Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 61, pp. 1–12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

CLASSIFICATION AND EVOLUTION OF BIFURCATION CURVES FOR THE ONE-DIMENSIONAL PERTURBED GELFAND EQUATION WITH MIXED BOUNDARY CONDITIONS II

YU-HAO LIANG, SHIN-HWA WANG

Communicated by Paul H. Rabinowitz

ABSTRACT. In this article, we study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand equation with mixed boundary conditions,

$$u''(x) + \lambda \exp\left(\frac{au}{a+u}\right) = 0, \quad 0 < x < 1,$$

$$u(0) = 0, \quad u'(1) = -c < 0,$$

where $4 \leq a < a_1 \approx 4.107$. We prove that, for $4 \leq a < a_1$, there exist two nonnegative $c_0 = c_0(a) < c_1 = c_1(a)$ satisfying $c_0 > 0$ for $4 \leq a < a^* \approx 4.069$, and $c_0 = 0$ for $a^* \leq a < a_1$, such that, on the $(\lambda, ||u||_{\infty})$ -plane, (i) when $0 < c < c_0$, the bifurcation curve is strictly increasing; (ii) when $c = c_0$, the bifurcation curve is monotone increasing; (iii) when $c_0 < c < c_1$, the bifurcation curve is S-shaped; (iv) when $c \geq c_1$, the bifurcation curve is \subset shaped. This work is a continuation of the work by Liang and Wang [8] where authors studied this problem for $a \geq a_1$, and our results partially prove a conjecture on this problem for $4 \leq a < a_1$ in [8].

1. INTRODUCTION

In this article, we study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand equation with mixed (or more precisely, Dirichlet-Neumann) boundary conditions given by

$$u''(x) + \lambda \exp\left(\frac{au}{a+u}\right) = 0, \quad 0 < x < 1,$$

$$u(0) = 0, \quad u'(1) = -c < 0,$$

(1.1)

where $\lambda > 0$ is treated as a bifurcation parameter, c > 0 is treated as an evolution parameter, and constant *a* satisfies $4 \le a < a_1 \approx 4.107$ where constant a_1 is defined in [4, (3.23)]. The bifurcation curve of positive solutions of (1.1) is defined by

 $\tilde{S}_c = \{(\lambda, ||u_\lambda||_\infty) : \lambda > 0 \text{ and } u_\lambda \text{ is a positive solution of } (1.1)\}.$

²⁰¹⁰ Mathematics Subject Classification. 34B18, 74G35.

Key words and phrases. Multiplicity; positive solution; perturbed Gelfand equation; S-shaped bifurcation curve; \subset -shaped bifurcation curve; time map.

^{©2017} Texas State University.

Submitted November 30, 2016. Published February 28, 2017.

This work is a continuation of our previous work in [8] where we studied (1.1) for $a \ge a_1$. It is worthwhile noting that the classification and evolution of bifurcation curves \tilde{S}_c of (1.1) is closely related to the one resulting from the same differential equation in (1.1) with zero Dirichlet boundary conditions [2, 5, 8], that is,

$$u''(x) + \lambda \exp\left(\frac{au}{a+u}\right) = 0, \quad 0 < x < 1,$$

$$u(0) = 0, \quad u(1) = 0.$$
 (1.2)

The bifurcation curve of positive solutions of (1.2) is defined by

$$S = \{ (\lambda, \|u_{\lambda}\|_{\infty}) : \lambda > 0 \text{ and } u_{\lambda} \text{ is a positive solution of } (1.2) \}.$$

Before going into further discussions on problems (1.1) and (1.2), we first give some terminologies in this paper for the shapes of bifurcation curves \tilde{S}_c on the $(\lambda, ||u||_{\infty})$ -plane (Following terminology also hold for S if \tilde{S}_c is replaced by S.)

FIGURE 1. Three different types of exactly *S*-shaped bifurcation curves \tilde{S}_c with $\lambda_0 > 0$ and $||u_{\lambda_0}||_{\infty} > 0$. (i) Type 1. (ii) Type 2. (iii) Type 3.

- S-shaped: The bifurcation curve \tilde{S}_c on the $(\lambda, ||u||_{\infty})$ -plane is said to be Sshaped if \tilde{S}_c has at least two turning points, say $(\lambda^*, ||u_{\lambda^*}||_{\infty})$ and $(\lambda_*, ||u_{\lambda_*}||_{\infty})$, satisfying $\lambda_* < \lambda^*$ and $||u_{\lambda^*}||_{\infty} < ||u_{\lambda_*}||_{\infty}$, and
 - (i) \tilde{S}_c starts at some point $(\lambda_0, ||u_{\lambda_0}||_{\infty})$ and initially continues to the *right*,
 - (ii) at $(\lambda^*, ||u_{\lambda^*}||_{\infty})$, \hat{S}_c turns to the *left*,
 - (iii) at $(\lambda_*, ||u_{\lambda_*}||_{\infty})$, \tilde{S}_c turns to the right,
 - (iv) \tilde{S}_c tends to infinity as $\lambda \to \infty$. That is, $\lim_{\lambda \to \infty} \|u_\lambda\|_{\infty} = \infty$.
- **Exactly** S-shaped: The bifurcation curve \tilde{S}_c on the $(\lambda, ||u||_{\infty})$ -plane is said to be *exactly* S-shaped if \tilde{S}_c is S-shaped and it has *exactly two* turning points; see Figure 1.
- **Type 1/2/3** S-shaped: Assume that the bifurcation curve \tilde{S}_c is S-shaped on the $(\lambda, ||u||_{\infty})$ -plane. Let $(\lambda_0, ||u_{\lambda_0}||_{\infty})$ be the starting point of \tilde{S}_c , and

 $\bar{\lambda}_{\min} \equiv \min\{\lambda : (\lambda, \|u_{\lambda}\|_{\infty}) \text{ is a turning point of } \tilde{S}_{c}\}.$

Then \tilde{S}_c is said to be type 1 (resp., type 2 and type 3) *S*-shaped if $\lambda_0 < \bar{\lambda}_{\min}$ (resp., $\lambda_0 = \bar{\lambda}_{\min}$ and $\lambda_0 > \bar{\lambda}_{\min}$); see Figure 1(i) (resp., Figure 1(ii) and 1(iii)).

