ∈ I = [0, T ]. Problem (7.1)–(7.2) will be investigated in the
sequence space cβ , where β = (βn) is a tempering sequence i.e., the sequence (βn)
is nonincreasing and has positive terms.

Infinite systems of differential equations (7.1)–(7.2) contain, as particular cases,
the systems considered in the theory of neural sets (cf. [10, pp. 86-87], and [18]).
Let us also mention that system (7.1)–(7.2) was studied in [5]. The existence
result concerning initial value problem (7.1)–(7.2) which we are going to present
here, will generalize essentially results obtained in the above quoted papers [5,
18] and the monograph [10]. In our considerations we will utilize the measure of
noncompactness µβ2 in the space cβ defined by formula (4.2).

Initial value problem (7.1)–(7.2) will be studied under the following assumptions.
(i) x0 = (x0

n) ∈ cβ ;
(ii) the mapping g = (g1, g2, . . . ) acts from the set I × cβ into cβ and is contin-

uous on I × cβ ;
(iii) There exists a sequence (pn) with βnpn → 0 as n→∞ such that

|gn(t, x1, x2, . . . )| ≤ pn
for t ∈ I, x = (xn) ∈ cβ and for n = 1, 2, . . . .

(iv) The functions an(t) are continuous on I and the sequence (an(t)) converges
uniformly on I (to a function a = a(t)).

Notice that in view of the imposed assumptions the sequence (an(t)) is equi-
bounded on I. This implies that the constant

A = sup{an(t) : t ∈ I, n = 1, 2, . . . }
is finite.

Now, we can formulate our result.

Theorem 7.1. Let assumptions (i)–(iv) be satisfied. If AT < 1 then initial value
problem (7.1)–(7.2) has a solution x(t) = (xn(t)) on the interval I such that x(t) ∈
cβ for each t ∈ I.

Proof. At the beginning, for t ∈ I and x = (xn) ∈ cβ let us denote

fn(t, x) = an(t)xn + gn(t, x), f(t, x) = (f1(t, x), f2(t, x), . . . ),

where n is an arbitrarily fixed natural number. Further, fix arbitrary natural num-
bers m,n. Without loss of generality we can assume that m < n. Then, we obtain

|βnfn(t, x)− βmfm(t, x)|
≤ |βnan(t)xn − βmam(t)xm|+ |βngn(t, x)− βmgm(t, x)|
≤ |βnan(t)xn − βman(t)xm|+ |βman(t)xm − βmam(t)xm|

+ βn|gn(t, x)|+ βm|gm(t, x)|
≤ |an(t)||βnxn − βmxm|+ βm|xm||an(t)− am(t)|+ βnpn + βmpm.

(7.3)

In view of the imposed assumptions we deduce that (βkxk) is a Cauchy sequence.
The same statement is also valid for the function sequence (ak(t)).

Moreover, we have that βnpn → 0 as n → ∞. Taking into account the above
established facts, from estimate (7.3) we deduce that (βnfn(t, x)) is a Cauchy se-
quence. This yields that (fn(t, x)) ⊂ cβ .
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Next, observe that for arbitrary n ∈ N, t ∈ I and for a fixed x ∈ cβ , we have

|βnfn(t, x)| ≤ |βnan(t)xn|+ |βngn(t, x)| ≤ |an(t)|βn|xn|+βnpn ≤ A‖x‖+P, (7.4)

where P = sup{βnpn : n = 1, 2 . . . } and the symbol ‖ · ‖ denotes the norm in the
space cβ (cf. Section 4). Obviously P < ∞. From estimate (7.4) we deduce the
following one

‖f(t, x)‖ ≤ A‖x‖+ P. (7.5)
Now, we consider the mapping f(t, x) on the set I × B(x0, r), where r is taken

according to Theorem 5.2, i.e.,

r =
(A+ P )T‖x0‖

1−AT
.

To prove the continuity of the mapping f(t, x) let us fix arbitrarily t ∈ I and
x ∈ B(x0, r). Next, choose arbitrary s ∈ I and y ∈ B(x0, r). Then, in view of the
imposed assumptions, we obtain

‖f(t, x)− f(s, y)‖

= sup
{
|βnfn(t, x)− βnfn(s, y)| : n = 1, 2, . . .

}
≤ sup

{
βn|an(t)xn − an(s)yn| : n = 1, 2, . . .

}
+ sup

{
βn|gn(t, x)− gn(s, y)| : n = 1, 2, . . .

