CLASSIFICATION AND EVOLUTION OF BIFURCATION CURVES FOR THE ONE-DIMENSIONAL PERTURBED GELFAND EQUATION WITH MIXED BOUNDARY CONDITIONS II

YU-HAO LIANG, SHIN-HWA WANG
Communicated by Paul H. Rabinowitz

Abstract

In this article, we study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand equation with mixed boundary conditions, $$
\begin{gathered} u^{\prime \prime}(x)+\lambda \exp \left(\frac{a u}{a+u}\right)=0, \quad 0<x<1, \\ u(0)=0, \quad u^{\prime}(1)=-c<0, \end{gathered}
$$ where $4 \leq a<a_{1} \approx 4.107$. We prove that, for $4 \leq a<a_{1}$, there exist two nonnegative $c_{0}=c_{0}(a)<c_{1}=c_{1}(a)$ satisfying $c_{0}>0$ for $4 \leq a<a^{*} \approx 4.069$, and $c_{0}=0$ for $a^{*} \leq a<a_{1}$, such that, on the $\left(\lambda,\|u\|_{\infty}\right)$-plane, (i) when $0<c<c_{0}$, the bifurcation curve is strictly increasing; (ii) when $c=c_{0}$, the bifurcation curve is monotone increasing; (iii) when $c_{0}<c<c_{1}$, the bifurcation curve is S-shaped; (iv) when $c \geq c_{1}$, the bifurcation curve is \subset shaped. This work is a continuation of the work by Liang and Wang [8 where authors studied this problem for $a \geq a_{1}$, and our results partially prove a conjecture on this problem for $4 \leq a<a_{1}$ in [8].

1. Introduction

In this article, we study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand equation with mixed (or more precisely, Dirichlet-Neumann) boundary conditions given by

$$
\begin{gather*}
u^{\prime \prime}(x)+\lambda \exp \left(\frac{a u}{a+u}\right)=0, \quad 0<x<1, \tag{1.1}\\
u(0)=0, \quad u^{\prime}(1)=-c<0,
\end{gather*}
$$

where $\lambda>0$ is treated as a bifurcation parameter, $c>0$ is treated as an evolution parameter, and constant a satisfies $4 \leq a<a_{1} \approx 4.107$ where constant a_{1} is defined in [4, (3.23)]. The bifurcation curve of positive solutions of (1.1) is defined by

$$
\tilde{S}_{c}=\left\{\left(\lambda,\left\|u_{\lambda}\right\|_{\infty}\right): \lambda>0 \text { and } u_{\lambda} \text { is a positive solution of 1.1) }\right\}
$$

[^0]This work is a continuation of our previous work in [8] where we studied (1.1) for $a \geq a_{1}$. It is worthwhile noting that the classification and evolution of bifurcation curves \tilde{S}_{c} of $\sqrt{1.1}$ is closely related to the one resulting from the same differential equation in 1.1) with zero Dirichlet boundary conditions [2, 5, 8, that is,

$$
\begin{gather*}
u^{\prime \prime}(x)+\lambda \exp \left(\frac{a u}{a+u}\right)=0, \quad 0<x<1, \tag{1.2}\\
u(0)=0, \quad u(1)=0 .
\end{gather*}
$$

The bifurcation curve of positive solutions of 1.2 is defined by

$$
S=\left\{\left(\lambda,\left\|u_{\lambda}\right\|_{\infty}\right): \lambda>0 \text { and } u_{\lambda} \text { is a positive solution of } 1.2\right\} .
$$

Before going into further discussions on problems (1.1) and (1.2), we first give some terminologies in this paper for the shapes of bifurcation curves \tilde{S}_{c} on the $\left(\lambda,\|u\|_{\infty}\right)$-plane (Following terminology also hold for S if \tilde{S}_{c} is replaced by S.)

Figure 1. Three different types of exactly S-shaped bifurcation curves \tilde{S}_{c} with $\lambda_{0}>0$ and $\left\|u_{\lambda_{0}}\right\|_{\infty}>0$. (i) Type 1. (ii) Type 2. (iii) Type 3.
S-shaped: The bifurcation curve \tilde{S}_{c} on the $\left(\lambda,\|u\|_{\infty}\right)$-plane is said to be S shaped if \tilde{S}_{c} has at least two turning points, say $\left(\lambda^{*},\left\|u_{\lambda^{*}}\right\|_{\infty}\right)$ and $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right)$, satisfying $\lambda_{*}<\lambda^{*}$ and $\left\|u_{\lambda^{*}}\right\|_{\infty}<\left\|u_{\lambda_{*}}\right\|_{\infty}$, and
(i) \tilde{S}_{c} starts at some point $\left(\lambda_{0},\left\|u_{\lambda_{0}}\right\|_{\infty}\right)$ and initially continues to the right,
(ii) at $\left(\lambda^{*},\left\|u_{\lambda^{*}}\right\|_{\infty}\right), \tilde{S}_{c}$ turns to the left,
(iii) at $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right), \tilde{S}_{c}$ turns to the right,
(iv) \tilde{S}_{c} tends to infinity as $\lambda \rightarrow \infty$. That is, $\lim _{\lambda \rightarrow \infty}\left\|u_{\lambda}\right\|_{\infty}=\infty$.

Exactly S-shaped: The bifurcation curve \tilde{S}_{c} on the ($\lambda,\|u\|_{\infty}$)-plane is said to be exactly S-shaped if \tilde{S}_{c} is S-shaped and it has exactly two turning points; see Figure 1 .
Type $\mathbf{1 / 2 / 3} S$-shaped: Assume that the bifurcation curve \tilde{S}_{c} is S-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Let $\left(\lambda_{0},\left\|u_{\lambda_{0}}\right\|_{\infty}\right)$ be the starting point of \tilde{S}_{c}, and

$$
\bar{\lambda}_{\min } \equiv \min \left\{\lambda:\left(\lambda,\left\|u_{\lambda}\right\|_{\infty}\right) \text { is a turning point of } \tilde{S}_{c}\right\}
$$