 \subset -shaped: The bifurcation curve \tilde{S}_c on the $(\lambda, ||u||_{\infty})$ -plane is said to be \subset -shaped if \tilde{S}_c has at least one turning point $(\lambda_*, ||u_{\lambda_*}||_{\infty})$, and

- (i) \tilde{S}_c starts at some point $(\lambda_0, ||u_{\lambda_0}||_{\infty})$ and initially continues to the *left*,
- (ii) at $(\lambda_*, ||u_{\lambda_*}||_{\infty})$, \tilde{S}_c turns to the right,
- (iii) $\lambda_* < \lambda_0$ and $||u_{\lambda_0}||_{\infty} < ||u_{\lambda_*}||_{\infty}$,
- (iv) \hat{S}_c tends to infinity as $\lambda \to \infty$. That is, $\lim_{\lambda \to \infty} ||u_{\lambda}||_{\infty} = \infty$.
- **Exactly** \subset -shaped: The bifurcation curve \hat{S}_c on the $(\lambda, ||u||_{\infty})$ -plane is said to be *exactly* \subset -shaped if \tilde{S}_c is \subset -shaped and it has *exactly one* turning point; see Figure 2.

FIGURE 2. Exactly \subset -shaped bifurcation curve \tilde{S}_c with $\lambda_0 > 0$ and $\|u_{\lambda_0}\|_{\infty} > 0$.

Strictly/Monotone increasing: The bifurcation curve \tilde{S}_c on the $(\lambda, ||u||_{\infty})$ plane is said to be *strictly (resp., monotone) increasing* if $\lambda_1 < \lambda_2$ (resp., $\lambda_1 \leq \lambda_2$) for any two points $(\lambda_i, ||u_{\lambda_i}||_{\infty})$, i = 1, 2, lying in \tilde{S}_c with $||u_{\lambda_1}||_{\infty} < ||u_{\lambda_2}||_{\infty}$.

For (1.2), it has been a long-standing conjecture [1, 6, 9] that there exists a positive critical bifurcation value $a^* \approx 4.07 > 4$ such that, on the $(\lambda, ||u||_{\infty})$ -plane, the bifurcation curve S is strictly increasing for $0 < a \leq a^*$ and is exactly type 1 S-shaped for $a > a^*$. Very recently, Huang and Wang [3] gave a rigorous proof of this conjecture for (1.2). Their main result is stated in the next theorem.

Theorem 1.1 ([3, Theorem 4 and Fig. 1]). Consider (1.2) with varying a > 0. Then, on the $(\lambda, ||u||_{\infty})$ -plane, the bifurcation curve S of (1.2) is a continuous curve which starts at the origin and it tends to infinity as $\lambda \to \infty$. Moreover, there exists a critical bifurcation value $a^* \approx 4.069$ satisfying $4 < a^* < a_1 \approx 4.107$ such that the following assertions (i)-(iii) hold:

- (i) For a > a^{*}, the bifurcation curve S is exactly type 1 S-shaped on the (λ, ||u||_∞)-plane. Moreover, all positive solutions u_λ are nondegenerate except that u_{λ*} and u_{λ*} are degenerate for some positive λ_{*} < λ^{*}.
- (ii) For a = a*, the bifurcation curve S is strictly increasing on the (λ, ||u||_∞)-plane. Moreover, all positive solutions u_λ are nondegenerate except that u_{λ₀} is degenerate for some positive λ₀.
- (iii) For $0 < a < a^*$, the bifurcation curve S is strictly increasing on the $(\lambda, ||u||_{\infty})$ -plane. Moreover, all positive solutions u_{λ} are nondegenerate.

For (1.1), Liang and Wang [8] proved the next theorem with any fixed $a > a_1 \approx 4.107$.

Theorem 1.2 ([8, Theorem 2.4] and see e.g., Figure 3 with a = 5). Consider (1.1) with any fixed $a > a_1 \approx 4.107$. Then, on the $(\lambda, ||u||_{\infty})$ -plane, the bifurcation curve \tilde{S}_c of (1.1) is a continuous curve which starts at some point $(\lambda_0, ||u_{\lambda_0}||_{\infty})$ with $\lambda_0 > 0$ and $||u_{\lambda_0}||_{\infty} > 0$ and it tends to infinity as $\lambda \to \infty$. Moreover, there exists $c_1 = c_1(a) > 1.057$ such that the following two assertions (i) and (ii) hold:

- (i) For $0 < c < c_1$, the bifurcation curve \tilde{S}_c is S-shaped on the $(\lambda, ||u||_{\infty})$ plane. More precisely, there exist three positive $c_{1,1} \leq c_{1,2} \leq c_{1,3}$ on $(0, c_1)$, all depending on a, such that the S-shaped bifurcation curve \tilde{S}_c belongs to type 1, type 2 and type 3 when $0 < c < c_{1,1}$, $c = c_{1,2}$ and $c_{1,3} < c < c_1$, respectively.
- (ii) For $c \ge c_1$, the bifurcation curve \tilde{S}_c is \subset -shaped on the $(\lambda, ||u||_{\infty})$ -plane.