}
≤ sup

{
βn

[
|an(t)xn − an(s)xn|+ |an(s)xn − an(s)yn|

]
: n = 1, 2, . . .

}
+ sup

{
βn|gn(t, x)− gn(s, y)| : n = 1, 2, . . .

}
≤ sup

{
βn|xn||an(t)− an(s)| : n = 1, 2, . . .

}
+ sup

{
|an(s)|βn|xn − yn| : n = 1, 2, . . .

}
+ sup

{
βn|gn(t, x)− gn(s, y)| : n = 1, 2, . . .

}
≤ (‖x0‖+ r) sup

{
|an(t)− an(s)| : n = 1, 2, . . .

}
+A‖x− y‖+ ‖g(t, x)− g(s, y)‖.

Hence, keeping in mind the fact that the sequence (an(t)) is equicontinuous on the
interval I and the mapping g is continuous at the point (t, x) we conclude that the
mapping f is continuous at (t, x). In view of the arbitrariness of t and x this yields
that f is continuous on the set I ×B(x0, r).

Now, let us take a nonempty subset X of the ball B(x0, r). Fix t ∈ I and
x = (xn) ∈ X. Then, in view of (7.3), for arbitrarily fixed natural numbers m,n
we obtain

|βnfn(t, x)− βmfm(t, x)|
≤ |an(t)||βnxn − βmxm|+ ‖x‖|an(t)− am(t)|+ βnpn + βmpm.

Hence, taking into account the imposed assumptions, we derive the estimate

µβ2 (f(t,X)) ≤ a(t)µβ2 (X), (7.6)

where (as we mentioned above) µβ2 is the measure of noncompactness in the space
cβ defined by formula (4.2). Finally, linking estimates (7.5) and (7.6), in view of
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Theorem 5.2 we conclude that problem (7.1)–(7.2) has at least one solution in the
space cβ . The proof is complete. �

Now we given an example illustrating our considerations.

Example 7.2. Consider the perturbed diagonal infinite system of differential equa-
tions

x′n =
(
n sin

t

n

)
xn + arctan(xn + xn+1) (7.7)

with the initial conditions of the form

xn(0) = n+ 1 (7.8)

for n = 1, 2, . . . and for t ∈ I = [0, T ], where T is a fixed positive number such that
T ≤ π

2 . The value of T will be estimated precisely later.
Observe that initial value problem (7.7)–(7.8) is a special case of problem (7.1)

- (7.2) if we put an(t) = n sin t
n , gn(t, x1, x2, . . . ) = arctan(xn + xn+1) and if we

accept the tempering sequence β = (βn) = ( 1
n ). We show briefly that in such a case

infinite system (7.7) with initial conditions (7.8) satisfies assumptions of Theorem
7.1. To this end observe that the function sequence (an(t)) consists of functions
continuous on the interval I and it is uniformly convergent on I to the function
a(t) = t, t ∈ I. Thus the sequence (an(t)) satisfies assumption (iv).

Further, we have

|gn(t, x1, x2, . . . )| = | arctan(xn + xn+1)| ≤ π

2

for n = 1, 2 . . . . Thus, taking pn = π
2 we see that assumption (iii) is satisfied.

Similarly we verify assumption (i).
To check assumption (ii) let us fix arbitrarily x, y ∈ cβ , x = (xk), y = (yk).

Then, for a fixed n ∈ N we obtain:

βn|gn(t, x1, x2, . . . )− gn(t, y1, y2, . . . )|

=
1
n
| arctan(xn + xn+1)− arctan(yn + yn+1)|

≤ 1
n
|xn + xn+1 − yn − yn+1| ≤

1
n
|xn − yn|+

1
n
|xn+1 − yn+1|

≤ n+ 1
n

( 1
n+ 1

|xn − yn|+
1

n+ 1
|xn+1 − yn+1|

)
≤ 2
( 1
n
|xn − yn|+

1
n+ 1

|xn+1 − yn+1|
)
.

(7.9)

Next, in view of (7.9), for arbitrarily fixed t, s ∈ I and x, y ∈ cβ , we obtain

‖g(t, x)− g(s, y)‖

= sup
{ 1
n
|gn(t, x)− gn(s, y)| : n = 1, 2, . . .

}
≤ sup

{
2
( 1
n
|xn − yn|+

1
n+ 1

|xn+1 − yn+1|
)

: n = 1, 2 . . .
}

≤ 2 sup
{ 1
n
|xn − yn| : n = 1, 2 . . .