Then \tilde{S}_{c} is said to be type 1 (resp., type 2 and type 3) S-shaped if $\lambda_{0}<\bar{\lambda}_{\text {min }}$ (resp., $\lambda_{0}=\bar{\lambda}_{\text {min }}$ and $\lambda_{0}>\bar{\lambda}_{\text {min }}$); see Figure 1(i) (resp., Figure 1(ii) and 1(iii)).
\subset-shaped: The bifurcation curve \tilde{S}_{c} on the $\left(\lambda,\|u\|_{\infty}\right)$-plane is said to be \subset-shaped if \tilde{S}_{c} has at least one turning point $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right)$, and
(i) \tilde{S}_{c} starts at some point $\left(\lambda_{0},\left\|u_{\lambda_{0}}\right\|_{\infty}\right)$ and initially continues to the left,
(ii) at $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right), \tilde{S}_{c}$ turns to the right,
(iii) $\lambda_{*}<\lambda_{0}$ and $\left\|u_{\lambda_{0}}\right\|_{\infty}<\left\|u_{\lambda_{*}}\right\|_{\infty}$,
(iv) \tilde{S}_{c} tends to infinity as $\lambda \rightarrow \infty$. That is, $\lim _{\lambda \rightarrow \infty}\left\|u_{\lambda}\right\|_{\infty}=\infty$.

Exactly \subset-shaped: The bifurcation curve \tilde{S}_{c} on the $\left(\lambda,\|u\|_{\infty}\right)$-plane is said to be exactly \subset-shaped if \tilde{S}_{c} is \subset-shaped and it has exactly one turning point; see Figure 2

Figure 2. Exactly \subset-shaped bifurcation curve \tilde{S}_{c} with $\lambda_{0}>0$ and $\left\|u_{\lambda_{0}}\right\|_{\infty}>0$.

Strictly/Monotone increasing: The bifurcation curve \tilde{S}_{c} on the $\left(\lambda,\|u\|_{\infty}\right)$ plane is said to be strictly (resp., monotone) increasing if $\lambda_{1}<\lambda_{2}$ (resp., $\lambda_{1} \leq \lambda_{2}$) for any two points $\left(\lambda_{i},\left\|u_{\lambda_{i}}\right\|_{\infty}\right), i=1,2$, lying in \tilde{S}_{c} with $\left\|u_{\lambda_{1}}\right\|_{\infty}<\left\|u_{\lambda_{2}}\right\|_{\infty}$.
For (1.2), it has been a long-standing conjecture [1, 6, 9] that there exists a positive critical bifurcation value $a^{*} \approx 4.07>4$ such that, on the $\left(\lambda,\|u\|_{\infty}\right)$-plane, the bifurcation curve S is strictly increasing for $0<a \leq a^{*}$ and is exactly type 1 S-shaped for $a>a^{*}$. Very recently, Huang and Wang [3] gave a rigorous proof of this conjecture for 1.2 . Their main result is stated in the next theorem.
Theorem 1.1 ([3, Theorem 4 and Fig. 1]). Consider (1.2) with varying $a>0$. Then, on the $\left(\lambda,\|u\|_{\infty}\right)$-plane, the bifurcation curve S of $\sqrt{1.2}$ is a continuous curve which starts at the origin and it tends to infinity as $\lambda \rightarrow \infty$. Moreover, there exists a critical bifurcation value $a^{*} \approx 4.069$ satisfying $4<a^{*}<a_{1} \approx 4.107$ such that the following assertions (i)-(iii) hold:
(i) For $a>a^{*}$, the bifurcation curve S is exactly type $1 S$-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Moreover, all positive solutions u_{λ} are nondegenerate except that $u_{\lambda_{*}}$ and $u_{\lambda^{*}}$ are degenerate for some positive $\lambda_{*}<\lambda^{*}$.
(ii) For $a=a^{*}$, the bifurcation curve S is strictly increasing on the $\left(\lambda,\|u\|_{\infty}\right)$ plane. Moreover, all positive solutions u_{λ} are nondegenerate except that $u_{\lambda_{0}}$ is degenerate for some positive λ_{0}.
(iii) For $0<a<a^{*}$, the bifurcation curve S is strictly increasing on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Moreover, all positive solutions u_{λ} are nondegenerate.
For (1.1), Liang and Wang [8] proved the next theorem with any fixed $a>a_{1} \approx$ 4.107.

Theorem 1.2 (8, Theorem 2.4] and see e.g., Figure 3 with $a=5$). Consider (1.1) with any fixed $a>a_{1} \approx 4.107$. Then, on the $\left(\lambda,\|u\|_{\infty}\right)$-plane, the bifurcation curve \tilde{S}_{c} of 1.1 is a continuous curve which starts at some point $\left(\lambda_{0},\left\|u_{\lambda_{0}}\right\|_{\infty}\right)$ with $\lambda_{0}>0$ and $\left\|u_{\lambda_{0}}\right\|_{\infty}>0$ and it tends to infinity as $\lambda \rightarrow \infty$. Moreover, there exists $c_{1}=c_{1}(a)>1.057$ such that the following two assertions (i) and (ii) hold:
(i) For $0<c<c_{1}$, the bifurcation curve \tilde{S}_{c} is S-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$ plane. More precisely, there exist three positive $c_{1,1} \leq c_{1,2} \leq c_{1,3}$ on $\left(0, c_{1}\right)$, all depending on a, such that the S-shaped bifurcation curve \tilde{S}_{c} belongs to type 1, type 2 and type 3 when $0<c<c_{1,1}, c=c_{1,2}$ and $c_{1,3}<c<c_{1}$, respectively.
(ii) For $c \geq c_{1}$, the bifurcation curve \tilde{S}_{c} is \subset-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$-plane.

Figure 3. Numerical simulations of bifurcation curves S and \tilde{S}_{c} for $a=5$ and varying $c>0$ on the $\left(\lambda,\|u\|_{\infty}\right)$-plane of the bilogarithm coordinates. Here $c_{1,2}^{-}<c_{1,2} \approx 0.488<c_{1,2}^{+}<c_{1} \approx$ $1.365<c_{1}^{+}<c_{2} \approx 7.718<c_{2}^{+}<c_{3} \approx 47.711<c_{3}^{+}$(adopted from [8, Fig. 4]).