FIGURE 3. Numerical simulations of bifurcation curves S and S_c for a = 5 and varying c > 0 on the $(\lambda, ||u||_{\infty})$ -plane of the bilogarithm coordinates. Here $c_{1,2}^- < c_{1,2} \approx 0.488 < c_{1,2}^+ < c_1 \approx 1.365 < c_1^+ < c_2 \approx 7.718 < c_2^+ < c_3 \approx 47.711 < c_3^+$ (adopted from [8, Fig. 4]).

This article is organized as follows: Section 2 contains statements of the main result. Section 3 contains the proof of the main result.

2. Main result

In this section, we give our main result (Theorem 2.1) for problem (1.1) with $4 \leq a < a_1 \approx 4.107$, where classification and evolution of bifurcation curves \tilde{S}_c for (1.1) with varying c > 0 are studied. Theorem 2.1 with $4 \leq a < a_1$ extends Theorem 1.2 with $a \geq a_1$, and we obtain a more complicated evolution of bifurcation curves \tilde{S}_c with varying c > 0. Note that some basic properties and ordering properties of bifurcation curves \tilde{S}_c for positive a and c, on the $(\lambda, ||u||_{\infty})$ -plane have been discussed in [8, Theorems 2.1 and 2.2].

Theorem 2.1 (See Figure 4). Consider (1.1) for any fixed a satisfying $4 \le a < a_1 \approx 4.107$. Then there exist two nonnegative $c_0 = c_0(a) < c_1 = c_1(a)$ satisfying $c_0 > 0$ for $4 \le a < a^*$ approx 4.069, $c_0 = 0$ for $a^* \le a < a_1$, and $c_1 > 1.057$ for $4 \le a < a_1$, such that the following assertions (I)–(IV) hold:

- (i) For $0 < c < c_0$, the bifurcation curve \tilde{S}_c is strictly increasing on the $(\lambda, ||u_\lambda||_{\infty})$ -plane. Moreover, there exists a positive λ_0 such that (1.1) has no positive solution for $0 < \lambda < \lambda_0$, and exactly one positive solution for $\lambda \ge \lambda_0$.
- (ii) For $c = c_0$, the bifurcation curve \hat{S}_c is monotone increasing on the $(\lambda, ||u_\lambda||_{\infty})$ plane. Moreover, there exists a positive λ_0 such that (1.1) has no positive solution for $0 < \lambda < \lambda_0$, and at least one positive solution for $\lambda \ge \lambda_0$.
- (iii) (See Figure 1.) For c₀ < c < c₁, the bifurcation curve S_c is S-shaped on the (λ, ||u_λ||_∞)-plane. More precisely, there exist three positive c_{1,1} ≤ c_{1,2} ≤ c_{1,3} on (c₀, c₁), all depending on a, such that the following three assertions hold:
 - (a) (See Figure 1(i)) If c₀ < c < c_{1,1}, then the bifurcation curve S_c is type 1 S-shaped on the (λ, ||u||_∞)-plane. Moreover, there exist three positive λ₀ < λ_{*} < λ^{*} which are all strictly increasing functions of c on (c₀, c_{1,1}) such that (1.1) has no positive solution for 0 < λ < λ₀, at least one positive solution for λ₀ ≤ λ < λ_{*} and λ > λ^{*}, at least two positive solutions for λ = λ_{*} and λ = λ^{*}, and at least three positive solutions for λ_{*} < λ < λ^{*}.
 - (b) (See Figure 1(ii)) If c = c_{1,2}, then the bifurcation curve S̃_c is type 2 S-shaped on the (λ, ||u||_∞)-plane. Moreover, there exist three positive λ₀ = λ_{*} < λ^{*} such that (1.1) has no positive solution for 0 < λ < λ₀, at least one positive solution for λ > λ^{*}, at least two positive solutions for λ = λ_{*} and λ = λ^{*}, and at least three positive solutions for λ_{*} < λ < λ^{*}.
 - (c) (See Figure 1(iii)) If c_{1,3} < c < c₁, then the bifurcation curve S
 c is type 3 S-shaped on the (λ, ||u||∞)-plane. Moreover, there exist three positive λ{*} < λ₀ < λ^{*} which are all strictly increasing functions of c on (c_{1,3}, c₁) such that (1.1) has no positive solution for 0 < λ < λ_{*}, at least one positive solution for λ = λ_{*} and λ > λ^{*}, at least two positive solutions for λ^{*} < λ < λ₀ and λ = λ^{*}, and at least three positive solutions for λ₀ ≤ λ < λ^{*}.
- (iv) (See Figure 2) For $c \ge c_1$, the bifurcation curve \hat{S}_c is \subset -shaped on the $(\lambda, ||u||_{\infty})$ -plane. Moreover, there exist two positive $\lambda_* < \lambda_0$ such that (1.1) has no positive solution for $0 < \lambda < \lambda_*$, at least one positive solution for $\lambda = \lambda_*$ and $\lambda > \lambda_0$, and at least two positive solutions for $\lambda_* < \lambda \le \lambda_0$.