}
+ 2 sup

{ 1
n+ 1

|xn+1 − yn+1| : n = 1, 2 . . .
}

≤ 4‖x− y‖,
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where the symbol ‖ · ‖ denotes the norm in the space cβ . Thus we showed that the
mapping g is continuous on the set I × cβ (even Lipschitz continuous). This means
that the mapping g satisfies assumption (ii).

Finally, let us observe that using standard methods of mathematical analysis,
we obtain

A = sup
{
|an(t)| : t ∈ [0, T ], n = 1, 2, . . .

}
= sup

{
n sin

t

n
: t ∈ [0, T ], n = 1, 2, . . .

}
≤ π

2
.

Thus, if we take T < 2
π , then applying Theorem 7.1 we deduce that initial value

problem (7.7)–(7.8) has at least one solution x(t) = (xn(t)) such that (xn(t)) ∈ cβ
for any t ∈ [0, T ].

8. Infinite systems of differential equations in the sequence space lβ∞

In this section we will work in the space lβ∞ described in details in Section 4. We
will assume here that the tempering sequence β = (βn) consists of positive terms
and is nonincreasing. We will utilize the measure of noncompactness µβ3 defined on
the family Mlβ∞

by formula (4.5). For simplicity, that measure will be denoted by
µ. Recall, that for X ∈Mlβ∞

we put

µ(X) = lim sup
n→∞

diamXβ
n ,

where Xβ
n = {βnxn : x = (xi) ∈ X}. Equivalently, this formula can be written in a

more convenient way
µ(X) = lim sup

n→∞
diamβnXn, (8.1)

where Xn = {xn : x = (xi) ∈ X}. We refer to Section 4 for the properties of the
measure µ.

In what follows we will investigate the following perturbed semilinear lower di-
agonal infinite system of differential equations

x′n =
n∑

j=kn

anj(t)xj + gn(t, x1, x2, . . . ) (8.2)

with the initial conditions
xn(0) = x0

n (8.3)

for n = 1, 2 . . . and t ∈ I = [0, T ].
Throughout this section we will assume that the sequence (kn) appearing in (8.2)
is such that 1 ≤ kn ≤ n for n = 1, 2, . . . and kn →∞ as n→∞.

It is worthwhile mentioning that infinite systems of differential equations having
form (8.2) were up to now considered very seldom (cf. [4, 8]).

For further purposes we denote by f = f(t, x) the mapping defined on the set
I × lβ∞ in the following way

f(t, x) = (f1(t, x), f2(t, x), . . . ),

where

fn(t, x) = fn(t, x1, x2, . . . ) =
n∑

j=kn

anj(t)xj + gn(t, x1, x2, . . . )
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for n = 1, 2, . . . . Moreover, we will also define the mapping g(t, x) on the set
I × lβ∞ by putting

g(t, x) = (g1(t, x), g2(t, x), . . . ).
Now, we formulate assumptions under which problem (8.2)–(8.3) will be studied.

Namely, we will impose the following hypotheses.
(i) x0 = (x0

n) ∈ lβ∞;
(ii) the mapping g acts from the set I× lβ∞ into lβ∞ and is uniformly continuous

on I × lβ∞;
(iii) there exists a sequence (pn) with βnpn → 0 as n→∞ and such that

|gn(t, x1, x2, . . . )| ≤ pn
for t ∈ I, x = (xn) ∈ lβ∞ and n = 1, 2 . . . ;

(iv) The functions anj : I → R (j = kn, kn + 1, . . . , n, n = 1, 2 . . . ) are contin-
uous and nondecreasing on I. Moreover, we assume that the function se-
quence (An(t)) is equicontinuous on the interval I and the sequence (Ān(t))
is uniformly bounded on I, where

An(t) =
n∑

j=kn

anj(t), Ān(t) =
n∑

j=kn

|anj(t)|

for n = 1, 2, . . . .
Keeping in mind assumption (iv), for further purposes we can define the constant

A = sup{Ān(t) : t ∈ I, n = 1, 2, . . . }.

In view of assumptions (iv) we have that A <∞.
Now, we can formulate that following result concerning initial value problem

(8.2)–(8.3).

Theorem 8.1. Assume that conditions (i)–(iv) are satisfied and AT < 1. Then
initial value problem (8.2)–(8.3) has at least one solution x(t) = (xk(t)) on the
interval I = [0, T ] such that x(t) ∈ lβ∞ for t ∈ I.