This article is organized as follows: Section 2 contains statements of the main result. Section 3 contains the proof of the main result.

2. Main result

In this section, we give our main result (Theorem 2.1) for problem (1.1) with $4 \leq a<a_{1} \approx 4.107$, where classification and evolution of bifurcation curves \tilde{S}_{c} for (1.1) with varying $c>0$ are studied. Theorem 2.1 with $4 \leq a<a_{1}$ extends Theorem 1.2 with $a \geq a_{1}$, and we obtain a more complicated evolution of bifurcation curves \dot{S}_{c} with varying $c>0$. Note that some basic properties and ordering properties of bifurcation curves \tilde{S}_{c} for positive a and c, on the $\left(\lambda,\|u\|_{\infty}\right)$-plane have been discussed in [8, Theorems 2.1 and 2.2].

Theorem 2.1 (See Figure 4). Consider (1.1) for any fixed a satisfying $4 \leq a<$ $a_{1} \approx 4.107$. Then there exist two nonnegative $c_{0}=c_{0}(a)<c_{1}=c_{1}(a)$ satisfying $c_{0}>0$ for $4 \leq a<a^{*}$ approx4.069, $c_{0}=0$ for $a^{*} \leq a<a_{1}$, and $c_{1}>1.057$ for $4 \leq a<a_{1}$, such that the following assertions (I)-(IV) hold:
(i) For $0<c<c_{0}$, the bifurcation curve \tilde{S}_{c} is strictly increasing on the $\left(\lambda,\left\|u_{\lambda}\right\|_{\infty}\right)$-plane. Moreover, there exists a positive λ_{0} such that (1.1) has no positive solution for $0<\lambda<\lambda_{0}$, and exactly one positive solution for $\lambda \geq \lambda_{0}$.
(ii) For $c=c_{0}$, the bifurcation curve \tilde{S}_{c} is monotone increasing on the $\left(\lambda,\left\|u_{\lambda}\right\|_{\infty}\right)$ plane. Moreover, there exists a positive λ_{0} such that (1.1) has no positive solution for $0<\lambda<\lambda_{0}$, and at least one positive solution for $\lambda \geq \lambda_{0}$.
(iii) (See Figure 1.) For $c_{0}<c<c_{1}$, the bifurcation curve \tilde{S}_{c} is S-shaped on the $\left(\lambda,\left\|u_{\lambda}\right\|_{\infty}\right)$-plane. More precisely, there exist three positive $c_{1,1} \leq c_{1,2} \leq$ $c_{1,3}$ on $\left(c_{0}, c_{1}\right)$, all depending on a, such that the following three assertions hold:
(a) (See Figure 1 (i)) If $c_{0}<c<c_{1,1}$, then the bifurcation curve \tilde{S}_{c} is type $1 S$-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Moreover, there exist three positive $\lambda_{0}<\lambda_{*}<\lambda^{*}$ which are all strictly increasing functions of c on $\left(c_{0}, c_{1,1}\right)$ such that (1.1) has no positive solution for $0<\lambda<\lambda_{0}$, at least one positive solution for $\lambda_{0} \leq \lambda<\lambda_{*}$ and $\lambda>\lambda^{*}$, at least two positive solutions for $\lambda=\lambda_{*}$ and $\lambda=\lambda^{*}$, and at least three positive solutions for $\lambda_{*}<\lambda<\lambda^{*}$.
(b) (See Figure 1 (ii)) If $c=c_{1,2}$, then the bifurcation curve \tilde{S}_{c} is type 2 S-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Moreover, there exist three positive $\lambda_{0}=\lambda_{*}<\lambda^{*}$ such that (1.1) has no positive solution for $0<\lambda<\lambda_{0}$, at least one positive solution for $\lambda>\lambda^{*}$, at least two positive solutions for $\lambda=\lambda_{*}$ and $\lambda=\lambda^{*}$, and at least three positive solutions for $\lambda_{*}<$ $\lambda<\lambda^{*}$.
(c) (See Figure 1(iii)) If $c_{1,3}<c<c_{1}$, then the bifurcation curve \tilde{S}_{c} is type $3 S$-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Moreover, there exist three positive $\lambda_{*}<\lambda_{0}<\lambda^{*}$ which are all strictly increasing functions of c on ($c_{1,3}, c_{1}$) such that (1.1) has no positive solution for $0<\lambda<\lambda_{*}$, at least one positive solution for $\lambda=\lambda_{*}$ and $\lambda>\lambda^{*}$, at least two positive solutions for $\lambda^{*}<\lambda<\lambda_{0}$ and $\lambda=\lambda^{*}$, and at least three positive solutions for $\lambda_{0} \leq \lambda<\lambda^{*}$.
(iv) (See Figure 2) For $c \geq c_{1}$, the bifurcation curve \tilde{S}_{c} is \subset-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Moreover, there exist two positive $\lambda_{*}<\lambda_{0}$ such that 1.1) has no positive solution for $0<\lambda<\lambda_{*}$, at least one positive solution for $\lambda=\lambda_{*}$ and $\lambda>\lambda_{0}$, and at least two positive solutions for $\lambda_{*}<\lambda \leq \lambda_{0}$.

Remark 2.2. By Theorem 2.1, we conclude that, on the ($\left.\lambda,\left\|u_{\lambda}\right\|_{\infty}\right)$-plane, (i) For $4.069 \approx a^{*} \leq a<a_{1} \approx 4.107$, since $c_{0}=c_{0}(a)=0$, the bifurcation curve \tilde{S}_{c} evolves from an S-shaped curve to a \subset-shaped curve as the evolution parameter varies from 0^{+}to ∞, which shows the same evolution for $a \geq a_{1}$, as claimed in Theorem 1.2 , It then implies, by Theorem 1.1, that such evolution is persistent whenever the bifurcation curve S of $\left(1.2\right.$ is exactly type $1 S$-shaped on the ($\left.\lambda,\left\|u_{\lambda}\right\|_{\infty}\right)$-plane; (ii) For $4 \leq a<a^{*}$, since $c_{0}>0$, the bifurcation curve \tilde{S}_{c} evolves from a strictly increasing curve to a monotone increasing curve, then to an S-shaped curve, and

Figure 4. Numerical simulations of bifurcation curves S and \tilde{S}_{c} for $a=4$ and varying $c>0$ on the $\left(\lambda,\|u\|_{\infty}\right)$-plane of the bilogarithm coordinates. Here $0<c_{0}^{-}<c_{0} \approx 0.10<c_{1,2}^{-}<c_{1,2} \approx$ $0.85<c_{1,2}^{+}<c_{1} \approx 1.39<c_{1_{1}}^{+}<c_{1_{2}}^{+}$(adopted from [8, Fig. 7]).
finally to a C-shaped curve when c varying from 0^{+}to ∞. It partially verifies a conjecture on problem (1.1) for $4 \leq a<a^{*}$ proposed in [8, Theorem 2.3] and shows the emergence of more complicated evolution of bifurcation curves \tilde{S}_{c} with varying $c>0$.