Remark 2.2. By Theorem 2.1, we conclude that, on the $(\lambda, ||u_{\lambda}||_{\infty})$ -plane, (i) For $4.069 \approx a^* \leq a < a_1 \approx 4.107$, since $c_0 = c_0(a) = 0$, the bifurcation curve \tilde{S}_c evolves from an S-shaped curve to a \subset -shaped curve as the evolution parameter varies from 0^+ to ∞ , which shows the same evolution for $a \geq a_1$, as claimed in Theorem 1.2. It then implies, by Theorem 1.1, that such evolution is persistent whenever the bifurcation curve S of (1.2) is exactly type 1 S-shaped on the $(\lambda, ||u_{\lambda}||_{\infty})$ -plane; (ii) For $4 \leq a < a^*$, since $c_0 > 0$, the bifurcation curve \tilde{S}_c evolves from a strictly increasing curve to a monotone increasing curve, then to an S-shaped curve, and

FIGURE 4. Numerical simulations of bifurcation curves S and \tilde{S}_c for a = 4 and varying c > 0 on the $(\lambda, ||u||_{\infty})$ -plane of the bilogarithm coordinates. Here $0 < c_0^- < c_0 \approx 0.10 < c_{1,2}^- < c_{1,2} \approx 0.85 < c_{1,2}^+ < c_1 \approx 1.39 < c_{11}^+ < c_{12}^+$ (adopted from [8, Fig. 7]).

finally to a \subset -shaped curve when c varying from 0^+ to ∞ . It partially verifies a conjecture on problem (1.1) for $4 \leq a < a^*$ proposed in [8, Theorem 2.3] and shows the emergence of more complicated evolution of bifurcation curves \tilde{S}_c with varying c > 0.

3. Proof of the main result

To prove our main result (Theorem 2.1) on problem (1.1), we modify timemap technique (the quadrature method) used in [2, 8]. We shall recall some welldeveloped results in [8]. First, for fixed a, c > 0, we define

$$\tilde{H}_{c}(\rho,q) = 2\int_{0}^{\rho} \frac{ds}{\sqrt{F(\rho) - F(s)}} - \int_{0}^{q} \frac{ds}{\sqrt{F(\rho) - F(s)}} - \frac{c}{\sqrt{F(\rho) - F(q)}}$$
(3.1)

for $0 \leq q < \rho$, where $f(s) = \exp\left(\frac{as}{a+s}\right)$ and $F(s) = \int_0^s f(t)dt$; see [8, (3.6)]. For fixed a, c > 0, let $\rho_0 = \rho_0(c)$ be the unique positive number such that $\tilde{H}_c(\rho_0, 0) = 0$, where the existence and uniqueness of ρ_0 are proved in [8, Lemma 3.2(ii)]. Then it can be proved that, for fixed a, c > 0 and $\rho \geq \rho_0$, $\tilde{H}_c(\rho, q)$ has a unique zero $q(\rho, c)$ on $[0, \rho)$; see [8, Lemma 3.2(iv)]. Moreover, the time map formula for mixed boundary value problem (1.1) is defined as

$$H_c(\rho, q(\rho, c)) \equiv \frac{c^2}{2 \left[F(\rho) - F(q(\rho, c)) \right]} \quad \text{for } \rho \ge \rho_0(c), \tag{3.2}$$

see [8, (3.26)]. Then it can be easily derived, by similar arguments as given in [2, Theorem 3.3] or [8, (3.26) and (3.27)], that positive solutions u of (1.1) correspond

$$||u||_{\infty} = \rho \quad \text{and} \quad H_c(\rho, q(\rho, c)) = \lambda.$$
(3.3)

Thus studying the shape of the bifurcation curve \tilde{S}_c of (1.1) for a, c > 0 is equivalent to studying the shape of the time map $H_c(\rho, q(\rho, c))$ for $\rho \ge \rho_0$.

To prove Theorem 2.1, we need the following Lemmas 3.1–3.4. First, in Lemma 3.1, we record some results on the time map formula $H_c(\rho, q(\rho, c))$ in [8].

Lemma 3.1. Fix $a \ge 4$ and consider $H_c(\rho, q(\rho, c))$ for c > 0 and $\rho \ge \rho_0$. Then the following assertions (i)–(ix) hold:

(i) [8, Lemma 3.2(iv)] For c > 0, if $0 < \rho < \rho_0(c)$, then $\hat{H}_c(\rho, q)$ has no zero q on $[0, \rho)$, while if $\rho \ge \rho_0(c)$, then $\tilde{H}_c(\rho, q)$ has a unique zero $q(\rho, c)$ on $[0, \rho)$, that is,

$$H_c(\rho, q(\rho, c)) = 0.$$
 (3.4)

Moreover, $q(\rho, c) = 0$ if and only if $\rho = \rho_0(c)$.

(ii) [8, Lemma 3.2(vi)] For c > 0 and $\rho \ge \rho_0$,

$$0 < \rho - q(\rho, c) \le \frac{c^2 e^a}{4\rho}.$$
 (3.5)

- (iii) [8, Lemma 3.2(vii)] $\rho_0(c) \in C(0,\infty)$ is a strictly increasing function of c on $(0,\infty)$.
- (iv) [8, Lemma 3.2(viii)] For $\rho > 0$, $q(\rho, c) \in C(0, \hat{c}] \cap C^1(0, \hat{c})$ is a strictly decreasing function of c on $(0, \hat{c}]$. Here $\hat{c} = \sqrt{2F(\rho)} G(\rho)$.
- (v) [8, Lemma 3.4(i)] For any two positive numbers $\tilde{c}_1 < \tilde{c}_2$, $H_{\tilde{c}_1}(\rho, q(\rho, \tilde{c}_1)) < H_{\tilde{c}_2}(\rho, q(\rho, \tilde{c}_2))$ for $\rho \ge \rho_0(\tilde{c}_2)$.
- (vi) [8, Lemma 3.5(i)] There exists a unique positive $c_1 = c_1(a)$ such that

$$\lim_{\rho \to \rho_0(c)^+} \frac{d}{d\rho} H_c(\rho, q(\rho, c)) \begin{cases} > 0 & when \ c \in (0, c_1), \\ = 0 & when \ c = c_1, \\ < 0 & when \ c \in (c_1, \infty). \end{cases}$$
(3.6)

- (vii) [8, Lemma 3.5(ii)] For $c \ge c_1$, there exists $\bar{\rho}(c) > \rho_0(c)$ such that $\frac{d}{d\rho}H_c(\rho,q(\rho,c)) < 0$ for $\rho_0(c) < \rho < \bar{\rho}(c)$.
- (viii) [8, Lemma 3.5(iii)] For $0 < c < c_1$ and $\rho_0(c) < \rho < \rho_0(c_1)$, $\frac{d}{d\rho}H_c(\rho, q(\rho, c)) > 0$.