Proof. Let us take an arbitrary element x = (xk) ∈ lβ∞. Next, fix t ∈ I and n ∈ N.
Then, in view of the imposed assumptions we obtain

|βnfn(t, x)| ≤ βn
n∑

j=kn

|anj(t)||xj |+ βn|gn(t, x)|

≤
n∑

j=kn

|anj(t)|βj |xj |+ βnpn

≤
n∑

j=kn

|anj(t)|max{βj |xj | : j = kn, kn + 1, . . . , n}+ βnpn

≤ Ān(t) sup{βj |xj | : j = 1, 2, . . . }+ βnpn ≤ A‖x‖+ P,

(8.4)

where ‖ · ‖ stands for the norm in the space lβ∞ and P = sup{βnpn : n = 1, 2 . . . }.
Obviously P < ∞ in view of assumption (iii). Hence we infer that the mapping f
transforms the set I × lβ∞ into lβ∞.

Next we consider the mapping f(t, x) on the set I × B(x0, r), where r is taken
according to Theorem 5.2 i.e., r = (A+P )T‖x0‖

1−AT . First, we show that f is uniformly
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continuous on the set I×B(x0, r). In view of assumption (ii) it is sufficient to show
that the linear operator L defined by

(Lx)(t) = ((L1x)(t), (L2x)(t), . . . ),

where

(Lnx)(t) =
n∑

j=kn

anj(t)xj

for n = 1, 2, . . . , is continuous on the set I×lβ∞. To this end fix arbitrarily x, y ∈ lβ∞,
t, s ∈ I and n ∈ N. Without loss of generality we may assume that s < t. Then,
keeping in mind our assumptions, we obtain

βn|(Lnx)(t)− (Lny)(s)|

= βn

∣∣∣ n∑
j=kn

anj(t)xj −
n∑

j=kn

anj(s)yj
∣∣∣

≤ βn
∣∣∣ n∑
j=kn

anj(t)xj −
n∑

j=kn

anj(t)yj
∣∣∣+ βn

∣∣∣ n∑
j=kn

anj(t)yj −
n∑

j=kn

anj(s)yj
∣∣∣

≤ βn
n∑

j=kn

|anj(t)||xj − yj |+ βn

n∑
j=kn

|anj(t)− anj(s)||yj |

≤
n∑

j=kn

|anj(t)|βj |xj − yj |+
n∑

j=kn

(
anj(t)− anj(s)

)
βj |yj |

≤ Ān(t) sup
{
βj |xj − yj | : j = 1, 2, . . .

}
+

n∑
j=kn

(
anj(t)− anj(s)

)
sup{βj |yj | : j = 1, 2, . . . }

≤ A‖x− y‖+
( n∑
j=kn

anj(t)−
n∑

j=kn

anj(s)
)
‖y‖

≤ A‖x− y‖+
(
An(t)−An(s)

)
‖y‖.

Hence, we derive the estimate

‖(Lx)(t)− (Ly)(s)‖ ≤ A‖x− y‖+ sup
{
An(t)−An(s) : n = 1, 2 . . .

}
‖y‖.

From this estimate and assumption (iv) we conclude that the operator L is contin-
uous on the set I × lβ∞. Obviously L is uniformly continuous as linear.

Next, let us take a nonempty subset X of the ball B(x0, r). Fix arbitrarily
x, y ∈ X and t ∈ I. Then, with help of a similar reasoning as above, for a fixed n
natural, we obtain

βn|fn(t, x)− fn(t, y)|

≤ βn
∣∣∣ n∑
j=kn

anj(t)xj −
n∑

j=kn

anj(t)yj
∣∣∣+ βn|gn(t, x)− gn(t, y)|

≤ βn
∣∣∣ n∑
j=kn

anj(t)(xj − yj)
∣∣∣+ βn|gn(t, x)|+ βn|gn(t, y)|
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≤ βn
n∑

j=kn

|anj(t)||xj − yj)|+ 2βnpn

≤
n∑

j=kn

|anj(t)|βj |xj − yj)|+ 2βnpn

≤ Ān(t) sup
{
βj |xj − yj | : j = kn, kn + 1, . . .

}
+ 2βnpn

≤ Ān(t) sup
{
βj diamXj : j = kn, kn + 1, . . .

}
+ 2βnpn.

Hence, we derive the inequality

diamβnfn(t,X) ≤ Ān(t) sup
{
βj diamXj : j ≥ kn

}
+ 2βnpn.