3. Proof of the main result

To prove our main result (Theorem 2.1) on problem (1.1), we modify timemap technique (the quadrature method) used in [2, 8. We shall recall some welldeveloped results in [8]. First, for fixed $a, c>0$, we define

$$
\begin{equation*}
\tilde{H}_{c}(\rho, q)=2 \int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}-\int_{0}^{q} \frac{d s}{\sqrt{F(\rho)-F(s)}}-\frac{c}{\sqrt{F(\rho)-F(q)}} \tag{3.1}
\end{equation*}
$$

for $0 \leq q<\rho$, where $f(s)=\exp \left(\frac{a s}{a+s}\right)$ and $F(s)=\int_{0}^{s} f(t) d t$; see $\frac{8}{\tilde{H}}$, (3.6)]. For fixed $a, c>0$, let $\rho_{0}=\rho_{0}(c)$ be the unique positive number such that $\tilde{H}_{c}\left(\rho_{0}, 0\right)=0$, where the existence and uniqueness of ρ_{0} are proved in [8, Lemma 3.2(ii)]. Then it can be proved that, for fixed $a, c>0$ and $\rho \geq \rho_{0}, \tilde{H}_{c}(\rho, q)$ has a unique zero $q(\rho, c)$ on $[0, \rho)$; see [8, Lemma 3.2(iv)]. Moreover, the time map formula for mixed boundary value problem (1.1) is defined as

$$
\begin{equation*}
H_{c}(\rho, q(\rho, c)) \equiv \frac{c^{2}}{2[F(\rho)-F(q(\rho, c))]} \quad \text { for } \rho \geq \rho_{0}(c) \tag{3.2}
\end{equation*}
$$

see [8, (3.26)]. Then it can be easily derived, by similar arguments as given in [2, Theorem 3.3] or [8, (3.26) and (3.27)], that positive solutions u of (1.1) correspond
to

$$
\begin{equation*}
\|u\|_{\infty}=\rho \quad \text { and } \quad H_{c}(\rho, q(\rho, c))=\lambda \tag{3.3}
\end{equation*}
$$

Thus studying the shape of the bifurcation curve \tilde{S}_{c} of (1.1) for $a, c>0$ is equivalent to studying the shape of the time map $H_{c}(\rho, q(\rho, c))$ for $\rho \geq \rho_{0}$.

To prove Theorem 2.1, we need the following Lemmas 3.1 3.4 First, in Lemma 3.1, we record some results on the time map formula $H_{c}(\rho, q(\rho, c))$ in [8].

Lemma 3.1. Fix $a \geq 4$ and consider $H_{c}(\rho, q(\rho, c))$ for $c>0$ and $\rho \geq \rho_{0}$. Then the following assertions (i)-(ix) hold:
(i) [8, Lemma 3.2(iv)] For $c>0$, if $0<\underset{\tilde{H}}{\rho}<\rho_{0}(c)$, then $\tilde{H}_{c}(\rho, q)$ has no zero q on $[0, \rho)$, while if $\rho \geq \rho_{0}(c)$, then $\tilde{H}_{c}(\rho, q)$ has a unique zero $q(\rho, c)$ on $[0, \rho)$, that is,

$$
\begin{equation*}
\tilde{H}_{c}(\rho, q(\rho, c))=0 . \tag{3.4}
\end{equation*}
$$

Moreover, $q(\rho, c)=0$ if and only if $\rho=\rho_{0}(c)$.
(ii) [8, Lemma 3.2(vi)] For $c>0$ and $\rho \geq \rho_{0}$,

$$
\begin{equation*}
0<\rho-q(\rho, c) \leq \frac{c^{2} e^{a}}{4 \rho} \tag{3.5}
\end{equation*}
$$

(iii) [8, Lemma 3.2 (vii)] $\rho_{0}(c) \in C(0, \infty)$ is a strictly increasing function of c on $(0, \infty)$.
(iv) [8, Lemma 3.2(viii)] For $\rho>0, q(\rho, c) \in C(0, \hat{c}] \cap C^{1}(0, \hat{c})$ is a strictly decreasing function of c on $(0, \hat{c}]$. Here $\hat{c}=\sqrt{2 F(\rho)} G(\rho)$.
(v) [8, Lemma 3.4(i)] For any two positive numbers $\tilde{c}_{1}<\tilde{c}_{2}, H_{\tilde{c}_{1}}\left(\rho, q\left(\rho, \tilde{c}_{1}\right)\right)<$ $H_{\tilde{c}_{2}}\left(\rho, q\left(\rho, \tilde{c}_{2}\right)\right)$ for $\rho \geq \rho_{0}\left(\tilde{c}_{2}\right)$.
(vi) [8, Lemma 3.5(i)] There exists a unique positive $c_{1}=c_{1}(a)$ such that

$$
\lim _{\rho \rightarrow \rho_{0}(c)^{+}} \frac{d}{d \rho} H_{c}(\rho, q(\rho, c)) \begin{cases}>0 & \text { when } c \in\left(0, c_{1}\right) \tag{3.6}\\ =0 & \text { when } c=c_{1} \\ <0 & \text { when } c \in\left(c_{1}, \infty\right)\end{cases}
$$

(vii) [8, Lemma 3.5(ii)] For $c \geq c_{1}$, there exists $\bar{\rho}(c)>\rho_{0}(c)$ such that $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))<$ 0 for $\rho_{0}(c)<\rho<\bar{\rho}(c)$.
(viii) [8, Lemma 3.5(iii)] For $0<c<c_{1}$ and $\rho_{0}(c)<\rho<\rho_{0}\left(c_{1}\right), \frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>$ 0.