On the other hand, for zero Dirichlet boundary value problem (1.2), its time map formula is defined as

$$G(\rho) \equiv \sqrt{2} \int_0^{\rho} \frac{ds}{\sqrt{F(\rho) - F(s)}} \quad \text{for } \rho > 0,$$
(3.7)

see [1, 4, 7]. Then positive solutions u of (1.2) correspond to

$$||u||_{\infty} = \rho \quad \text{and} \quad G(\rho) = \sqrt{\lambda}.$$
 (3.8)

Thus studying the shape of the bifurcation curve of (1.2) for a > 0 is equivalent to studying the shape of the time map $G(\rho)$ on $[0, \infty)$. It is worthwhile to point out that the first term of $\tilde{H}_c(\rho, q)$ defined in the right hand side of (3.1) is equal to $\sqrt{2}G(\rho)$, which implies that $G(\rho)$ has an influence on $H_c(\rho, q(\rho, c))$ (or say that the shape of the bifurcation curve \tilde{S}_c of (1.1) is correlated with the shape of the bifurcation curve S of (1.2).) In the next Lemma 3.2, we record some results on the relationship between $H_c(\rho, q(\rho, c))$ and $G(\rho)$ in [8].

Lemma 3.2. Fix a > 0 and consider $G(\rho)$ for $\rho > 0$ and $H_c(\rho, q(\rho, c))$ for $\rho \ge \rho_0$ and c > 0. Then the following two assertions hold:

- (i) [8, Lemma 3.3(i)] For c > 0 and $\rho \ge \rho_0$, $H_c(\rho, q(\rho, c)) \le [G(\rho)]^2$, and the equality holds if and only if $\rho = \rho_0$.
- (ii) [8, Lemma 3.6] If $G'(\rho) \le 0$ for some $\rho > 0$, then $\frac{d}{d\rho}H_c(\rho, q(\rho, c)) < 0$ for $0 < c < \hat{c}$.

In the next lemma we record the sign of derivatives of the time map formula $G(\rho)$ for $\rho > 0$ in [3].

Lemma 3.3 ([3, Theorem 4]). Consider (1.2) with varying a > 0. There exists a critical bifurcation value $a^* \approx 4.069$ satisfying $4 < a^* < a_1 \approx 4.107$ such that the following three assertions hold:

- (i) For $0 < a < a^*$, $G'(\rho) > 0$ for all $\rho > 0$.
- (ii) For $a = a^*$, there exist a unique positive ρ^* such that $G'(\rho^*) = 0$ and $G'(\rho) > 0$ for all $\rho > 0$ and $\rho \neq \rho^*$.
- (iii) For $a > a^*$, there exist two positive $\bar{\rho}_1 < \bar{\rho}_2$ such that

$$G'(\rho) \begin{cases} < 0 & when \ \rho \in (\bar{\rho}_1, \bar{\rho}_2), \\ = 0 & when \ \rho = \bar{\rho}_1 \ or \ \bar{\rho}_2, \\ > 0 & when \ \rho \in (0, \bar{\rho}_1) \cup (\bar{\rho}_2, \infty). \end{cases}$$
(3.9)

Lemma 3.4. Fix $a \ge 4$ and consider $H_c(\rho, q(\rho, c))$ for $\rho \ge \rho_0$ and c > 0. Then the following three assertions hold:

- (i) For any c > 0, there exists a positive $\rho_M = \rho_M(a, c) \ge \rho_0$ such that $\frac{d}{d\rho}H_c(\rho, q(\rho, c)) > 0$ for $\rho \ge \rho_M$.
- (ii) For any two positive numbers $\tilde{c}_1 < \tilde{c}_2$ and $\rho \ge \rho_0(\tilde{c}_2)$, if $\frac{d}{d\rho}H_{\tilde{c}_2}(\rho, q(\rho, \tilde{c}_2)) \ge 0$, then $\frac{d}{d\rho}H_{\tilde{c}_1}(\rho, q(\rho, \tilde{c}_1)) > 0$.
- (iii) If there exist two positive numbers $\tilde{\rho}_1 < \tilde{\rho}_2$ such that $G'(\rho) > 0$ for $\tilde{\rho}_1 \le \rho \le \tilde{\rho}_2$, then there exists a positive $\tilde{c} = \tilde{c}(a)$ such that $\frac{d}{d\rho}H_c(\rho,q(\rho,c)) > 0$ for $\tilde{\rho}_1 \le \rho \le \tilde{\rho}_2$ and $0 < c < \tilde{c}$.

Proof. Note first that, as computed in [8, (3.3), (3.30), (3.31) and the last equation in the proof of Lemma 3.6],

$$\frac{d}{d\rho}H_{c}(\rho,q(\rho,c)) = \frac{c^{2}f(q(\rho,c))}{2\left[F(\rho) - F(q(\rho,c))\right]^{1/2}\left\{2\left[F(\rho) - F(q(\rho,c))\right] + cf(q(\rho,c))\right\}}\Psi(\rho,q(\rho,c)) \tag{3.10}$$

where

$$\begin{split} \Psi(\rho, q(\rho, c)) &= \sqrt{2} G'(\rho) - 2 \int_{q(\rho, c)}^{\rho} \frac{f'(s) f(\rho)}{[f(s)]^2 \sqrt{F(\rho) - F(s)}} ds \\ &= \int_{0}^{\rho} \frac{\theta(\rho) - \theta(s)}{\rho \left[F(\rho) - F(s)\right]^{3/2}} ds - 2 \int_{q(\rho, c)}^{\rho} \frac{f'(s) f(\rho)}{[f(s)]^2 \sqrt{F(\rho) - F(s)}} ds \end{split}$$

and $\theta(\rho) = 2F(\rho) - \rho f(\rho)$. Hence studying the sign of $\frac{d}{d\rho}H_c(\rho, q(\rho, c))$ is equivalent to studying that of $\Psi(\rho, q(\rho, c))$.