From the above estimate, in view of assumptions (iii) and (iv) we have

µ(f(t,X)) ≤ Aµ(X), (8.5)

where µ is the measure of noncompactness defined by (8.1). Finally, combining
estimates (8.4) and (8.5), on the basis of Theorem 5.2, we complete the proof. �

Remark 8.2. Observe that instead of the requirement imposed in assumption (iv)
that the functions anj (j = kn, kn + 1, . . . , n; n = 1, 2, . . . ) are nondecreasing on I,
we can assume that those functions are nonincreasing on I.

The next example shows the applicability of the result in Theorem 8.1.

Example 8.3. Consider the semilinear lower diagonal perturbed infinite system of
differential equations

x′n =
n∑

j=kn

tn+jxj + sin(xn + xn+1 + xn+2) (8.6)

with the initial conditions
xn(0) = n, (8.7)

for n = 1, 2 . . . and for t ∈ I = [0, T ], where T < 1. Moreover, we assume that (kn)
is a nondecreasing sequence of natural numbers such that 1 ≤ kn ≤ n and kn →∞
as n→∞.

Observe that (8.6)–(8.7) is a special case of (8.2)–(8.3), where anj(t) = tn+j for
j = kn, kn + 1, . . . , n and for n = 1, 2, . . . . Apart from this, the function gn has the
form

gn(t, x1, x2, . . . ) = sin(xn + xn+1 + xn+2)
for n = 1, 2, . . . . It is easily seen that infinite system (8.6) with initial conditions
(8.7) satisfies assumptions of Theorem 8.1 if we take the tempering sequence (βn) of
the form βn = 1

n for n = 1, 2, . . . . Indeed, we have obviously that (xn0 ) = (n) ∈ lβ∞.
This means that assumption (i) is satisfied.

Now, take an arbitrary element x = (xk) ∈ lβ∞ and a number t ∈ I. Then, for a
fixed natural number n we obtain

βn|gn(t, x1, x2, . . . )| =
1
n
| sin(xn + xn+1 + xn+2)|

≤ 1
n

(
|xn|+ |xn+1|+ |xn+2|

)
=
n+ 2
n

( 1
n+ 2

|xn|+
1

n+ 2
|xn+1|+

1
n+ 2

|xn+2|
)
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≤ 3
( 1
n
|xn|+

1
n+ 1

|xn+1|+
1

n+ 2
|xn+2|

)
≤ 3‖x‖,

where the symbol ‖ · ‖ denotes the norm in the space lβ∞. Hence we obtain

‖g(t, x)‖ ≤ 3‖x‖

which shows that g acts from the set I × lβ∞ into lβ∞.
Further, if we fix arbitrarily n ∈ N, x = (x1, x2, . . . ) ∈ lβ∞, y = (y1, y2, . . . ) ∈ lβ∞

and t, s ∈ I, then we obtain

βn|gn(t, x1, x2, . . . )− gn(s, y1, y2, . . . )|

=
1
n
| sin(xn + xn+1 + xn+2)− sin(yn + yn+1 + yn+2)|

≤ 1
n

(
|xn − yn|+ |xn+1 − yn+1|+ |xn+2 − yn+2|

)
=
n+ 2
n

( 1
n+ 2

|xn − yn|+
1

n+ 2
|xn+1 − yn+1|+

1
n+ 2

|xn+2 − yn+2|
)

≤ 3
( 1
n
|xn − yn|+

1
n+ 1

|xn+1 − yn+1|+
1

n+ 2
|xn+2 − yn+2|

)
≤ 3‖x− y‖.

Hence we derive the estimate

‖g(t, x)− g(s, y)‖ ≤ 3‖x− y‖

which shows that the mapping g is uniformly continuous on the set I × lβ∞. Thus
the mapping g satisfies assumption (ii) of Theorem 8.1.

Now, we have

|gn(t, x1, x2, . . . )| = | sin(xn + xn+1 + xn+2)| ≤ 1

which shows that there is satisfied assumption (iii) with pn = 1 for, n = 1, 2 . . . .
To show that there is satisfied assumption (iv) let us notice that we have

An(t) = Ān(t) = tn+kn
1− tn−kn+1

1− t
for t ∈ I = [0, T ] and for n = 1, 2, . . . . Using the standard methods of analysis it
is not hard to show that the sequence (An(t)) is equicontinuous on the interval I.
Moreover, we have the estimate

An(t) = Ān(t) ≤ A ≤ 1
1− T

for any t ∈ I. Summing up we see that initial value problem (8.6)–(8.7) satisfies
the assumptions in Theorem 8.1. Therefore the infinite system (8.6) with initial
value conditions (8.7) has at least one solution in the space lβ∞.
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