On the other hand, for zero Dirichlet boundary value problem $\sqrt{1.2}$, its time map formula is defined as

$$
\begin{equation*}
G(\rho) \equiv \sqrt{2} \int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}} \quad \text { for } \rho>0 \tag{3.7}
\end{equation*}
$$

see [1, 4, 7]. Then positive solutions u of (1.2) correspond to

$$
\begin{equation*}
\|u\|_{\infty}=\rho \quad \text { and } \quad G(\rho)=\sqrt{\lambda} \tag{3.8}
\end{equation*}
$$

Thus studying the shape of the bifurcation curve of 1.2 for $a>0$ is equivalent to studying the shape of the time map $G(\rho)$ on $[0, \infty)$. It is worthwhile to point out that the first term of $\tilde{H}_{c}(\rho, q)$ defined in the right hand side of (3.1) is equal to $\sqrt{2} G(\rho)$, which implies that $G(\rho)$ has an influence on $H_{c}(\rho, q(\rho, c))$ (or say that the shape of the bifurcation curve \tilde{S}_{c} of 1.1 is correlated with the shape of the bifurcation curve S of (1.2).)

In the next Lemma 3.2, we record some results on the relationship between $H_{c}(\rho, q(\rho, c))$ and $G(\rho)$ in [8].

Lemma 3.2. Fix $a>0$ and consider $G(\rho)$ for $\rho>0$ and $H_{c}(\rho, q(\rho, c))$ for $\rho \geq \rho_{0}$ and $c>0$. Then the following two assertions hold:
(i) [8, Lemma 3.3(i)] For $c>0$ and $\rho \geq \rho_{0}, H_{c}(\rho, q(\rho, c)) \leq[G(\rho)]^{2}$, and the equality holds if and only if $\rho=\rho_{0}$.
(ii) [8, Lemma 3.6] If $G^{\prime}(\rho) \leq 0$ for some $\rho>0$, then $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))<0$ for $0<c<\hat{c}$.

In the next lemma we record the sign of derivatives of the time map formula $G(\rho)$ for $\rho>0$ in [3].

Lemma 3.3 ([3, Theorem 4]). Consider (1.2) with varying $a>0$. There exists a critical bifurcation value $a^{*} \approx 4.069$ satisfying $4<a^{*}<a_{1} \approx 4.107$ such that the following three assertions hold:
(i) For $0<a<a^{*}, G^{\prime}(\rho)>0$ for all $\rho>0$.
(ii) For $a=a^{*}$, there exist a unique positive ρ^{*} such that $G^{\prime}\left(\rho^{*}\right)=0$ and $G^{\prime}(\rho)>0$ for all $\rho>0$ and $\rho \neq \rho^{*}$.
(iii) For $a>a^{*}$, there exist two positive $\bar{\rho}_{1}<\bar{\rho}_{2}$ such that

$$
G^{\prime}(\rho) \begin{cases}<0 & \text { when } \rho \in\left(\bar{\rho}_{1}, \bar{\rho}_{2}\right) \tag{3.9}\\ =0 & \text { when } \rho=\bar{\rho}_{1} \text { or } \bar{\rho}_{2} \\ >0 & \text { when } \rho \in\left(0, \bar{\rho}_{1}\right) \cup\left(\bar{\rho}_{2}, \infty\right)\end{cases}
$$

Lemma 3.4. Fix $a \geq 4$ and consider $H_{c}(\rho, q(\rho, c))$ for $\rho \geq \rho_{0}$ and $c>0$. Then the following three assertions hold:
(i) For any $c>0$, there exists a positive $\rho_{M}=\rho_{M}(a, c) \geq \rho_{0}$ such that $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0$ for $\rho \geq \rho_{M}$.
(ii) For any two positive numbers $\tilde{c}_{1}<\tilde{c}_{2}$ and $\rho \geq \rho_{0}\left(\tilde{c}_{2}\right)$, if $\frac{d}{d \rho} H_{\tilde{c}_{2}}\left(\rho, q\left(\rho, \tilde{c}_{2}\right)\right) \geq$ 0 , then $\frac{d}{d \rho} H_{\tilde{c}_{1}}\left(\rho, q\left(\rho, \tilde{c}_{1}\right)\right)>0$.
(iii) If there exist two positive numbers $\tilde{\rho}_{1}<\tilde{\rho}_{2}$ such that $G^{\prime}(\rho)>0$ for $\tilde{\rho}_{1} \leq$ $\rho \leq \tilde{\rho}_{2}$, then there exists a positive $\tilde{c}=\tilde{c}(a)$ such that $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0$ for $\tilde{\rho}_{1} \leq \rho \leq \tilde{\rho}_{2}$ and $0<c<\tilde{c}$.

Proof. Note first that, as computed in [8, (3.3), (3.30), (3.31) and the last equation in the proof of Lemma 3.6],

$$
\begin{align*}
& \frac{d}{d \rho} H_{c}(\rho, q(\rho, c)) \\
& =\frac{c^{2} f(q(\rho, c))}{2[F(\rho)-F(q(\rho, c))]^{1 / 2}\{2[F(\rho)-F(q(\rho, c))]+c f(q(\rho, c))\}} \Psi(\rho, q(\rho, c)) \tag{3.10}
\end{align*}
$$

where

$$
\begin{aligned}
\Psi(\rho, q(\rho, c)) & =\sqrt{2} G^{\prime}(\rho)-2 \int_{q(\rho, c)}^{\rho} \frac{f^{\prime}(s) f(\rho)}{[f(s)]^{2} \sqrt{F(\rho)-F(s)}} d s \\
& =\int_{0}^{\rho} \frac{\theta(\rho)-\theta(s)}{\rho[F(\rho)-F(s)]^{3 / 2}} d s-2 \int_{q(\rho, c)}^{\rho} \frac{f^{\prime}(s) f(\rho)}{[f(s)]^{2} \sqrt{F(\rho)-F(s)}} d s
\end{aligned}
$$