(I) We prove Lemma 3.4(i). For fixed c > 0, it can be verified easily that there exists a sufficiently large $\rho_M > c^2 e^a$ such that, for $\rho > \rho_M$, the following three inequalities hold:

$$\theta(\rho) - \theta(s) > 0 \quad \text{for } 0 \le s < \rho, \tag{3.11}$$

$$\left[\frac{3}{2}F(\rho) - \rho f(\rho)\right] - \left[\frac{3}{2}F(s) - sf(s)\right] > 0 \quad \text{for } 0 \le s < \rho, \tag{3.12}$$

$$\rho f(\rho) \frac{f'(s)}{[f(s)]^2} < \frac{1}{4} \quad \text{for } \rho - 1 < s < \rho.$$
(3.13)

The proofs of (3.11)–(3.13) are omitted since they are trivial. Then, for $\rho > \rho_M$, we have that $\rho - q(\rho, c) < 1$ by (3.5), and

$$\begin{split} &\Psi(\rho,q(\rho,c)) \\ &= \int_{0}^{\rho} \frac{\theta(\rho) - \theta(s)}{\rho \left[F(\rho) - F(s)\right]^{3/2}} ds - 2 \int_{q(\rho,c)}^{\rho} \frac{f'(s)f(\rho)}{[f(s)]^2 \sqrt{F(\rho) - F(s)}} ds \\ &> \int_{q(\rho,c)}^{\rho} \frac{2[1 - \rho f(\rho) \frac{f'(s)}{[f(s)]^2}][F(\rho) - F(s)] - [\rho f(\rho) - sf(s)]}{\rho [F(\rho) - F(s)]^{3/2}} ds \quad (by \ (3.11)) \\ &> \int_{q(\rho,c)}^{\rho} \frac{\frac{3}{2}[F(\rho) - F(s)] - [\rho f(\rho) - sf(s)]}{\rho [F(\rho) - F(s)]^{3/2}} ds \quad (by \ (3.13)) \\ &> 0 \end{split}$$

by (3.12). So Lemma 3.4(i) holds.

(II) We prove Lemma 3.4(ii). Let $\tilde{c}_1 < \tilde{c}_2$ be arbitrary two positive numbers and suppose that $\frac{d}{d\rho}H_{\tilde{c}_2}(\rho, q(\rho, \tilde{c}_2)) \ge 0$ for some $\rho \ge \rho_0(\tilde{c}_2)$. Then, since

$$\frac{\partial}{\partial q}\Psi(\rho,q)=2\frac{f'(q)f(\rho)}{[f(q)]^2\sqrt{F(\rho)-F(q)}}>0$$

and $q(\rho, \tilde{c}_1) > q(\rho, \tilde{c}_2)$ for all $\rho \ge \rho_0(\tilde{c}_2)$ by Lemma 3.1(iv), we have

$$\Psi(\rho, q(\rho, \tilde{c}_1)) > \Psi(\rho, q(\rho, \tilde{c}_2)) \ge 0.$$

Consequently, $\frac{d}{d\rho}H_{\tilde{c}_1}(\rho, q(\rho, \tilde{c}_1)) > \frac{d}{d\rho}H_{\tilde{c}_2}(\rho, q(\rho, \tilde{c}_2))$ by (3.10). So Lemma 3.4(ii) holds.

(III) We prove Lemma 3.4(ii). Suppose there exist two positive numbers $\tilde{\rho}_1 < \tilde{\rho}_2$ such that $G'(\rho) > 0$ for $\tilde{\rho}_1 \leq \rho \leq \tilde{\rho}_2$. Then there exists $\epsilon > 0$ such that $G'(\rho) \geq \epsilon$ for $\tilde{\rho}_1 \leq \rho \leq \tilde{\rho}_2$. By (3.5), there exists $\tilde{c} > 0$ such that $\rho - q(\rho, c) < \frac{\epsilon^2}{16e^{4a}}$ for $\tilde{\rho}_1 \leq \rho \leq \tilde{\rho}_2$ and $0 < c \leq \tilde{c}$. This implies that

$$\Psi(\rho, q(\rho, c)) \ge \sqrt{2}\epsilon - 2\int_{q(\rho, c)}^{\rho} \frac{e^{2a}}{\sqrt{\rho - s}} \, ds = \sqrt{2}\epsilon - 4e^{2a}\sqrt{\rho - q(\rho, c)} > 0$$

for $\tilde{\rho}_1 \leq \rho \leq \tilde{\rho}_2$ and $0 < c \leq \tilde{c}$. So Lemma 3.4(iii) holds. The proof is complete. \Box

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Case 1. $4 \le a < a^* \approx 4.069$. Define set

$$I = \{c > 0 : \frac{d}{d\rho} H_c(\rho, q(\rho, c)) > 0 \text{ on } (\rho_0(c), \infty)\}.$$
(3.14)

We first show that I is nonempty. In fact, let c_1 be defined in (3.6) and $\tilde{\rho}_1 = \rho_0(c_1)$. Then, by Lemma 3.1(viii), we have that, for $0 < c < c_1$,

$$\frac{d}{d\rho}H_c(\rho, q(\rho, c)) > 0 \quad \text{on } (\rho_0(c), \tilde{\rho}_1).$$
(3.15)

On the other hand, by Lemma 3.4(i)–(ii) and letting $\tilde{\rho}_2 = \rho_M(a, c_1)$, we have that, for $0 < c < c_1$,

$$\frac{d}{d\rho}H_c(\rho, q(\rho, c)) > 0 \quad \text{on } [\tilde{\rho}_2, \infty).$$
(3.16)

Moreover, by Lemma 3.3(i) and Lemma 3.4(iii), there exists a positive $\tilde{c}_0 < c_1$ such that, for $0 < c < \tilde{c}_0$, $\frac{d}{d\rho}H_c(\rho,q(\rho,c)) > 0$ on $[\tilde{\rho}_1,\tilde{\rho}_2]$. Hence, for $0 < c < \tilde{c}_0$, $\frac{d}{d\rho}H_c(\rho,q(\rho,c)) > 0$ on $(\rho_0(c),\infty)$ and hence $(0,\tilde{c}_0) \subset I$. So I is nonempty.

Next, we show that I is a finite connected interval. Note that, by Lemma 3.1(vii), when $c \ge c_1$, $\frac{d}{d\rho}H_c(\rho,q(\rho,c)) < 0$ for ρ slightly larger than $\rho_0(c)$. Hence $I \subset (0,c_1)$. Moreover, if there exist $\bar{c} \in (0,c_1)$ such that $\bar{c} \notin I$, then there exists $\bar{\rho} > \rho_0(\bar{c})$ such that $\frac{d}{d\rho}H_{\bar{c}}(\bar{\rho},q(\bar{\rho},\bar{c})) \le 0$. Then, by (3.15), we have that $\bar{\rho} > \tilde{\rho}_1$. It implies, by Lemma 3.4(ii), that, for $c \in (\bar{c},c_1)$, $\bar{\rho}(> \tilde{\rho}_1 = \rho_0(c_1)) > \rho_0(c)$ and $\frac{d}{d\rho}H_c(\bar{\rho},q(\bar{\rho},c)) < 0$. Consequently, $(\bar{c},c_1) \notin I$ and hence I is a finite connected interval.

By the definition of I, above arguments and Lemma 3.1(vii), we obtain that there exists a positive $c_0 < c_1$ such that

$$I = (0, c_0). \tag{3.17}$$

Moreover, when $c = c_0$,

$$\frac{d}{d\rho}H_{c_0}(\rho, q(\rho, c_0)) \ge 0 \text{ on } (\rho_0(c_0), \infty),$$
(3.18)

and there exists $\tilde{\rho} > \rho_0(c_0)$ such that $\frac{d}{d\rho}H_{c_0}(\tilde{\rho}, q(\tilde{\rho}, c_0)) = 0$. Indeed, such $\tilde{\rho} > \tilde{\rho}_1$ by (3.15). It follows that, by Lemma 3.4(ii), for $c_0 < c < c_1$, $\tilde{\rho} (> \tilde{\rho}_1) > \rho_0(c)$ and

$$\frac{d}{d\rho}H_c(\tilde{\rho}, q(\tilde{\rho}, c)) < 0.$$
(3.19)

By the relationship between bifurcation curves \tilde{S}_c and the time map H_c from (3.2) and (3.3), we have the following conclusions:

Case (I). For $0 < c < c_0$, that is, $c \in I$, the bifurcation curve \tilde{S}_c is strictly increasing on the $(\lambda, ||u||_{\infty})$ -plane since $\frac{d}{d\rho}H_c(\rho, q(\rho, c)) > 0$ on $(\rho_0(c), \infty)$.

Case (II). For $c = c_0$, the bifurcation curve \tilde{S}_c is monotone increasing on the $(\lambda, ||u||_{\infty})$ -plane by (3.18).

Case (III). For $c_0 < c < c_1$, the bifurcation curve \tilde{S}_c is S-shaped on the $(\lambda, ||u||_{\infty})$ -plane since $\lim_{\rho \to \rho_0(c)^+} \frac{d}{d\rho} H_c(\rho, q(\rho, c)) > 0$ by (3.6), $\frac{d}{d\rho} H_c(\rho, q(\rho, c)) > 0$ on $[\tilde{\rho}_2, \infty)$ by (3.16), and $\frac{d}{d\rho} H_c(\tilde{\rho}, q(\tilde{\rho}, c)) < 0$ by (3.19).

We next show that the S-shaped bifurcation curve \tilde{S}_c could be of either type 1, type 2 or type 3 for some value c on (c_0, c_1) .

Case (III)(a). The existence of type 1 S-shaped bifurcation curves \tilde{S}_c . Since $\frac{d}{d\rho}H_c(\rho, q(\rho, c)) > 0$ on $[\tilde{\rho}_2, \infty)$ by (3.16), we have that, for $c_0 < c < c_1$,

$$\min_{\rho \ge \tilde{\rho}_1} H_c(\rho, q(\rho, c)) = \min_{\tilde{\rho}_1 \le \rho \le \tilde{\rho}_2} H_c(\rho, q(\rho, c))$$

$$> \min_{\tilde{\rho}_1 \le \rho \le \tilde{\rho}_2} H_{c_0}(\rho, q(\rho, c_0)) \quad \text{(by Lemma 3.1(v))}$$

$$= H_{c_0}(\tilde{\rho}_1, q(\tilde{\rho}_1, c_0))$$
(3.20)

by (3.18). On the other hand, by (3.15) and Lemma 3.1(v), we have that

$$H_{c_0}(\rho_0(c), q(\rho_0(c), c_0)) < H_{c_0}(\tilde{\rho}_1, q(\tilde{\rho}_1, c_0)) < H_{c_1}(\tilde{\rho}_1, q(\tilde{\rho}_1, c_1)) = H_{c_1}(\rho_0(c), q(\rho_0(c), c_1)).$$