and $\theta(\rho)=2 F(\rho)-\rho f(\rho)$. Hence studying the sign of $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))$ is equivalent to studying that of $\Psi(\rho, q(\rho, c))$.
(I) We prove Lemma 3.4(i). For fixed $c>0$, it can be verified easily that there exists a sufficiently large $\rho_{M}>c^{2} e^{a}$ such that, for $\rho>\rho_{M}$, the following three inequalities hold:

$$
\begin{gather*}
\theta(\rho)-\theta(s)>0 \quad \text { for } 0 \leq s<\rho \tag{3.11}\\
{\left[\frac{3}{2} F(\rho)-\rho f(\rho)\right]-\left[\frac{3}{2} F(s)-s f(s)\right]>0 \quad \text { for } 0 \leq s<\rho} \tag{3.12}\\
\rho f(\rho) \frac{f^{\prime}(s)}{[f(s)]^{2}}<\frac{1}{4} \quad \text { for } \rho-1<s<\rho . \tag{3.13}
\end{gather*}
$$

The proofs of 3.11 -3.13 are omitted since they are trivial. Then, for $\rho>\rho_{M}$, we have that $\rho-q(\rho, c)<1$ by (3.5), and

$$
\begin{aligned}
& \Psi(\rho, q(\rho, c)) \\
& =\int_{0}^{\rho} \frac{\theta(\rho)-\theta(s)}{\rho[F(\rho)-F(s)]^{3 / 2}} d s-2 \int_{q(\rho, c)}^{\rho} \frac{f^{\prime}(s) f(\rho)}{[f(s)]^{2} \sqrt{F(\rho)-F(s)}} d s \\
& >\int_{q(\rho, c)}^{\rho} \frac{2\left[1-\rho f(\rho) \frac{f^{\prime}(s)}{[f(s)]^{2}}\right][F(\rho)-F(s)]-[\rho f(\rho)-s f(s)]}{\rho[F(\rho)-F(s)]^{3 / 2}} d s \quad(\text { by } \\
& >\int_{q(\rho, c)}^{\rho} \frac{\frac{3}{2}[F(\rho)-F(s)]-[\rho f(\rho)-s f(s)]}{\rho[F(\rho)-F(s)]^{3 / 2}} d s(\text { by }) \\
& >0
\end{aligned}
$$

by (3.12). So Lemma 3.4(i) holds.
(II) We prove Lemma 3.4(ii). Let $\tilde{c}_{1}<\tilde{c}_{2}$ be arbitrary two positive numbers and suppose that $\frac{d}{d \rho} H_{\tilde{c}_{2}}\left(\rho, q\left(\rho, \tilde{c}_{2}\right)\right) \geq 0$ for some $\rho \geq \rho_{0}\left(\tilde{c}_{2}\right)$. Then, since

$$
\frac{\partial}{\partial q} \Psi(\rho, q)=2 \frac{f^{\prime}(q) f(\rho)}{[f(q)]^{2} \sqrt{F(\rho)-F(q)}}>0
$$

and $q\left(\rho, \tilde{c}_{1}\right)>q\left(\rho, \tilde{c}_{2}\right)$ for all $\rho \geq \rho_{0}\left(\tilde{c}_{2}\right)$ by Lemma 3.1(iv), we have

$$
\Psi\left(\rho, q\left(\rho, \tilde{c}_{1}\right)\right)>\Psi\left(\rho, q\left(\rho, \tilde{c}_{2}\right)\right) \geq 0 .
$$

Consequently, $\frac{d}{d \rho} H_{\tilde{c}_{1}}\left(\rho, q\left(\rho, \tilde{c}_{1}\right)\right)>\frac{d}{d \rho} H_{\tilde{c}_{2}}\left(\rho, q\left(\rho, \tilde{c}_{2}\right)\right)$ by 3.10. So Lemma 3.4 (ii) holds.
(III) We prove Lemma 3.4 (ii). Suppose there exist two positive numbers $\tilde{\rho}_{1}<\tilde{\rho}_{2}$ such that $G^{\prime}(\rho)>0$ for $\tilde{\rho}_{1} \leq \rho \leq \tilde{\rho}_{2}$. Then there exists $\epsilon>0$ such that $G^{\prime}(\rho) \geq \epsilon$ for $\tilde{\rho}_{1} \leq \rho \leq \tilde{\rho}_{2}$. By (3.5), there exists $\tilde{c}>0$ such that $\rho-q(\rho, c)<\frac{\epsilon^{2}}{16 e^{4 a}}$ for $\tilde{\rho}_{1} \leq \rho \leq \tilde{\rho}_{2}$ and $0<c \leq \tilde{c}$. This implies that

$$
\Psi(\rho, q(\rho, c)) \geq \sqrt{2} \epsilon-2 \int_{q(\rho, c)}^{\rho} \frac{e^{2 a}}{\sqrt{\rho-s}} d s=\sqrt{2} \epsilon-4 e^{2 a} \sqrt{\rho-q(\rho, c)}>0
$$

for $\tilde{\rho}_{1} \leq \rho \leq \tilde{\rho}_{2}$ and $0<c \leq \tilde{c}$. So Lemma 3.4 (iii) holds. The proof is complete.
We are now in a position to prove Theorem 2.1 .
Proof of Theorem 2.1. Case 1. $4 \leq a<a^{*} \approx 4.069$. Define set

$$
\begin{equation*}
I=\left\{c>0: \frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0 \text { on }\left(\rho_{0}(c), \infty\right)\right\} . \tag{3.14}
\end{equation*}
$$

We first show that I is nonempty. In fact, let c_{1} be defined in 3.6) and $\tilde{\rho}_{1}=\rho_{0}\left(c_{1}\right)$. Then, by Lemma 3.1 (viii), we have that, for $0<c<c_{1}$,

$$
\begin{equation*}
\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0 \quad \text { on }\left(\rho_{0}(c), \tilde{\rho}_{1}\right) \tag{3.15}
\end{equation*}
$$

On the other hand, by Lemma 3.4(i)-(ii) and letting $\tilde{\rho}_{2}=\rho_{M}\left(a, c_{1}\right)$, we have that, for $0<c<c_{1}$,

$$
\begin{equation*}
\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0 \quad \text { on } \quad\left[\tilde{\rho}_{2}, \infty\right) \tag{3.16}
\end{equation*}
$$

Moreover, by Lemma 3.3(i) and Lemma 3.4(iii), there exists a positive $\tilde{c}_{0}<c_{1}$ such that, for $0<c<\tilde{c}_{0}, \frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0$ on $\left[\tilde{\rho}_{1}, \tilde{\rho}_{2}\right]$. Hence, for $0<c<\tilde{c}_{0}$, $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0$ on $\left(\rho_{0}(c), \infty\right)$ and hence $\left(0, \tilde{c}_{0}\right) \subset I$. So I is nonempty.