Consequently, by the intermediate value theorem, there exists $c_{1,1} \in (c_0, c_1)$ such that

$$H_{c_{1,1}}(\rho_0(c_{1,1}), q(\rho_0(c_{1,1}), c_{1,1})) = H_{c_0}(\tilde{\rho}_1, q(\tilde{\rho}_1, c_0)).$$
(3.21)

Hence, for $0 < c < c_{1,1}$,

$$\begin{split} H_c(\rho_0(c),q(\rho_0(c),c)) &= G(\rho_0(c)) \ \text{ (by Lemma 3.2(i))} \\ &< G(\rho_0(c_{1,1})) \ \text{ (by Lemma 3.3(i) and Lemma 3.1(iii))} \\ &= H_{c_{1,1}}(\rho_0(c_{1,1}),q(\rho_0(c_{1,1}),c_{1,1})) \ \text{ (by Lemma 3.2(i))} \\ &= H_{c_0}(\tilde{\rho}_1,q(\tilde{\rho}_1,c_0)) \ \text{ (by (3.21))} \\ &< \min_{\rho \geq \tilde{\rho}_1} H_c(\rho,q(\rho,c)) \end{split}$$

by (3.20). It then follows, by (3.15), that

$$H_c(\rho_0(c), q(\rho_0(c), c)) < H_c(\rho, q(\rho, c))$$

for $\rho > \rho_0(c)$. It implies that, for $0 < c \le c_{1,1}$, the S-shaped bifurcation curve \tilde{S}_c is of type 1 on the $(\lambda, ||u||_{\infty})$ -plane.

Case (III)(b). The existence of type 3 *S*-shaped bifurcation curves \tilde{S}_c . The proof of this part is the same as that given in [8, Proof of Theorem 2.4, Cases (i)(b)] and hence the proof is omitted.

Case (III)(c). The existence of a type 2 *S*-shaped bifurcation curve \tilde{S}_c . The proof of this part is the same as that given in [8, Proof of Theorem 2.4, Case (i)(c)] and hence the proof is omitted.

Case (IV). For $c > c_1$, the bifurcation curve \tilde{S}_c is \subset -shaped on the $(\lambda, ||u||_{\infty})$ plane since $\lim_{\rho \to \rho_0(c)^+} \frac{d}{d\rho} H_c(\rho, q(\rho, c)) < 0$ by (3.6) and since $\frac{d}{d\rho} H_c(\rho, q(\rho, c)) > 0$ for $\rho \ge \rho_M(a, c)$ by Lemma 3.4(i).

Case 2. $a = a^* \approx 4.069$. Let ρ^* be the unique positive number such that $G'(\rho^*) = 0$ as defined in Lemma 3.3(ii). Then, for c > 0, $\frac{d}{d\rho}H_c(\rho^*, q(\rho^*, c)) < 0$ by Lemma 3.2(ii). Hence the bifurcation curve \tilde{S}_c must not be monotone increasing on the $(\lambda, ||u||_{\infty})$ -plane. Or equivalently, $c_0 = 0$ if we similarly define $I = (0, c_0)$ as in (3.14) and (3.17) in Case 1. The remaining parts of the proof in this case followed by similar arguments stated in above Case 1 and hence they are omitted here.

Case 3. $a^* < a < a_1$. Note that, by Lemma 3.3(iii), Equation (3.9) holds for all $a > a^*$. Thus the proof of this part followed by same arguments given as in [8, Proof of Theorem 2.4] and hence the proof is omitted here.

Finally, we remark that the proof of the estimation of $c_1 > 1.057$ for $4 \le a < a_1$ is the same as the one computed in [8, Proof of Theorem 2.4, part (III)] and the

multiplicity result of positive solutions for (1.1) in each case follows immediately from the definition of shapes of bifurcations curves, see e.g., Figures 1 and 2. The proof is complete.

Acknowledgements. This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-007-001-MY2.

References

- K. J. Brown, M. M. A. Ibrahim, R. Shivaji; S-shaped bifurcation curves, Nonlinear Anal., 5 (1981), 475–486.
- [2] J. Goddard II, R. Shivaji, E. K. Lee; A double S-shaped bifurcation curve for a reactiondiffusion model with nonlinear boundary conditions, Bound. Value Probl., (2010), Art. ID 357542, 23 pages.
- [3] S.-Y. Huang, S.-H. Wang; Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Rational Mech. Anal., 222 (2016), 769–825.
- [4] K.-C. Hung, S.-H. Wang; A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251 (2011), 223–237.
- [5] K.-C. Hung, S.-H. Wang, C.-H. Yu; Existence of a double S-shaped bifurcation curve with six positive solutions for a combustion problem, J. Math. Anal. Appl., 392 (2012), 40–54.
- [6] P. Korman, Y. Li; On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011–1020.
- [7] T. Laetsch; The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13.
- [8] Y.-H. Liang, S.-H. Wang; Classification and evolution of bifurcation curves for the onedimensional perturbed Gelfand equation with mixed boundary conditions, J. Differential Equations, 260 (2016), 8358–8387.
- [9] J. Shi; Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494– 531.

YU-HAO LIANG (CORRESPONDING AUTHOR)

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

E-mail address: yhliang@nctu.edu.tw

Shin-Hwa Wang

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan $E\text{-}mail\ address:\ \texttt{shwang@math.nthu.edu.tw}$