Next, we show that I is a finite connected interval. Note that, by Lemma 3.1(vii), when $c \geq c_{1}, \frac{d}{d \rho} H_{c}(\rho, q(\rho, c))<0$ for ρ slightly larger than $\rho_{0}(c)$. Hence $T \subset\left(0, c_{1}\right)$. Moreover, if there exist $\bar{c} \in\left(0, c_{1}\right)$ such that $\bar{c} \notin I$, then there exists $\bar{\rho}>\rho_{0}(\bar{c})$ such that $\frac{d}{d \rho} H_{\bar{c}}(\bar{\rho}, q(\bar{\rho}, \bar{c})) \leq 0$. Then, by 3.15), we have that $\bar{\rho}>\tilde{\rho}_{1}$. It implies, by Lemma 3.4(ii), that, for $c \in\left(\bar{c}, c_{1}\right), \bar{\rho}\left(>\tilde{\rho}_{1}=\rho_{0}\left(c_{1}\right)\right)>\rho_{0}(c)$ and $\frac{d}{d \rho} H_{c}(\bar{\rho}, q(\bar{\rho}, c))<0$. Consequently, $\left(\bar{c}, c_{1}\right) \notin I$ and hence I is a finite connected interval.

By the definition of I, above arguments and Lemma 3.1(vii), we obtain that there exists a positive $c_{0}<c_{1}$ such that

$$
\begin{equation*}
I=\left(0, c_{0}\right) \tag{3.17}
\end{equation*}
$$

Moreover, when $c=c_{0}$,

$$
\begin{equation*}
\frac{d}{d \rho} H_{c_{0}}\left(\rho, q\left(\rho, c_{0}\right)\right) \geq 0 \quad \text { on }\left(\rho_{0}\left(c_{0}\right), \infty\right) \tag{3.18}
\end{equation*}
$$

and there exists $\tilde{\rho}>\rho_{0}\left(c_{0}\right)$ such that $\frac{d}{d \rho} H_{c_{0}}\left(\tilde{\rho}, q\left(\tilde{\rho}, c_{0}\right)\right)=0$. Indeed, such $\tilde{\rho}>\tilde{\rho}_{1}$ by 3.15. It follows that, by Lemma 3.4 (ii), for $c_{0}<c<c_{1}, \tilde{\rho}\left(>\tilde{\rho}_{1}\right)>\rho_{0}(c)$ and

$$
\begin{equation*}
\frac{d}{d \rho} H_{c}(\tilde{\rho}, q(\tilde{\rho}, c))<0 \tag{3.19}
\end{equation*}
$$

By the relationship between bifurcation curves \tilde{S}_{c} and the time map H_{c} from (3.2) and (3.3), we have the following conclusions:

Case (I). For $0<c<c_{0}$, that is, $c \in I$, the bifurcation curve \tilde{S}_{c} is strictly increasing on the $\left(\lambda,\|u\|_{\infty}\right)$-plane since $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0$ on $\left(\rho_{0}(c), \infty\right)$.

Case (II). For $c=c_{0}$, the bifurcation curve \tilde{S}_{c} is monotone increasing on the $\left(\lambda,\|u\|_{\infty}\right)$-plane by (3.18).

Case (III). For $c_{0}<c<c_{1}$, the bifurcation curve \tilde{S}_{c} is S-shaped on the
 on $\left[\tilde{\rho}_{2}, \infty\right)$ by 3.16, and $\frac{d}{d \rho} H_{c}(\tilde{\rho}, q(\tilde{\rho}, c))<0$ by 3.19.

We next show that the S-shaped bifurcation curve \tilde{S}_{c} could be of either type 1, type 2 or type 3 for some value c on $\left(c_{0}, c_{1}\right)$.

Case (III)(a). The existence of type $1 S$-shaped bifurcation curves \tilde{S}_{c}. Since $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0$ on $\left[\tilde{\rho}_{2}, \infty\right)$ by 3.16), we have that, for $c_{0}<c<c_{1}$,

$$
\begin{align*}
\min _{\rho \geq \tilde{\rho}_{1}} H_{c}(\rho, q(\rho, c)) & =\min _{\tilde{\rho}_{1} \leq \rho \leq \tilde{\rho}_{2}} H_{c}(\rho, q(\rho, c)) \\
& >\min _{\tilde{\rho}_{1} \leq \rho \leq \tilde{\rho}_{2}} H_{c_{0}}\left(\rho, q\left(\rho, c_{0}\right)\right) \quad(\text { by Lemma 3.1(v) }) \tag{3.20}\\
& =H_{c_{0}}\left(\tilde{\rho}_{1}, q\left(\tilde{\rho}_{1}, c_{0}\right)\right)
\end{align*}
$$

by 3.18. On the other hand, by (3.15) and Lemma 3.1(v), we have that

$$
\begin{aligned}
H_{c_{0}}\left(\rho_{0}(c), q\left(\rho_{0}(c), c_{0}\right)\right) & <H_{c_{0}}\left(\tilde{\rho}_{1}, q\left(\tilde{\rho}_{1}, c_{0}\right)\right) \\
& <H_{c_{1}}\left(\tilde{\rho}_{1}, q\left(\tilde{\rho}_{1}, c_{1}\right)\right)=H_{c_{1}}\left(\rho_{0}(c), q\left(\rho_{0}(c), c_{1}\right)\right) .
\end{aligned}
$$

Consequently, by the intermediate value theorem, there exists $c_{1,1} \in\left(c_{0}, c_{1}\right)$ such that

$$
\begin{equation*}
H_{c_{1,1}}\left(\rho_{0}\left(c_{1,1}\right), q\left(\rho_{0}\left(c_{1,1}\right), c_{1,1}\right)\right)=H_{c_{0}}\left(\tilde{\rho}_{1}, q\left(\tilde{\rho}_{1}, c_{0}\right)\right) \tag{3.21}
\end{equation*}
$$

Hence, for $0<c<c_{1,1}$,

$$
\begin{aligned}
H_{c}\left(\rho_{0}(c), q\left(\rho_{0}(c), c\right)\right) & =G\left(\rho_{0}(c)\right) \quad(\text { by Lemma } 3.2(\mathrm{i})) \\
& <G\left(\rho_{0}\left(c_{1,1}\right)\right) \quad(\text { by Lemma } 3.3(\mathrm{i}) \text { and Lemma 3.1(iii)) } \\
& =H_{c_{1,1}}\left(\rho_{0}\left(c_{1,1}\right), q\left(\rho_{0}\left(c_{1,1}\right), c_{1,1}\right)\right) \quad(\text { by Lemma 3.2(i)) } \\
& \left.=H_{c_{0}}\left(\tilde{\rho}_{1}, q\left(\tilde{\rho}_{1}, c_{0}\right)\right) \quad(\text { by } 3.21)\right) \\
& <\min _{\rho \geq \tilde{\rho}_{1}} H_{c}(\rho, q(\rho, c))
\end{aligned}
$$

by 3.20. It then follows, by 3.15, that

$$
H_{c}\left(\rho_{0}(c), q\left(\rho_{0}(c), c\right)\right)<H_{c}(\rho, q(\rho, c))
$$

for $\rho>\rho_{0}(c)$. It implies that, for $0<c \leq c_{1,1}$, the S-shaped bifurcation curve \tilde{S}_{c} is of type 1 on the $\left(\lambda,\|u\|_{\infty}\right)$-plane.

Case (III)(b). The existence of type $3 S$-shaped bifurcation curves \tilde{S}_{c}. The proof of this part is the same as that given in [8, Proof of Theorem 2.4, Cases (i)(b)] and hence the proof is omitted.

Case (III)(c). The existence of a type $2 S$-shaped bifurcation curve \tilde{S}_{c}. The proof of this part is the same as that given in [8, Proof of Theorem 2.4, Case (i)(c)] and hence the proof is omitted.

Case (IV). For $c>c_{1}$, the bifurcation curve \tilde{S}_{c} is \subset-shaped on the $\left(\lambda,\|u\|_{\infty}\right)$ plane since $\lim _{\rho \rightarrow \rho_{0}(c)^{+}} \frac{d}{d \rho} H_{c}(\rho, q(\rho, c))<0$ by 3.6) and since $\frac{d}{d \rho} H_{c}(\rho, q(\rho, c))>0$ for $\rho \geq \rho_{M}(a, c)$ by Lemma 3.4(i).

Case 2. $a=a^{*} \approx 4.069$. Let ρ^{*} be the unique positive number such that $G^{\prime}\left(\rho^{*}\right)=0$ as defined in Lemma 3.3(ii). Then, for $c>0, \frac{d}{d \rho} H_{c}\left(\rho^{*}, q\left(\rho^{*}, c\right)\right)<0$ by Lemma 3.2(ii). Hence the bifurcation curve \tilde{S}_{c} must not be monotone increasing on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. Or equivalently, $c_{0}=0$ if we similarly define $I=\left(0, c_{0}\right)$ as in (3.14) and (3.17) in Case 1. The remaining parts of the proof in this case followed by similar arguments stated in above Case 1 and hence they are omitted here.

Case 3. $a^{*}<a<a_{1}$. Note that, by Lemma 3.3(iii), Equation (3.9) holds for all $a>a^{*}$. Thus the proof of this part followed by same arguments given as in [8, Proof of Theorem 2.4] and hence the proof is omitted here.

Finally, we remark that the proof of the estimation of $c_{1}>1.057$ for $4 \leq a<a_{1}$ is the same as the one computed in [8, Proof of Theorem 2.4, part (III)] and the
multiplicity result of positive solutions for 1.1 in each case follows immediately from the definition of shapes of bifurcations curves, see e.g., Figures 1 and 2 . The proof is complete.
Acknowledgements. This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-007-001-MY2.

References

[1] K. J. Brown, M. M. A. Ibrahim, R. Shivaji; S-shaped bifurcation curves, Nonlinear Anal., 5 (1981), 475-486.
[2] J. Goddard II, R. Shivaji, E. K. Lee; A double S-shaped bifurcation curve for a reactiondiffusion model with nonlinear boundary conditions, Bound. Value Probl., (2010), Art. ID 357542, 23 pages.
[3] S.-Y. Huang, S.-H. Wang; Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Rational Mech. Anal., 222 (2016), 769-825.
[4] K.-C. Hung, S.-H. Wang; A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251 (2011), 223-237.
[5] K.-C. Hung, S.-H. Wang, C.-H. Yu; Existence of a double S-shaped bifurcation curve with six positive solutions for a combustion problem, J. Math. Anal. Appl., 392 (2012), 40-54.
[6] P. Korman, Y. Li; On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011-1020.
[7] T. Laetsch; The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13.
[8] Y.-H. Liang, S.-H. Wang; Classification and evolution of bifurcation curves for the onedimensional perturbed Gelfand equation with mixed boundary conditions, J. Differential Equations, 260 (2016), 8358-8387.
[9] J. Shi; Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494531.

Yu-Hao Liang (Corresponding author)
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, TAIWAN

E-mail address: yhliang@nctu.edu.tw
Shin-Hwa Wang
Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan
E-mail address: shwang@math.nthu.edu.tw

[^0]: 2010 Mathematics Subject Classification. 34B18, 74G35.
 Key words and phrases. Multiplicity; positive solution; perturbed Gelfand equation;
 S-shaped bifurcation curve; C-shaped bifurcation curve; time map.
 © 2017 Texas State University.
 Submitted November 30, 2016. Published February 28, 2017.

